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The quantum kernel method is one of the key approaches to quantum machine learning, which has the
advantage of not requiring optimization and its theoretical simplicity. By virtue of these properties, several
experimental demonstrations and discussions of the potential advantages have been developed so far. However,
as is the case in classical machine learning, not all quantum machine learning models could be regarded as
kernel methods. In this work, we explore a quantum machine learning model with a deep parametrized quantum
circuit and aim to go beyond the conventional quantum kernel method. In this case, the expressive power and
performance are expected to be enhanced, while the training process might be a bottleneck because of the barren
plateaus. Moreover, the high computational cost of gradient-based optimization and the large search space of
the gradient-free optimization directly make the training intractable. However, we find that parameters of a deep
enough quantum circuit do not move much from their initial values during training, allowing for a first-order
expansion with respect to the parameters. This behavior is similar to that of the neural tangent kernel in classical
machine learning, and such a quantum machine learning with deep variational quantum circuits can be described
by another emergent kernel, the quantum tangent kernel. We show that the proposed quantum tangent kernel
has the potential to outperform the conventional quantum kernel method by performing a classification task on
an ansatz-generated dataset. This work provides a different direction beyond the conventional quantum kernel
method and explores the potential power of quantum machine learning with deep parametrized quantum circuits.
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I. INTRODUCTION

Applying quantum computers to machine learning pur-
poses is an emerging area of research. In particular, motivated
by the recent advance of hardware technology [1], tech-
niques to apply so-called noisy intermediate-scale quantum
(NISQ) devices [2] have rapidly developed [3–7]. One di-
rection that is frequently explored is variational methods,
which use parametrized quantum circuits to construct a model
y(x, θ). Such a model outputs a prediction when fed with the
input data x. More specifically, using a parametrized quantum
circuit U (x, θ) with trainable parameters θ, we construct a
model y(x, θ) for an input x by the expectation value of an
observable O: y(x, θ) = 〈0|U †(x, θ)OU (x, θ) |0〉. Since there
are quantum circuits that are hard to simulate classically, we
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might be able to construct a machine learning model that
exceeds the capability of classical computers.

Another promising direction is the so-called quantum
kernel method [4,5,8]. In this approach, we use quantum
computers for preparing a classically intractable feature vector
|φ(x)〉 and taking the inner products of the feature vectors. The
training is performed on a classical computer using the values
of the inner product between each pair of training data points.
Since training the quantum circuit is often difficult in the
aforementioned variational methods, quantum kernel methods
are advantageous in that we do not have to optimize the
quantum circuit. Moreover, it can be shown that the quantum
kernel method outperforms the variational ones in a certain
sense [8]; if U (x, θ) takes the form of U (x, θ) = V (θ)Uφ (x),
then the quantum kernel method with feature vector |φ(x)〉 =
Uφ (x) |0〉 performs at least as well as the variational method
on the training dataset. Its simple framework greatly advanced
the construction of quantum machine learning theory, provid-
ing insights on potential advantages [9,10]. Also, owing to its
experimental easiness, there have been several experimental
demonstrations of the method [11–13]. However, as is well
known in the machine learning field, not all machine learning
models can be described by kernel methods, and there must
be approaches that go beyond them, such as deep learning.

In this work, we explore how to construct a quantum
machine learning model that goes beyond the conventional
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quantum kernel method. To this end, we investigate the per-
formance of a model using deep quantum circuits in the form
of U (x, θ) = ∏L

i=0 Vi(θi )Uφ,i(x) (L > 0). The circuit is now
not in the form of U (x, θ) = V (θ)Uφ (x), and hence this model
cannot be directly translated to a kernel framework. If we add
ancilla qubits to the original quantum circuit, the above model
can approximate or exactly represent the kernel framework
[14]. However, in the NISQ era, increasing the number of
qubits is not the best strategy.

Unfortunately, as parametrized quantum circuits become
deeper and go beyond the conventional quantum kernel
method, it becomes more difficult to train the parameters
as was the case with deep neural networks in the classical
literature. While this issue would be resolved by finding a
good ansatz and/or initial parameters [15–17], we consider an
alternative approach, i.e., overparametrization [18–20].

