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Limit cycles as stationary states of an extended harmonic balance ansatz
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A limit cycle is a self-sustained, periodic, isolated motion appearing in autonomous differential equations.
As the period of a limit cycle is a priori unknown, finding it as a stationary state of a rotating ansatz is
challenging. Correspondingly, its study commonly relies on numerical methodologies (e.g., brute-force time
evolution, and variational shooting methods) or circumstantial evidence such as instabilities of fixed points.
Alas, such approaches are (i) unable to find all solutions, as they rely on specific initial conditions, and (ii) do not
provide analytical intuition about the physical origin of the limit cycles. Here, we (I) develop a multifrequency
rotating ansatz with which we (II) find all limit cycles as stationary-state solutions via a semianalytical homotopy
continuation. We demonstrate our approach and its performance on the Van der Pol oscillator. Moving beyond
this simple example, we show that our method captures all coexisting fixed-point attractors and limit cycles in
a modified nonlinear Van der Pol oscillator. Our results facilitate the systematic mapping of out-of-equilibrium
phase diagrams, with implications across multiple fields of the natural sciences.
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I. INTRODUCTION

Limit cycles (LCs) are periodic, isolated solutions of non-
linear differential equations that persist indefinitely in time
[1]. Commonly, the oscillation period is a priori unknown,
with oscillations reflecting the autonomous balance among the
various forces acting on the system. Limit cycles are ubiq-
uitous in all scientific fields, including physics, biology, and
engineering [2,3], with broad applications, such as developing
optical frequency combs and sensors [4–6], understanding
biological oscillators [7–9], predator-prey community dynam-
ics [7], chemical reaction networks [10], action potential
dynamics in neural networks [11], genetics [12], designing
control systems [13] and power grids [14], as well as realizing
neuromorphic computing [15]. Notably, LCs have recently
gained significant attention in the realm of out-of-equilibrium
physics with a variety of realizations in light-matter ensembles
[16–26], parametric oscillators [27–30], electromechanical
systems [31–34], superconducting circuits [35], and op-
tomechanics [36–41]. Although broadly significant, their
complexity limits the ability to solve them analytically.

The precise definition of LCs varies across fields, leading
to ambiguities in the literature [42,43]. We adopt the follow-
ing: an LC represents self-sustained, periodic states of motion,
isolated in phase space. In this state, the harmonic amplitudes
that make up the LC become constant, time-invariant values,
that achieve asymptotic stability for t → ∞. While some def-
initions include complex solutions such as quasiperiodic or
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chaotic motions, the key feature of an LC is the absence of
a preferred time origin and its resilience to phase locking to
external forces. This resilience underscores LCs’ key roles in
synchronization [44], and fluid dynamics instabilities [45,46].

The study of LCs poses enduring challenges, due to their
unknown oscillation periods and involved nonlinear dynam-
ics. Various methods have been used for their study, including
brute-force integration [47], variational shooting methods
[48,49], describing-function methods [50], nonlinear func-
tional analysis techniques [51–53], and bifurcation theory of
unstable fixed points [54–56]. While useful, these methods
crucially depend on an optimal choice of initial conditions
(manually or through numerical single-root finding methods),
or are applicable only for specific types of LCs. As such, they
often fail to capture the coexistence of multiple LCs in the
system. Moreover, to date, the upper bound for the number of
LCs in a polynomial vector field remains unknown [57].

The Harmonic Balance Method (HBM) [58–62] is a
powerful technique for finding stationary (static and peri-
odic) solutions to ordinary differential equations (ODEs).
The method employs an ansatz where the stationary solu-
tion at t → ∞ takes the form of a truncated Fourier series,
with series coefficients meeting analytical conditions derived
from the ODEs and boundary conditions. Crucially, the com-
plexity of determining all possible coefficient values scales
exponentially with the number of degrees of freedom and
coefficients [63,64], often requiring nonlinear optimization
algorithms. Nonetheless, the HBM connects to the Krylov-
Bogoliubov averaging method for solving nonlinear ODEs
with harmonic dependence [65,66], and provides simplified
analytical equations that reveal the physical mechanisms en-
gendering LCs. Moreover and key to our work, leveraging a
modern implementation of Homotopy Continuation (HC) over
complex numbers [67–69], allows us to obtain all stationary

2643-1564/2024/6(3)/033180(12) 033180-1 Published by the American Physical Society

https://orcid.org/0000-0001-6185-813X
https://orcid.org/0000-0001-7286-8966
https://orcid.org/0000-0002-1759-4920
https://ror.org/05a28rw58
https://ror.org/0546hnb39
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033180&domain=pdf&date_stamp=2024-08-19
https://doi.org/10.1103/PhysRevResearch.6.033180
https://creativecommons.org/licenses/by/4.0/


DEL PINO, KOŠATA, AND ZILBERBERG PHYSICAL REVIEW RESEARCH 6, 033180 (2024)

solutions semi-analytically, effectively describing various ef-
fects in nanomechanics [70–72] and light-matter systems
[73–75].

In this work, we introduce a variant of the HBM that
can efficiently find all LCs as stationary states in polyno-
mial nonlinear ODEs. Using a truncated Fourier ansatz, and
through gauge-fixing, we simplify the problem to finding
the roots of a polynomial system defined by the harmonic
amplitudes of LCs and system parameters. These are solved
via a complex-valued HC method [67–69]. This approach
offers two substantial advantages: (i) it can find complete
sets of both LCs and fixed point stationary states under a
generic ansatz, even when they coexist, and (ii) it facilitates
semi-analytical computationally-efficient parametric studies
of limit cycles, capable of detecting even isolated or un-
connected LC branches. We first illustrate the merit of our
approach on the prototypical Van der Pol (VdP) oscillator,
which is the simplest case study for LCs. We then generalize
the model to include additional nonlinearities, causing LCs
and fixed point attractors to coexist. Crucially, our approach
is particularly efficient for exploring the phase diagrams
of nonlinear, coupled, driven-dissipative systems with many
controllable parameters [28,76–78], in fields like nanome-
chanics, cold atoms, and nonlinear photonics. An example
implementation is available within the software package HAR-
MONICBALANCE.JL [62].