In this work, we find that when the circuit is deep enough,
each of the parameters in θ does not move much and stays
close to the initial random guess during training with gradi-
ent descent. This behavior is similar to classical deep neural
networks [21], where the amount of change in the parameters
is small, and the network is well described by a linear model
with the tangent on the parameters as the basis functions. Thus
optimized parameters on overparametrized networks can be
found by another kernel, the so-called neural tangent kernel
[21]. The observation motivates us to propose the quantum
tangent kernel (QTK), which is a quantum analog of the neural
tangent kernel.

Specifically, we define the QTK by the kernel associated
with the feature map x → ∇θy(x, θ) for a deep parametrized
quantum circuit. The QTK can be calculated efficiently on
a quantum computer by using analytical differentiation of
parametrized quantum circuits, the so-called parameter-shift
rule [3,22]. Then, the QTK combined with the standard kernel
methods such as the support vector machine (SVM) allows
us to learn and infer without any explicit optimization of
the parametrized quantum circuit. We compare the perfor-
mance of the QTK based on the deep parametrized quantum
circuit and the conventional quantum kernel method for an
“ansatz-generated” dataset generated by a deep parametrized
quantum circuit, while the parameters are randomly chosen
apart from those in the QTK. As a result, we find that the
QTK outperforms the conventional quantum kernel method.
This implies that deep parametrized quantum circuits have
a great potential. This work opens up a different direction
beyond the conventional quantum kernel method for deeper
quantum machine learning.

II. BACKGROUND

A. Kernel methods

In this subsection, we explain the kernel method and the
SVM, which is one of the kernel-based classification meth-
ods. Throughout this paper, we denote the training dataset
by D = {(xi, yi )}N

i=1, where xi is the input data and yi is the
corresponding teacher data.

The kernel method is a technique for mapping features
to a higher-dimensional feature space in order to introduce
nonlinearity to the model. It employs a nonlinear map φ from

the original space to the higher-dimensional feature space:

φ : χ → H, xi → φ(xi ), (1)

where χ is the original space of the data and H is a higher-
dimensional feature space. In the kernel method, we only use
inner products of φ between different input data. For two data
xi and x j , we define

K (xi, x j ) = 〈φ(xi ), φ(x j )〉, (2)

where 〈·, ·〉 denotes the inner product on H. The kernel
method has the advantage that it does not require direct com-
putation of the vectors in high-dimensional feature space as
long as their inner product can be calculated efficiently. This
inner product represents the similarity between the features
and is called the kernel function.

As an example of the kernel method, we consider the SVM.
In the SVM, optimization of a linear model can be formulated
as a quadratic programming problem. This primal problem
is equivalent to its dual optimization problem. Therefore, the
SVM with kernel K (xi, x j ) is trained by maximizing the fol-
lowing objective function with respect to the dual variable αi:

LD(α) = −1

2

N∑
i, j=1

αiα jyiy jK (xi, x j ) +
N∑

i=1

αi, (3)

subject to the constraints
∑N

i=0 αiyi = 0 and 0 � αi � C,
where C is the regularization parameter. LD(α) depends only
on the kernel function, and hence we do not need to explicitly
calculate the feature map φ. The solution α∗

i to the above op-
timization problem is used for building the prediction model
as follows:

y(x) = sign

(
N∑

i=1

yiα
∗
i K (xi, x) + b

)
, (4)

where the bias b is calculated as

b = y j −
N∑

i=1

α∗
i yiK (xi, x j ). (5)

Although the formula of bias b holds for any j, practically,
the average for all j’s is taken. Kernel methods are not limited
to classical machine learning. The quantum kernel can be
calculated by taking the inner product of quantum states, and
approaches using it are known as quantum kernel methods.