II. ILLUSTRATIVE MODEL

We consider a modified VdP oscillator that includes ad-
ditional polynomial potential terms. Its displacement x(t )
follows Newton’s equation ẍ + F (x, ẋ) = 0, where

F (x, ẋ) = ω2
0x + γ ẋ − μ(1 − x2)ẋ + α3x3 + α5x5, (1)

where the natural frequency is ω0, γ controls the linear damp-
ing, μ > 0 is the standard VdP parameter that controls the
linear gain channel alongside nonlinear damping, and α3,5

are cubic and quintic nonlinearities, respectively. The limit of
γ = α3,5 = 0 in Eq. (1) recovers the standard VdP equation,
where the linear gain, −μẋ, drives the oscillator to higher
amplitudes, and the nonlinear damping, μx2ẋ, saturates the
motion into an LC (cf. the sign change of the overall term
based on the value of |x|). Conversely, when μ = 0, we have
a nonlinear oscillator with quartic and sextic potential terms.
The system’s multiple energy minima then enable the coex-
istence of fixed point attractors and LCs, studied later in the
manuscript.

Our model has two distinct regimes related to the sign
of (γ − μ). A positive sign signals a damped system that
will relax into one of the potential minima depending on the
initial boundary conditions, see Fig. 1(a). In the opposite case
(negative sign), gain overcomes damping and the system is
incoherently driven to higher amplitudes, see Fig. 1(b). Gen-
erally, for each point in configuration space, x0 = (x0, ẋ0), we
can evaluate the Jacobian matrix J (x0) around that point to
see where excitations flow to in the linear vicinity of x0. In
particular, by diagonalizing the Jacobian at the origin, x0 =
(0, 0), we can discern between the two regimes above: the
sign of the real part of the Jacobian eigenvalues ε = 1

2 (−(γ −

FIG. 1. Gain versus loss and Hopf bifurcations. Stream plots
illustrating the behavior of a linear resonator with (a) positive loss,
and (b) positive gain around the origin of parameter space (marked
with black dot), cf. Eq. (1) with α3,5 = 0 and (γ − μ) > 0 or (γ −
μ) < 0, respectively. (c) A plot of the Jacobian eigenvalues around
the origin (0,0) as a function of linear damping for a Van der Pol
oscillator [cf. Eq. (1)]. Their imaginary part (orange, dashed-dotted
lines) marks the oscillation frequency around the origin (excitation).
Their real part (blue lines) denotes the inverse lifetime of the exci-
tations (when negative) or their rate of expansion (when positive).
From right to left, we observe transitions from overdamped to under-
damped stable excitation (see the exceptional point at γ − μ = 2ω0,
star marker), to unbound (unstable) spiral (Hopf bifurcation at 0,
cross marker), and to an unbound non spiraling expansion (excep-
tional points are at γ − μ = −2ω0, star marker). Vertical dashed
lines mark cases (a) and (b).

μ) ±
√

(γ − μ)2 − 4ω2
0 ) corresponds to whether the origin is

a sink or a source (cf. discussion on the sign of γ − μ above);
the imaginary part parametrizes the oscillation frequency for
small excitations near the origin, see Fig. 1(c). These small
excitations are stable and overdamped when γ − μ > 2ω0,
and stable and underdamped when 0 < γ − μ < 2ω0. The
under- to over-damped transition is marked by an exceptional
point [79,80]. The source-to-sink transition occurs via a super-
critical Hopf bifurcation, where the excitations lose stability
while maintaining their oscillation frequency. At higher gain,
no notion of unstable excitations remains as the oscillation
frequency is removed.

The local (sink-to-source) instability around the origin
does not fully indicate whether an LC forms after a Hopf
bifurcation. Indeed, without any nonlinearity in the model, the
excitations will expand under the gain to infinity. However,
in the standard VdP oscillator (α3,5 = γ = 0), the nonlinear
damping prevents the system from spiraling to x, ẋ → ∞, by
stabilizing an LC that encircles the origin at a distance, see
Fig. 2(a). The shape of the LC changes with increasing μ,
ranging from a circular orbit to a complex skewed pattern. As
the LC is periodic, we can also efficiently describe it in Fourier
space, see Fig. 2(b). Note that the oscillation frequency is
not simply that of the bare resonator (ω0). The deviation
from a single harmonic circular motion is captured by the
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FIG. 2. The Van der Pol limit cycle and the harmonic balance
method. (a) Stream plots for the VdP oscillator [cf. Eq. (1) with
α3,5, γ = 0] show dynamics at μ = 0.1ω0, μ = 0.5ω0, and μ = ω0,
from left to right. The solid (red) curve marks the LC obtained from
time propagation, while the dashed (black) curve represents results
from the e-HBM with M = 5 harmonics [cf. Eq. (4)]. (b) Fourier
transforms of the LC time evolutions in (a) reveal a frequency comb.
Red dots show normalized squared amplitudes at odd frequencies
(2k + 1)ω k ∈ N, captured by the e-HBM. We use windowed Fourier
transforms with a Hamming function to mitigate spectral leakage
from finite integration times. (c) Overlap between e-HBM and exact
time evolution result as a function of μ for M = 5. Dots show a linear
fit. (inset) Same as (b) as a function of μ marking the change in the
comb frequencies. e-HBM frequencies are shown as dashed lines,
overlaid on the Fourier spectrum’s positive frequency part.

formation of a frequency comb with Fourier amplitudes
|x̃(ω)|2 at harmonics mω, ω �= ω0. Our LC has a half-wave
symmetry in the time domain, with only odd harmonics
contributing.

Due to the intricate motion of LCs, with a priori unknown
frequencies, it is challenging to describe them as stationary
states in a fixed rotating frame (frequency expansion). Instead,
LCs are commonly obtained using time domain methods
that involve solving a boundary value problem (BVP), cf.
a detailed review in Appendix A. This requires enforcing
periodicity via x(t ) = x(t + T ), with the unknown period T
determined alongside the solution. Various numerical strate-
gies are employed to identify LCs, including direct time
evolution and advanced shooting methods that transform the
BVPs into initial value problems [49,81–85]. These methods
are particularly effective near Hopf bifurcations [cf. Fig. 1],
where LCs may emerge. Alas, these methods have limitations:
(I) direct time evolution may fail to capture the LC if the initial
condition is not within its basin of attraction; (II) BVPs can
have multiple solutions, and the Newton-Raphson method,
typically used in the final step, captures only one of them; and
(III) seeding LCs out of Hopf bifurcations cannot universally
capture LCs because (III-i) a sink-to-source parameter defor-
mation of the system is required [cf. Fig. 1]; in the standard
VdP with μ > 0, this transition is omitted. In addition, (III-ii)
LCs can arise from various types of bifurcations, and not just
Hopf, e.g., from heteroclinic orbits connecting saddle points
[56,66]. We overcome these limitations, in the following, by
devising a variant of HBM [61] that allows us to capture
LCs as stationary states of a varying rotating frame, i.e., at
a time-evolving frequency to be discovered.

III. EXTENDED HARMONIC BALANCE METHOD

In the standard HBM ansatz, the motion

x(t ) =
M∑

l=1

ul (t ) cos(ωl t ) + vl (t ) sin(ωl t ), (2)

is split into M fast harmonics with frequencies ω =
(ω1, . . . , ωM ) that have slowly evolving amplitudes u =
(u1(t ), . . . , uM (t )) and v = (v1(t ), . . . , vM (t )). The ansatz (2)
approximates the time evolution with its leading frequency
components. Inserting the ansatz into Eq. (1), yields (for
α3,5 = 0)

∑
l

cos (ωl t )
[
ül + 2ωl v̇l − μu̇l + (

ω2
0 − ω2

l

)
ul − μωlvl

] +
∑

l

sin (ωl t )
[
v̈l − 2ωl u̇l − μv̇l + μωl ul + (

ω2
0 − ω2

l

)
vl

]

=
∑
m,n,l

μ[um cos (ωmt ) + vm sin (ωmt )][un cos (ωnt ) + vn sin (ωnt )] · [sin (ωl t )(ωl ul − v̇l ) − cos (ωl t )(u̇l + ωlvl )]. (3)

We search for stationary motion, i.e., ü = v̈ = u̇ = v̇ = 0.
Furthermore, the premise of the HBM is to “balance” the
harmonics at both sides of Eq. (3), i.e., the prefactors of each
harmonic satisfy the equation independently. Nonlinear terms
in Eq. (1) induce frequency mixing among different harmon-
ics, enhanced at ’multi-photon’ resonances, ωl = ωl ± ωm ±
ωn. These conditions lead to the 2M coupled polynomial equa-
tions F (u, v) = 0, containing third-degree nonlinear coupling
among the prefactors of various harmonics, cf. Sec. III C. Note
that finding the roots of F (u, v) only solves the problem when

external driving predetermines the stationary state frequencies
ωl . Further details on this standard application of the HBM
can be found in Appendix B and [62].

A. Gauge fixing

Limit cycles evolve with unknown self-oscillation frequen-
cies. We, therefore, modify the standard HBM approach and
introduce a slow time variation to the frequencies, ωl �→
ωl (t ), on top of the slowly evolving amplitudes ul (t ), vl (t )
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in the ansatz as seen in Eq. (2). In our extended HBM (e-
HBM) approach, the variational prefactors evolve similarly to
Eq. (3), with additional terms arising from time derivatives of
ωl (t ). Now, fixing the harmonic amplitudes in the generalized
stationary state, where ü = u̇ = v̈ = v̇ = ω̈ = ω̇ = 0, results
in a system of 2M coupled polynomials F̃ (u, v,ω) = 0 in
the 3M variables u, v,ω. The equations are thus insufficient
to determine unequivocally the LCs. Fortunately, we can
deduce the missing M conditions from the spontaneous, self-
oscillating nature of the LC: With no external drive to lock
onto, the LC’s phases are free from constraints, i.e., there is
gauge freedom in the problem.

Gauge freedom is related to the spontaneous emergence
of LCs, altering the time-translation symmetry: a time-
dependent solution can appear even in a time-independent
system. To illustrate this, we focus on the time translation
operation by time t ′, such that T (t ′)x(t ) = x(t + t ′), which
is equivalent to T (τ )am = ameimωmτ , with a complex vector
a = (u + iv)/2. A periodic nonlinear system is invariant un-
der the discrete operation T (Ts) with system period Ts, so
it is a time-independent (autonomous) system under a con-
tinuous, operation T (τ ) with arbitrary “sampling period” τ .
However, their long-term solutions can spontaneously break
these symmetries. For instance sub-harmonic oscillations with
commensurate periods Tsq/p (p, q ∈ N) break T (Ts) sym-
metry (harmonic generation) [30]. This allows all solutions
returning to themselves after q iterations of the original
translation T (Ts), which are related via discrete rotations
am → ei2π j/qam for j ∈ {0, 1, . . . , q − 1}. However, a con-
tinuous time-translation-symmetry-broken LC has a period
that is necessarily incommensurate with any generic sampling
timescale. Mathematically, the limit cycle period is τ r with r
irrational for a fixed τ , meaning LCs only return to their orig-
inal state after infinitely many actions of T (τ ). This property
frees oscillation phases in LCs from constraints, resulting in a
continuous set of solutions, ai, related by full U (1) symmetry
a �→ eiϕi a, where ϕi ∈ (0, 2π ) [86].