B. Neural tangent kernel

Let us denote by f (xi, θ) the output of a neural network
where θ’s are parameters in the network, and xi is the input
data. f (xi, θ) is a nonlinear function with respect to x, θ and
is usually optimized by gradient descent. In the large-width
overparametrized neural network, the values of the parameters
change only slightly from the initial values during training
even if the initial values of parameters are set randomly [21].
Therefore, the output of such a neural network can be approx-
imated well by the first-order expansion with respect to the
parameters around the initial values:

f (xi, θ) � f (xi, θ0) + ∇θ f (xi, θ0)T (θ − θ0), (6)
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where θ0’s are the initial values of parameters of a neural
network. This approximation allows us to interpret the neural
network as a linear model for θ, with the feature map

φ(x) = ∇θ f (x, θ0) . (7)

Using this feature map, we define the following kernel called
the neural tangent kernel (NTK) [21,23]:

Kntk (xi, x j ) = ∇θ f (xi, θ0)T ∇θ f (x j, θ0) . (8)

By their construction, NTK-based linear models are expected
to be equivalent to the large-width neural network as long as
the assumption Eq. (6) is valid.

C. Quantum machine learning as a kernel method

Conventional variational quantum machine learning mod-
els [3–5] work in the following manner. First, data are encoded
into quantum states by Uφ (x). Then, we apply a trainable
parametrized circuit V (θ). Finally, we measure the expecta-
tion value of an observable O, which is used as the model
output y(x, θ). Mathematically, the above process can be writ-
ten as

y(x, θ) = 〈0n|U †
φ (x)V †(θ)OV (θ)Uφ (x)|0n〉, (9)

where |0n〉 denotes an n-qubit computational basis state. The
linearity of this model can be readily seen by rewriting the
above expression as

y(x, θ) = Tr[O(θ)ρ(x)], (10)

where

O(θ) = V †(θ)OV (θ), (11)

ρ(x) = Uφ (x)|0n〉 〈0n|U †
φ (x). (12)

Since Tr(A†B) for operators A and B defines an inner product
in the operator space, Eq. (10) defines a linear model using the
feature vector ρ(x) and the weight vector O(θ) [8]. Therefore,
if we construct a kernel-based model using the same feature
vector ρ(x), it performs at least as well as the model in
Eq. (10) on a training dataset [8]. In this case, we define the
kernel function as

Kq(xi, x j ) = Tr[ρ(xi )ρ(x j )] (13)

= |〈φ(xi )|φ(x j )〉|2, (14)

where |φ(x)〉 is defined as follows:

|φ(x)〉 = Uφ (x)|0n〉. (15)

We call the kernel methods that are based on Kq(xi, x j )
the conventional quantum kernel method. The above
argument only holds for a quantum model y(x, θ) =
〈0n|U †(x, θ)OU (x, θ) |0n〉, with U (x, θ) in the form of
V (θ)Uφ (x). If we can add auxiliary qubits, models not of the
form U (x, θ) = V (θ)Uφ (x) can be approximated by a kernel
method [14]. However, in the NISQ era, the approach of
increasing the number of qubits is not feasible. In Sec. IV,
we propose quantum circuits that cannot be split in such a
way. This modification prevents us from directly rewriting the
model into the form of Eq. (10), and thus we cannot construct
an equivalent kernel model without introducing ancilla qubits
as in Ref. [14].

FIG. 1. The m-qubit ansatz used for numerical simulations.
Uφ (x) is the quantum feature map for encoding classical data.
U (θ(i)

j ) ∈ SU (4) is the parametrized unitary of the ith layer. At the
output, we measure the Pauli Z expectation value of the final qubit.

III. QUANTUM TANGENT KERNEL

In this section, we apply the formulation of the NTK
described in Sec. II B to parametrized quantum circuits. We
consider a model whose output is given as the expectation
value of an operator O as

y(x, θ) = 〈0n|U †(x, θ)OU (x, θ)|0n〉, (16)

where x is the input data and θ are parameters of a quantum
circuit. We define the following kernel by using the output of
a quantum circuit analogous to the NTK:

Kqtk (xi, x j ) = ∇θy(xi, θ0)T ∇θy(x j, θ0). (17)

We call the kernel Kqtk (xi, x j ) the QTK. As in NTK, the QTK
approximates the original model y(x, θ) well as long as the
parameters do not change much from their initial random
guess θ0 when, for example, updating them by gradient de-
scent based on some suitable cost function.

We can numerically check that such a phenomenon occurs
for quantum circuits with a large number of layers. To this
end, we train quantum circuits with varying numbers of layers
and look at the changes of their parameters.