The U (1) gauge symmetry and the gauge-independence
of the LC stationary solution allow us to fix the M gauges
by redefining the time origin in Eq. (2). One possible gauge
choice yields the 3M equations,

{F (u, v,ω) = 0, u = 0}. (4)

The e-HBM equations (Eq. (4)) embody the core feedback
mechanisms of LC formation (see next Sec. III C for an ex-
ample). They reflect the internal balance between effective
nonlinear potential, coupling and damping among harmon-
ics, which sustains a stable orbit and sets its frequency (cf.
Sec. III C). Our treatment simplifies when introducing re-
lationships within ω, e.g., commensurate frequencies. For
example, the LC in Fig. 2(b) exhibits a frequency comb with
a single unknown frequency ω, i.e., ωl = lω with l ∈ N. This
requires only fixing the gauge of a single harmonic to attain
a solution, e.g., by setting u1 = 0. Note that, our method
extends beyond autonomous systems, to (non-autonomous)
periodically-driven ones [17]. Here emergent harmonics in
Eq. (2) become sidebands, at frequencies ωd ± ωl , to the
drives at ωd .

B. Finding all solutions via a Homotopy
Continuation with complex variables

Our e-HBM embeds LCs as fixed points in a high-
dimensional phase space, rotating with variational frequencies
ωl . The complexity of solving the problem at this stage
is delineated to the proliferation of roots in the system,
which complicates the use of straightforward root-finding
(e.g., Newton-Raphson) methods. Inspired by a similar chal-
lenge encountered in the standard HBM for driven motion
[61], we solve Eq. (4) using HC over the complex numbers
[62,64,67,68]. This method uses homotopy –a continuous de-
formation of an exactly solvable algebraic system into the
targeted coupled polynomials– finding roots along the de-
formation path (Eq. (4)). Using a start polynomial system
meeting or exceeding the target’s root count (e.g., meeting the
Bézout bound [67]) along with embedding u, v, ω and param-
eters in complex numbers ensures all roots are found in one
run and maintains continuous root paths during deformation
[68].

Applying our methodology to the VdP oscillator (α3,5 =
γ = 0), we find a single real solution that corresponds to the
amplitudes u, v and frequencies ω that well estimate the LC
[Fig. 2(a)]. This same agreement manifests more clearly in the
frequency domain [see Fig. 2(b)], and persists as a function
of μ for various LC frequencies, see inset of 2(c). To further
validate our method, we estimate the overlap between the
stationary amplitudes obtained via e-HBM and from Fourier
transform of the numerical time-evolution, aFT, namely O =
a∗

HBM · aFT, between the normalized harmonic amplitudes
aHBM = (u + iv)/

√
u2 + v2, and aFT, respectively. The over-

lap obeys an approximate power law ∼(μ/ω0)2 [cf. Fig. 2(c)]
reaching few-percent deviations for μ = 2ω0. Once a solution
to Eq. (4) is found, its stability can be determined by analyz-
ing the linear fluctuations around its vicinity, as detailed in
Appendix C.

C. Convergence of the e-HBM: VdP oscillator case

The overlap’s relationship with the number of harmonics
in the ansatz Eq. (2), M, is not strictly monotonic due to the
specific orders retained in the HBM truncation, as discussed
below. We illustrate convergence challenges in the applica-
tion of the e-HBM to the VdP oscillator. For the sake of
simpler algebraic manipulation, we adopt a complex notation

where x(t ) = ∑ M−1
2

k=0 ak (t )e−i(2k+1)ωt + c.c., where we already
limited the sum to even harmonics m = 2k + 1, k ∈ N and
c.c. denotes the complex conjugate. The first step of the HBM
involves inserting such ansatz into the VdP equation Eq. (1),
as illustrated in Eq. (3). Next, we match oscillatory terms
with a specific frequency ωk and isolate the correspond-
ing frequency terms i.e. we balance the harmonics. Such
frequency matching procedure filters each oscillating contri-
bution in an equivalent way as averaging the equation over
the period 2π/((2k + 1)ω). The nonlinear damping in the
VdP equation leads to couplings between different harmonic
amplitudes. The corresponding term in the Harmonic Bal-
ance equation at a frequency ωk follows from the average
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FIG. 3. Fidelity of e-HBM ansatz, further details: (a)-(c) Overlap between e-HBM and exact time evolution result as a function of the
number of harmonics M for varying μ, shown at each panel [cf. Fig. 2]. The overlap is computed by matching frequency peaks in |x̃(ω)|2,
from the quasi-exact evolution aFT to the nearest frequency estimates obtained by the HBM aHBM, with percentual deviations below 2%,
shown in (d).

integral:

〈x2ẋ〉c = −i
ωk

2π

∫ π/ωk

−π/ωk

dt
∑
m,n,p

ωm
(
ame−iωmt − a∗

meiωmt
)

× (
ane−iωnt + a∗

neiωnt
)(

ape−iωpt + apeiωpt
)
e−iωkt .

(5)

The equations for the harmonic amplitudes uk and vk can be
derived by assuming am(t ) constant for the purpose of the time
integration [66], and separating the real and imaginary terms
from the aforementioned expression. For each k, all terms
with m, n � M are present, and explicitly, the surviving terms
are

〈x2ẋ〉c
k = i

∑
m,n,p

ωm[aman(apδm+n+p+k + a∗
pδm+n−p+k )

− a∗
man(apδ−m+n+p+k + a∗

pδ−m+n−p+k )]

+ i
∑
m,n,p

ωm[ama∗
n(apδm−n+p+k + a∗

pδm−n−p+k )

− a∗
ma∗

n(apδ−m−n+p+k + a∗
pδ−m−n−p+k )], (6)

where δm−n = 1
2π

∫ π

−π
ei(m−n)θ dθ stands for the Kronecker

delta. The preceding step assumes the commensurability of
frequencies, displayed by the VdP oscillator in Fig. 2(b). The
ansatz insertion, expansion, and frequency balance are facil-
itated by the symbolic layer of the HARMONICBALANCE.JL

package [62].
Equation (6) reveals explicit nonlinear coupling between

different harmonics, weighted by ‘selection rules’ arising
from the Kronecker delta factors. Some harmonics will
dominate more than others in the expressions above. We
observe harmonic amplitudes decaying monotonically (see
Fig. 2(b)). To assess convergence, it is crucial to analyze the

influence of higher-frequency harmonics on lower-frequency
ones. Additionally, note that the LC in the VdP oscillator
shows step functions in the time domain with half-wave
symmetry and period Ts (x(t ) = −x(t ± Ts/2)), meaning
only odd harmonics contribute to the ansatz. Therefore, the
sums

∑
m,n,p must be thus restricted to odd harmonics only,

so we replace m → 2m + 1, n → 2n + 1, p → 2p + 1, k →
2k + 1 in the harmonic frequencies and set the origin in the
indices to zero: m, n, p, k � 0.

Let us analyze the terms that arise from a given truncation
M. Keeping only the first harmonic in the ansatz, i.e., setting
M = 1 and collecting terms with m = n = p = k = 0, the
only non-vanishing contributions in Eq. (6) are

−a∗
ma∗

napδ2(k−m−n+p), �→ −a∗
0|a0|2, (7)

−a∗
mana∗

pδ2(k−m+n−p) �→ −a∗
0|a0|2, (8)

ama∗
na∗

pδ2(k+m−n−p) �→ a∗
0|a0|2. (9)

At this approximation level, equivalent to the lowest-order
averaging method [see Ref. [66] for further details], the
nonlinear dissipation in the VdP oscillator simplifies to an
amplitude-dependent dispersive shift. This reduction leads to
the Stuart-Landau equation [87,88], commonly used to study
nonlinear oscillators near a Hopf bifurcation.

We can further analyze the corrections to this lower
harmonic a0 from the interaction between a0 with a1. Keep-
ing m, n, p � M = 1, leads to 〈x2ẋ〉c

k=0 = −a∗
0|a0|2 + a2

0a∗
1 −

2a1a∗
0a1. Similarly, keeping m, n, p � M = 2, introduces ad-

ditional corrections,

〈x2ẋ〉c
k=0 = a2

0a∗
1 − a0

(
a∗

0
2 − 2a1a∗

2

) − 2a1a∗
0a∗

1 − a2

× (
a∗

1
2 + 2a∗

0a∗
2

)
, (10)

where a0 and a2 are directly coupled, but also a0, where a0,
a1, and a2 have a threefold interaction. At increasing orders,
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FIG. 4. Coexistence of limit cycles and fixed points. (a) Phase diagram of the model (1) in the α3, μ parameter space, showing the count
of stable stationary states, #s, including LCs and fixed points. Dashed lines mark boundaries where the number of unstable stationary states
changes. Panels (b)-(g) illustrate distinct flow patterns in each region [cf. Fig. 1]. Stable (unstable) HBM fixed points are depicted by dots
(crosses). The LC found by the e-HBM is shown by a red dashed line. Regions (b) and (d) exist below the Hopf bifurcation, i.e., μ < γ , and
only sustain fixed points. When μ > γ , regions (c) and (e) host an LC around the origin, that coexists with stable fixed points in (e). The
transition between (b) and (d) [respectively (c) and (e)] is associated with the appearance of two additional fixed points. The LC destabilizes
in (f) and vanishes in (g) by merging with the unstable fixed points, and leaves behind solely fixed points. In all panels, ω0 = 1, μ = 0.1,
γ = 0.03, α5 = −0.01, and M = 2.

nonlinear contributions between all harmonics proliferate, see
〈x2ẋ〉c

k=0 = a2
0a∗

1 + a0
[
2(a1a∗

2 + a2a∗
3 + a3a∗

4 ) − a∗
0

2
]

− a2a∗
1

2 − a4a∗
2

2 − 2a2a∗
0a∗

2 − 2a3a∗
1a∗

2 + a2
1a∗

3

− 2a∗
3(a3a∗

0 + a4a∗
1 ) + a1(2a2a∗

4 − 2a∗
0a∗

1 ). (11)

The Fourier analysis [cf. Fig. 2(b)] indicates that ak �→
0 as k increases, suggesting that the terms amanap become
progressively weaker with higher harmonics, leading to ex-
pected convergence. However, further analysis is required
to determine if this convergence is monotonic. As shown
in Fig. 3, increasing the number of harmonics M in the
ansatz does not necessarily enhance the solution’s fidelity.
Further research into the convergence of multiharmonic and
higher-order Krylov-Bogoliubov methods is delegated to fu-
ture work.