Here, we consider two types of quantum tangent kernel
according to how the data are encoded into quantum states.
First one is a circuit where x is encoded only at the first layer
as in Fig. 1:

Ushallow(x, θ) = V (θ)Uφ (x), (18)

where V (θ) is a parametrized unitary and Uφ (x) is a quantum
feature map to encode data. This type of quantum circuit can
be interpreted as the conventional quantum kernel method. We
call the QTK associated with this type of ansatz a shallow
QTK. Next, in order to increase the nonlinearity with respect
to x, we consider a multilayered circuit that alternates between
data encoding and a parametrized unitary as shown in Fig. 2.
More concretely, we consider the following unitary:

Udeep(x, θ) =
L∏

i=1

[V (θi )Uφ (x)] (L > 1). (19)

We call the QTK associated with this type of ansatz a deep
QTK. The same type of ansatz is proposed in Ref. [14] and is
called a data re-uploading circuit (see Note added). The deep
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FIG. 2. Uφ (x) is the feature map and U (θ(i)
j ) ∈ SU (4) is the

parametrized unitary of the ith layer. To increase the nonlinearity
of the kernel, the feature map Uφ (x) and the parametrized unitary are
iteratively applied. At the output, we measure the Pauli Z expectation
value of the final qubit.

QTK contains higher-order terms about data x and has higher
nonlinearity with respect to x. We demonstrate the expressive
power of this type of QTK in Sec. IV.

We train those two types of ten-qubit quantum circuits as
shown in Figs. 1 and 2 on the MNIST dataset [24] reduced
to a ten-dimensional dataset by principal component analysis
and use only the digits 8 and 3 for binary classification. In
this numerical experiment, the quantum feature map to encode
the data is given by Uφ (x) = ⊗10

i=1 exp(ixiYi ), where Yi is the
Pauli Y operator acting on the ith qubit. We apply U (θ( j)

i ) ∈
SU (4) on each neighboring qubit as in Figs. 1 and 2. SU(4) is
parametrized according to Cartan decomposition as follows:

U
(
θ

( j)
i

) = k1 exp

[
i

2
(θxxXiXi+1 + θyyYiYi+1 + θzzZiZi+1)

]
k2,

(20)

where k1, k2 ∈ SU(2) ⊗ SU(2) and Xi, Yi, and Zi are the Pauli
operators.

The initial values of the parameters of these quantum
circuits are set randomly using a uniform distribution
between 0 and 2π . We use the mean squared error (MSE) as
the loss function and the standard stochastic gradient descent
with minibatch size 64 to train the quantum circuits. The
expectation value of the deep quantum circuit concentrates
on its average over Hilbert space due to barren plateaus [25].
In our case, the expectation value of the observable O = Z10

on the deep quantum circuit concentrates on 0. Now we use
the MSE as the loss function and the target value is 1 or −1
in the classification problem. We classify a sample xi into
class 1 if y(xi ) � 0 and into class −1 if y(xi ) � 0. Even if the
classification is correct, if the expectation value is close to 0,
the MSE will not decrease since the squared error between
the target and the prediction value [yi − y(xi )]2 is large. For
this reason, we multiply a scale factor to the expectation value
to verify that the training is successful, i.e., y(x, θ) =
C〈0n|U †(x, θ)Z10U (x, θ)|0n〉. The variance of the ex-
pectation value of the quantum circuit multiplied by a
scale factor should be roughly 1.0 to decrease the MSE. We
chose C = 4.0 for a quantum circuit in Fig. 1 and C = 10.0
for the one in Fig. 2 to decrease the MSE. Figures 3(a) and
4(a) show the relative norm changes in the parameters of the

(a)

(c)

(b)

FIG. 3. (a) Relative norm change in the parameters of the quan-
tum circuit in Fig. 1 from initial values during training by gradient
descent. θ(n) is the parameter at the nth iteration. θ0 is the initial
value of the parameter. Panels (b) and (c) show the behavior of
training losses and training accuracies for different numbers of layers
during training.

quantum circuits with layers L = 3, 5, 10, 20, and 50. We can
observe that the changes of the parameters during training
become small when a quantum circuit has more layers.
Panels (b) and (c) in Figs. 3 and 4, which respectively show
the decrease of MSE and the increase of training accuracy,
indicate the success of training. In addition, we also show
the distribution of the difference of the parameters from their
initial values after training in Fig. 5. This result implies that it
is possible to linearly approximate y(x, θ) with respect to its
parameters when the circuit is sufficiently deep. Hence, we
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(a)

(c)

(b)

FIG. 4. The same numerical experiments as in Fig. 3 are per-
formed for the quantum circuit in Fig. 2. Panels (a), (b), and (c) show
the relative norm changes in the parameters, MSEs, and train accu-
racies for different numbers of layers during training.

can expect the QTK to provide a machine learning model that
is approximately equivalent to y(x, θ).