IV. COEXISTENCE OF A LIMIT CYCLE
WITH FIXED POINTS

The combination of our e-HBM and the complex-valued
HC simultaneously captures all solutions, outperforming
time-evolution or shooting methods that explore one solution
per run [49]. It also improves upon traditional HBMs that
use single-variable real continuation [46,89]. When α3,5 = 0,
the system sustains a unique LC around the origin, as guar-
anteed by Lienard’s theorem [90], but with α3,5 �= 0 various
stationary states coexist, see Fig. 4(a), due to the conservative
potential that hosts multiple energy minima. To describe this
coexistence using e-HBM, we apply a two-step procedure:
(i) we first solve for stationary fixed-points using a zero-
frequency ansatz x(t ) = a0(t ), and then (ii) find LCs using
the e-HBM ansatz (Eq. (2)). This approach requires an ansatz
that includes a zero-frequency harmonic alongside harmonics
with (2l + 1)ω frequencies, where l ∈ N. Notably, the HBM
and the e-HBM are mutually exclusive: HBM captures only
the trivial fixed point for a0 in the VdP oscillator (the origin),
but misses LCs, while the e-HBM’s gauge fixing fails at time-
independent fixed points, resulting in infinitely-degenerate
solutions of zero amplitude around fixed points, due to the
arbitrariness of ω �= 0. Luckily, by combining the results from

the two steps, we fully capture the stationary solutions of the
system (including LCs) for different parameters, e.g., as a
function of the cubic potential and nonlinear gain, and obtain
the phase diagram of the system, see Fig. 4(a). We observe
distinct regions, including a stable LC that coexists with
fixed point attractors at region, see Fig. 4(e). This coexistence
exemplifies the loose connection between Hopf bifurcations
and LCs, as no bifurcation appears, see, e.g., transition be-
tween regions in Figs. 4(e) and 4(f). In this work, we explore
the parameter regime where LCs coexist with fixed points,
without delving into potential intersections between them. As
μ increases, LCs can merge with saddle points and become
only semi-stable. Crucially, the coexistence of LCs and fixed
points applies to phenomena like the heart’s rhythmic beat-
ing and oscillating chemical reactions [2,44], highlighting the
broad applicability of the approach.

V. CONCLUSION AND OUTLOOK

Our method, available through HARMONICBALANCE.JL

package [62], facilitates the investigation of LCs in a breadth
of fields. Instead of relying on numerical evolution and single-
root finding, our e-HBM approach employs a complex-valued
HC method to identify LCs as fixed points within a rotating
ansatz. Our treatment can be readily extended to nonau-
tonomous systems with periodic forcing, whose dynamics
spontaneously shifts from periodic to quasiperiodic behav-
ior [27]. It allows us to uncover multiple coexisting LCs
and stable phases, and in particular multiple LCs within the
same system [91,92]. This makes our approach well-suited
for the analysis of many-body phases in mean-field prob-
lems [93–95], frequency combs [96], and synchronization
conditions or parametric symmetry breaking in classical and
quantum oscillator arrays [21,97–108]. Notably, in all these
fields, the ability to describe the LCs as a fixed point pro-
vides the framework for studying stochastic dynamics and
activation between LCs. Last, the effectiveness of our e-HBM
hinges on efficiently solving 2M coupled polynomial equa-
tions [109]. Progress towards efficiently solving the Eq. (4)
will allow us to solve complex systems with more degrees of
freedom [63].
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APPENDIX A: FINDING LIMIT CYCLES: SUMMARY
OF NUMERICAL METHODS

Here we aim to provide a comprehensive overview of the
various numerical methodologies used for calculating limit
cycles in nonlinear dynamics. Although we endeavor to cover
a broad spectrum of techniques, we encourage interested read-
ers to consult [110,111] for a more extensive exploration of
the topic.

Without loss of generality, we consider an LC to be a pe-
riodic solution ϕ(x0, t ), propagated from the initial condition
x0 ∈ Rn for a time t , of the autonomous system

ẋ = f (x), (A1)

i.e., such that

ϕ(x0, T ) − x0 = 0. (A2)

Remarkably, Eq. (A2) indicates that finding LCs involves
solving a two-point boundary value problem (BVP), which is
typically more complex than an initial value problem (IVP).
Numerical methods address the BVP usually by merging time
evolution from an IVP with the optimization of initial con-
ditions and the frequency or period of the limit cycle. The
optimization problem involved is nonlinear, and iterative root-
finding techniques like the standard Newton-Raphson method
are employed to solve it. Note that, due to the reliance of
IVPs on the initial condition x0, the following algorithms are
designed to capture only a single LC per execution.

1. Single shooting method

This approach transforms the BVP equations (Eqs. (A1)
and (A2)) into an IVP, iteratively adjusting initial conditions
to identify a closed orbit. The basic form of the shooting
method, known as single shooting, involves the following
steps until convergence: (i) aiming, or initially guessing x0,
usually based on prior knowledge about the LC, followed
by (ii) shooting, i.e., integrating numerically (A1) from x0

to find ϕ(x0, Ts). This integration should span a time interval
approximately equal to the anticipated (but unknown) period
of the LC. The final steps involve (iii) assessing condition
(A2), i.e., evaluating the trajectory’s endpoint to ascertain
whether the trajectory returns to its starting point, and finally
(iv) readjusting the initial conditions based on the trajectory’s
failure to form a closed loop. This entails solving the non-
linear system ϕ(x0, Ts) − x0 = 0 for the initial condition x0

and the period Ts by applying iterative root-finding methods
(e.g., Newton-Raphson). Step (iv) is typically supplemented
by an additional constraint of the form s(x0, Ts) = 0, which
includes a phase condition akin to the gauge fixing of the

e-HBM ansatz in the main text, in order to remove redundancy
of solutions under continuous time translations. Note that the
Multiple shooting method modifies this approach by breaking
the solution into smaller time segments. For each segment,
an initial value problem is solved, and the solution is refined
similarly to the single shooting method, but with additional
matching conditions to stitch these segments into a complete
solution spanning the entire interval.

2. Poincaré shooting

This is a variant of the shooting method that exploits the
concept of a Poincaré section [2]. A Poincaré section is a
lower-dimensional surface intersecting the phase space of the
dynamical system (e.g., a line in two dimensions). (i) Aiming:
In this method, a Poincaré section is chosen so that a periodic
orbit, if it exists, will intersect it at some point. (ii) Shooting
then takes place from an initial guess on the Poincaré section.
(iii) The trajectory of the system is monitored until it intersects
the Poincaré section again. This might happen after one or
more cycles of the underlying dynamics. (iv) The difference
between the initial point and the point where the trajectory
intersects the Poincaré section again (after completing a loop)
is calculated. The last step involves (v) iterative refinement of
the initial condition within the Poincaré section (e.g., through
root-finding algorithms). Note that finding periodic orbits
means identifying the fixed points on the Poincaré map: This
map tracks where trajectories cross the Poincaré section. Pe-
riodic orbits cross this section at the same point every period.
A significant limitation of this algorithm is its dependency
on pre-existing knowledge of the LC’s location. For more
information on constructing the algorithm on the Poincaré
section, see Ref. [112].

3. Trapezoidal method

This method addresses the BVP by segmenting the time
evolution into slices and applying the trapezoidal rule for
finite differences – similar to a Runge-Kutta method for solv-
ing ODEs– to compute the evolution over each slice for x0

and Ts, while adhering to the constraint x(0) = x(Ts) ≡ ϕ(x0).
Because Ts is unknown beforehand, we commonly solve a
system equivalent to Eq. (A1) over a fixed interval [0,1] by
rescaling time.

ẋ = Ts f (x), x(0) = x(1). (A3)

A supplementary phase condition, akin to both shooting
method and e-HBM is added to remove redundancy in so-
lutions due to continuous time translations. The following
integral constraint is typically used:

∫ 1

0
ds x(s) · ẋold(s) = 0, (A4)

where ẋold(t ) is the tangent vector of a previously calculated
LC and is therefore known. The finite difference system, for
which we seek a solution, takes the following form according
to the trapezoidal rule:

x j − x j−1 − Ts

2
( f (x j ) + f (x j−1)) = 0, (A5)
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with xm − x1 = 0, for j = 1, · · · , m − 1. The system’s so-
lution is derived by solving Eq. (A5) and condition (A3),
typically using iterative (e.g., Newton) solvers.

4. Orthogonal collocation

In this case, the rescaled time interval [0,1] in Eq. (A3)
is first divided into R smaller “test” intervals 0 = τ0 < τ1 <

· · · < τR = 1, on each of which the solution x(τ ) is approxi-
mated by an order m vector valued polynomials x(i)(τ ). This
is done by defining m + 1 equidistant mesh points on each test
interval:

τ = τ ( j)(σ ) ≡ τ j + (1 + σ )

2
(τ j+1 − τ j ), (A6)

with σ ∈ [−1, 1]. The functions x( j) defined on [−1, 1] by
x( j)(σ ) ≡ x(τ j (σ )) satisfy

ẋ( j) = Ts
τ j+1 − τ j

2
· f (x( j) ), (A7)

with the continuity equation on [−1, 1], x( j+1)(−1) = x( j)(1).
The equations are solved using a polynomial approximation
of degree m, achieved by setting a partition −1 = σ1 < · · · <

σi < · · · < σm+1 = 1 to establish collocation points τi, j =
τ (i)(σ j ). The associated m + 1 lowest degree interpolating
(Lagrange) polynomials of degree m, with collocation points
as roots, are

Li(σ ) ≡
m+1∏

k=1,k �=i

σ − σk

σi − σk
, (A8)

for i = 1, . . . , m + 1. The approximation for x(τ ) reads

p j (σ ) ≡
m+1∑
k=1

Lk (σ )x j,k , where x j,k denotes the k-th com-

ponent of x( j). The optimal collocation method, employs
Gaussian quadrature for efficient numerical integration of the
equation. This is accomplished by matching collocation points
the nodes zl in the Gauss–Legendre quadrature rule. The prob-
lem to solve reduces then to

ṗ j (zl ) = T
τ j+1 − τ j

2
f (p j (zl )), (A9)

with 1 � l � m, 1 � j � R. Besides the unknown period
Ts, solving for x j,k involves nR(m + 1) unknowns for a vector
x ∈ Rn. Similarly to previous methods, to ensure the unique-
ness of solution, it is necessary to incorporate the phase
condition represented by the integral 1/Ts

∫ Ts

0 ds x(s) · ẋ(s) =
0.

5. Available software

The methods we reviewed are designed to identify one LC
at a time, typically near a known Hopf bifurcation. After dis-
covering an LC, its parametric dependence can be traced using
numerical continuation methods. Such methods are featured
in established software suites including AUTO/XPPAUT [81,82],
MATCONT [84], PYDSTOOL/PYCONT [113], CoCo [85], and
BifurcationKit [49]. These tools generally employ pseudo-
arclength continuation on real parameters [48]. However,
such methods are typically restricted to finding and tracking
a single solution path per computational thread, potentially

missing isolated solution branches. In contrast, our Homo-
topy Continuation method utilizes a complex embedding
approach, enabling the identification of all complex roots to
the Harmonic Balance equations, therefore all physical, real
solutions [63,68]. This method also allows for the continua-
tion towards every real solution for all parameters, effectively
managing multiple solution paths over complex variables si-
multaneously. Note that the effectiveness of the homotopy
continuation method we use is largely due to its application
to a particular kind of nonlinear problem, i.e., to problems
that effectively map to root finding of a set of polynomial
equations that have a positive degree. This method operates by
simplifying nonlinear terms into polynomial forms or trans-
forming specific equation types, such as trigonometric ones,
into polynomials using appropriate transformations. Our im-
plementation of this method is fully documented and publicly
accessible through HARMONICBALANCE.JL package [62,114].