For a given ansatz, the QTK can be calculated on a
quantum computer with parameter-shift rules [3,22] and their
generalizations [26,27]. This provides us an alternative quan-
tum machine learning model other than the conventional
variational methods and quantum kernel methods. Note that,
as opposed to the case of the NTK [21,28], currently we do not
know how to calculate the QTK analytically for a given form
of ansatz in the infinite depth limit. We leave this direction as
an interesting future direction to explore. On the other hand,
in the limit of a large number of qubits, an analytic solution
that describes the convergence of the training error has been
found [29].

(a)

(b)

FIG. 5. The distribution of parameter changes from their initial
values after quantum circuits are trained. θ f is the value of parameter
after training and θ0 is its initial value. Panels (a) and (b) are for the
quantum circuits in Figs. 1 and 2, respectively.

IV. EXPRESSIVE POWER OF QTK

We numerically demonstrate the expressive power of quan-
tum tangent kernels. In order to demonstrate the expressive
power, we generate an “ansatz-generated” dataset by using a
quantum circuit for Udeep and classify the data using the SVM
with the three types of kernels: shallow QTK, deep QTK,
and conventional quantum kernel defined by the feature map
Uφ (x). If these data are classified efficiently by the SVM with
the deep QTK, it has higher expressive power than the other
two.

In this numerical experiment, we use Uφ(x) in the forms of

Uφ (xi ) = exp [iφ(xi )Yi] (21)

and

Uφ (xi, x j ) = exp[iφi(xi, x j )Yi ⊗ Yj], (22)

where Yi is the Pauli Y operator acting on the ith qubit. We
apply Eq. (21) to all qubits and Eq. (22) between neighboring
qubits. The functions φi(x) and φi j (x) are given by

φi(x) = arcsin(xi ), (23)

φi j (x) = arcsin (xix j ). (24)

The “ansatz-generated” dataset is generated in the follow-
ing manner. Four-dimensional random value data {xi} are
input into Udeep(x, θ) consisting of n = 4 qubits and L = 10
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TABLE I. Classification accuracy for SVMs with three types of
kernels. Three SVMs classify the ansatz-generated dataset generated
by a quantum circuit for the deep QTK as shown in Fig. 2.

Kernel Accuracy

Quantum kernel 0.7842
Shallow quantum tangent kernel 0.7484
Deep quantum tangent kernel 0.812

layers. Then, we evaluate the expectation value

l (xi, θ) = 〈0n|U †
deep(xi, θ)Z4Udeep(xi, θ)|0n〉 (25)

with a randomly chosen θ. For each i, we label yi = 1
if l (x, θ) � 0 and yi = −1 if l (x, θ) < 0. We generate the
15 000 samples of the four-dimensional input data xi and its
label yi. The values of the labels are roughly balanced between
1 and −1. They are randomly split into 10 000 training and
5000 test data.

We classify the above dataset with the SVM using three
different kernels: the shallow QTK [Eq. (17) with U (x, θ) =
Ushallow(x, θ) and L = 10 layers], the deep QTK [Eq. (17)
with U (x, θ) = Udeep(x, θ) and L = 10 layers], and the con-
ventional quantum kernel [Eq. (13)]. In order to calculate the
QTK and the deep QTK, we randomly set parameter values
of a quantum circuit using a uniform distribution between
0 and 2π . Note that the parameters used in this learning
phase are different from the ones used for data generation.
We calculated QTKs by the parameter-shift rule [3,22]. The
regularization strength C in the SVM optimization in Eq. (3)
is determined via cross-validation for each kernel. We split
the training data into five parts and use one of them as the
validation data.