APPENDIX B: HARMONIC BALANCE METHOD

The Harmonic Balance Method (HBM) is commonly ap-
plied to handle harmonically driven nonlinear systems. Such
systems are described by general nonlinear system of N
second-order ODEs of the form

ẋ(t ) = G(x(t ), t ), (B1)

where x(t ) = (x1(t ), x2(t ), · · · , xN (t ))T , and xi(t ) are real
variables with i = 1, 2, ..., N and time t as the indepen-
dent variable. The function G(x(t ), t ) is assumed to depend
harmonically on x(t ) and its time derivatives. Note that
in a linear system, G(x, t ) = ẍ + Mx + b(t ), where M(t )
contains spring constants and linear couplings, and b(t ) rep-
resents external forces. Diagonalizing M yields the normal
modes of the system.

The system (B1) eventually reaches a stationary state,
typically showing an oscillatory response with a constant am-
plitude over time. The HBM assumes such solutions can be
represented by the expansion

xi(t ) =
Mi∑

l=1

ul,i(t ) cos(ωl,it ) + vl,i(t ) sin(ωl,it ), (B2)

where we introduced Mi harmonics oscillating at frequencies
ωl,i with slowly-varying envelopes ul,i(t ) and vl,i(t ), in order
to describe the evolution of each variable xi(t ). An approach
to finding such amplitudes involves using ODE solvers to
propagate the evolution over a long time and then performing
Fourier analysis on the solutions. Once a given set of solutions
has been found for a parameter set, additional solutions can be
obtained by continuation techniques [61]. This methodology,
however, can be challenging to apply, since nonlinear sys-
tems can have multiple stationary states, resulting in different
responses depending solely on the initial conditions. Time-
consuming initial condition sampling is needed to map all
stationary-state branches, but it may not reveal every solution
branch.

To simplify the process, an alternative approach involves
using Eq. (B2) as an ansatz of the ODE system. Replace-
ment of the expansion of Eq. (B2) into Eq. (B1) leads to
harmonic oscillating terms at both sides of the equation. The
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stationary state problem can be transformed into an algebraic
one, within the truncated ansatz Eq. (B2), by balancing har-
monics at both sides of Eq. (B1). This procedure results in
equations equivalent to those found by Krylov-Bogoliubov
averaging [62,66]:

F (u, v) = 0, (B3)

where u = (u1,1, · · · , uMN ,N ), v = (v1,1 · · · , vMN ,N ).
In typical scenarios, an externally driven system settles into

stationary motion states that oscillate at frequencies that are
equal or commensurate with the driving frequencies. There-
fore, the frequencies ωl,i can be assumed a priori (e.g., they
are prescribed by the driving frequencies), while the vari-
ables u, v remain unknown. The resulting algebraic conditions
Eq. (B3) can be solved using the homotopy continuation
method. In short, this method starts with an analytically-
solvable polynomial of the same order, deforming it into the
target polynomial and tracking the roots. For example, to
find the roots of a p-th order polynomial P (z), one starts
with U (z) = zp − 1, which has known roots q0. A generalized
approach tracks such roots to those of F , denoted u0, leading
to an exponential number of solution paths. To manage this,
a two-step parameter homotopy algorithm reduces compu-
tational overhead (see [114]). Note that only real roots are
physically meaningful.

APPENDIX C: STABILITY ANALYSIS

Assume we found a real solution u0 of Eq. (B3). The sys-
tem’s response to small perturbations determines its stability.
To analyze this, we linearize Eq. (B1) ar ound u0 with a small
perturbation δu = u − u0:

d

dT
[δu(T )] = J (u0)δu(T ), (C1)

where J (u0) = ∇uF |u0 is the Jacobian matrix. The solution to
Eq. (C1) is

δu(T ) =
2NM∑
r=1

(er · δu(T0))ereλr T , (C2)

where λr and er are the eigenvalues and eigenvectors of J (u0).
Here, T represents a “coarse-grained” timescale that is much
slower than the oscillations in the system (T � 2π/ min {ωl,i}
in Eq. (B2)) [62,66]. If Re(λr ) < 0 for all r, u0 is stable.
If Re(λr ) > 0 for any r, it is unstable. The workflow in-
volving the ansatz Eq. (B2), its insertion into the system
Eq. (B1), finding the real roots of the resulting algebraic
conditions Eq. (B3), and analyzing the stability of solutions
is fully automated in the HARMONICBALANCE.JL software
suite [62].

For LC analysis, stability analysis proceeds similarly, but
with additional numerical consideratio ns:

(i) Solutions with ω = 0 are labeled unphysical—in ad-
dition to those with non-real u, v coefficients—as they
contradict the assumption of distinct harmonic variables.

(ii) The Jacobian in Eq. (C1) is found as in the standard
HBM. With a U (1) gauge freedom, an infinite set of neigh-
boring steady states exists, meaning perturbing the free phase
leads to a new steady state rather than returning to or diverging
from the original. This manifests in an eigenvalue λr = 0.
To resolve this, stability can be redefined as Re(λr ) � 0 or
resolved by gauge fixing the Jacobian. This makes the matrix
singular, which can be handled by noting the promotion of the
unknown LC frequencies ω to a variable.

(iii) After gauge fixing, solutions still show a four-fold
degeneracy due to: (i) a double degeneracy from the arbitrary
sign of the frequency ω in the ansatz, and (ii) another double
degeneracy from two phase choices compatible with a given
gauge choice, e.g., u1 = 0 can be achieved by both φ = π/2
and φ = 3π/2 in a rotation of the form a �→ aeiφ = ∓v.
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