The results of the classification task are listed in Table I.
Among the three kernels, the deep QTK outperforms the other
kernels. This result indicates that the deep QTK employs a
feature map that cannot be expressed very accurately with
other kernels. In contrast, the shallow QTK is essentially just
a quantum kernel method using the feature map in Eq. (18),
so its performance is not improved compared to that of the
conventional quantum kernel as expected.

The expressive power of kernels can be illustrated more
directly by visualizing the feature map of each kernel. Figure 6
shows the distribution of the ansatz-generated dataset gen-
erated by quantum circuits for Ushallow(x, θ) and Udeep(x, θ).
In order to visualize the distribution, we generate two-
dimensional data using the two-qubit quantum circuits. These
distributions qualitatively show that Udeep(x, θ) has a more
complex structure and can express higher nonlinearity.

V. CONCLUSION

We proposed a quantum tangent kernel (QTK) and a deep
quantum tangent kernel which cannot be interpreted as the
conventional quantum kernel methods described in Ref. [8].
The QTK is defined by applying the formulation of the NTK
to parametrized quantum circuits. In Refs. [29,30], the equa-
tion describing the dynamics of training has been derived and
solved by assuming there exists a limit where the parameters’

(a)

(b)

FIG. 6. (a) The distribution of outputs of the quantum circuit
with L = 10 layers (Fig. 1) which can be interpreted as the conven-
tional quantum kernel method. (b) The distribution of outputs of the
quantum circuit with L = 10 layers (Fig. 2) beyond the conventional
quantum kernel.

change is small during training in the limit of a large num-
ber of qubits. In contrast, we found that in the limit of a
large number of layers, the parameters of an overparametrized
quantum circuit change only slightly from their initial values
during training. This indicates that the output of an over-
parametrized quantum circuit can be linearly approximated,
which validates the formulation of the QTK. By using this
overparametrization, we can avoid the gradient descent for
quantum circuits with a large number of parameters and easily
optimize the parameters. Incidentally, the difference between
the barren plateaus and the limit where parameters do not
change much is discussed in Ref. [31]. Then, in order to
increase the nonlinearity of a feature map, we introduced
a multilayered data encoding that alternates between data
encoding and a parametrized unitary. This encoding method
increases nonlinearity of the feature map and improves the
expressive power of kernels.

We demonstrated the performance of a shallow QTK and a
deep QTK for a classification task. Using an ansatz-generated
dataset generated by the quantum circuit for a deep QTK
[Eq. (19)], we evaluate the performance by using a support
vector machine with three kernels: a shallow QTK, a deep
QTK, and a conventional quantum kernel. We showed that
the SVM with the deep QTK outperforms the SVMs with
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other kernels and the deep QTK has a feature map with high
nonlinearity.

Our results imply that deep parametrized quantum circuits
with repetitive data encoding unitary have a higher represen-
tation power and better performance for quantum machine
learning than the conventional quantum kernel method. While
we here employed an overparametrization limit and hence a
deeper quantum circuit to take the neural tangent kernel ap-
proach, sophisticatedly trained neural networks, such as deep
neural networks, provide a better performance in general than
neural tangent kernels as known in the classical literature [32].
It gives us hope that the real fruit of quantum machine learning
is not in the shallow or deep limit, but in the mild depth, which
could be modeled by neither conventional nor tangent kernel
methods. Therefore, better ansatz constructions and parameter
optimization methods are crucially important.

Note added. Recently, Ref. [14] was published. At that time
of writing this paper, the quantum circuits like Eq. (19) were
not called a data re-uploading circuit. Therefore, we do not
call a quantum circuit like Eq. (19) a data re-uploading circuit
in this work.
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Lemr, and F. Nori, Experimental kernel-based quantum ma-
chine learning in finite feature space, Sci. Rep. 10, 12356
(2020).

[13] J. R. Glick, T. P. Gujarati, A. D. Corcoles, Y. Kim, A. Kandala,
J. M. Gambetta, and K. Temme, Covariant quantum kernels for
data with group structure, Nat. Phys. 20, 479 (2024).

[14] S. Jerbi, L. J. Fiderer, H. P. Nautrup, J. M. Kübler, H. J. Briegel,
and V. Dunjko, Quantum machine learning beyond kernel meth-
ods, Nat. Commun. 14, 517 (2023).

[15] I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional
neural networks, Nat. Phys. 15, 1273 (2019).

[16] A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger,
and P. J. Coles, Absence of barren plateaus in quantum convo-
lutional neural networks, Phys. Rev. X 11, 041011 (2021).

[17] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti,
An initialization strategy for addressing barren plateaus in
parametrized quantum circuits, Quantum 3, 214 (2019).

[18] J. Kim, J. Kim, and D. Rosa, Universal effectiveness of high-
depth circuits in variational eigenproblems, Phys. Rev. Res. 3,
023203 (2021).

[19] M. Larocca, N. Ju, D. García-Martín, P. J. Coles, and M.
Cerezo, Theory of overparametrization in quantum neural net-
works, Nat. Comput. Sci. 3, 542 (2023).

[20] D. Wierichs, C. Gogolin, and M. Kastoryano, Avoiding local
minima in variational quantum eigensolvers with the natural
gradient optimizer, Phys. Rev. Res. 2, 043246 (2020).

[21] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent kernel:
Convergence and generalization in neural networks, in Proceed-
ings of the 32nd Conference on Neural Information Processing
Systems, Montreal, Canada (NeurIPS, 2018), Vol. 31.

[22] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran,
Evaluating analytic gradients on quantum hardware, Phys. Rev.
A 99, 032331 (2019).

[23] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-
Dickstein, and J. Pennington, Wide neural networks of any
depth evolve as linear models under gradient descent, in
Proceedings of the 33rd Conference on Neural Information Pro-
cessing Systems, Vancouver, Canada (NeurIPS, 2019), Vol. 32.

[24] L. Deng, The MNIST database of handwritten digit images for
machine learning research, IEEE Signal Process. Mag. 29, 141
(2012).

[25] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[26] L. Banchi and G. E. Crooks, Measuring analytic gradients of
general quantum evolution with the stochastic parameter shift
rule, Quantum 5, 386 (2021).

033179-7

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1038/s42254-021-00348-9
https://arxiv.org/abs/2101.11020
https://doi.org/10.1038/s41467-020-20314-w
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41534-021-00423-0
https://doi.org/10.1038/s41598-020-68911-5
https://doi.org/10.1038/s41567-023-02340-9
https://doi.org/10.1038/s41467-023-36159-y
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/PhysRevX.11.041011
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/10.1103/PhysRevResearch.3.023203
https://doi.org/10.1038/s43588-023-00467-6
https://doi.org/10.1103/PhysRevResearch.2.043246
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.22331/q-2021-01-25-386


SHIRAI, KUBO, MITARAI, AND FUJII PHYSICAL REVIEW RESEARCH 6, 033179 (2024)

[27] D. Wierichs, J. Izaac, C. Wang, and C. Y.-Y. Lin, General
parameter-shift rules for quantum gradients, Quantum 6, 677
(2022).

[28] S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R.
Wang, On exact computation with an infinitely wide neural net,
arXiv:1904.11955.

[29] J. Liu, K. Najafi, K. Sharma, F. Tacchino, L. Jiang, and A.
Mezzacapo, Analytic theory for the dynamics of wide quantum
neural networks, Phys. Rev. Lett. 130, 150601 (2023).

[30] J. Liu, F. Tacchino, J. R. Glick, L. Jiang, and A. Mezzacapo,
Representation learning via quantum neural tangent kernels,
PRX Quantum 3, 030323 (2022).

[31] J. Liu, Z. Lin, and L. Jiang, Laziness, barren plateau, and noise
in machine learning, Mach. Learn.: Sci. Technol. 5, 015058
(2024).

[32] Z. Li, R. Wang, D. Yu, S. S. Du, W. Hu, R. Salakhutdinov,
and S. Arora, Enhanced convolutional neural tangent kernels,
arXiv:1911.00809.

033179-8

https://doi.org/10.22331/q-2022-03-30-677
https://arxiv.org/abs/1904.11955
https://doi.org/10.1103/PhysRevLett.130.150601
https://doi.org/10.1103/PRXQuantum.3.030323
https://doi.org/10.1088/2632-2153/ad35a3
https://arxiv.org/abs/1911.00809

