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From cell intercalation to flow, the importance of T1 transitions
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T1 transitions, also called cell intercalations, are important sources of fluidization of epithelial cell monolay-
ers. We use a multiphase field model to quantify this tissue fluidization in terms of the relative dispersion of cells
and characterize the T1 flow profile. We show that the ensemble-averaged flow profile of a T1 transition has
a saddle-point pattern accompanied by a localized burst in cell speed. Although the temporal evolution of the
relative dispersion of cells depends on specific model details, the different dispersion curves collapse robustly
onto a linear function of the number of T1 transitions, implying an important connection between T1 transitions
and mixing in dense systems.
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I. INTRODUCTION

Spontaneous flows within epithelial monolayers play a
pivotal role in many biological processes including tissue
development, wound healing, angiogenesis, and invasion of
cancer cells [1–3]. In confluency, cells may migrate col-
lectively while maintaining contact with their neighboring
cells, thus preserving cell-cell junctions [1]. However, cells
may also migrate relative to each other through structural
rearrangements mediated by local events of remodeling of
cell-cell junctions. Three main types of cell rearrangements
have been distinguished [4–6]. A T1 transition is an event
whereby two neighboring cells move apart while two of their
neighbors move toward each other and make contact. This
corresponds to an event where one junction disappears while
another nucleates at the same site and orthogonal to the initial
junction. A T2 transition occurs during extrusion/apoptosis
events where cells are eliminated from the monolayer corre-
sponding to vanishing junctions. By contrast, a T3 transition is
an event associated with cell division inducing the nucleation
of new junctions. Notably, T1 events preserve the total cell
count within the monolayer, distinguishing them from T2 and
T3 transitions.

T1 transitions have been observed in both epithelial [7] and
mesenchymal [8] tissues and are important across different
stages of gastrulation and organogenesis [9] as well as during
cancer metastasis [10]. Empirical evidence shows that myosin
II contributes to the buildup of tension at cell-cell junctions,
thereby controlling T1 transitions in epithelial tissues [11,12].
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However, the interplay between mechanical and biochemical
signaling in these events remains a topic of debate [13]. There
have been several studies aimed at characterizing the mechan-
ical influence of T1 transitions in tissues [5,6,14–18] and in
simulations [15,19–21].

Tissue flow has been explored mostly using coarse-grained
approaches for active nematics, active polar matter, and more
generally, for active p-atic liquid crystals, whereby spon-
taneous flows are influenced by their topological defects
[22–24]. Several experimental studies have reported on differ-
ent discrete orientational order (nematic, polar, or in general,
p-atic) of cell tissues, corresponding to different lowest-
energy topological defects [24–26]. This system dependency
may be attributed to different types of cell lines but may
also signal that the system is far from a hydrodynamic limit
with a well-defined discrete symmetry, thus making the iden-
tification of relevant group symmetries and corresponding
topological defects a matter of debate. On the other hand, it
is becoming more evident that T1 transitions are important
sources of tissue flow [19,27]. Qualitative differences between
flows occurring at hydrodynamic scales and those induced
by structural rearrangements of cells have been identified
by comparing hydrodynamic (continuum) simulations with
cell-resolved (discrete) simulations [23,28]. How the flows
originating at the discrete cell level influence the tissue flow
at hydrodynamic scales is far less explored and understood.

In this paper, we aim to bridge this gap to better understand
the generic flow patterns due to cell neighbor rearrangements.
Within a multiphase field model for a flat and confluent cell
monolayer, as discussed in Sec. II, we can compute the aver-
age flow profile of a T1 transition, as presented in Sec. III.
We demonstrate that T1 transitions are short-lived events
of neighbor exchanges, where the involved cells acquire
high-speeds and generate fourfold vorticity with alternating
circulation. Within our setup, where the total number of cells
and their size are fixed, and by using a Lagrangian approach,
we demonstrate in Sec. IV that the cell pair dispersion is
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mediated solely by T1 transitions. We predict a robust scaling
of the mean pair separation with the number of T1 transitions,
which hints at a generic mechanism of relative dispersion by
structural rearrangements. Concluding remarks are presented
in Sec. V.

II. MULTIPHASE FIELD MODEL

We model the confluent cell monolayer using the multi-
phase field modeling approach as in Refs. [29–34] and as
discussed in a recent review [35]. Our specific model formu-
lation follows Ref. [19] and is used to simulate the dynamics
of a confluent monolayer of N = 100 cells. Each cell is de-
scribed by a phase field variable φi, with i = 1, 2, . . . , N ,
which has the bulk values φi ≈ 1 inside the cell, φi ≈ −1
outside it, and with a diffuse interface of width O(ε) between
them representing the cell boundary. The phase field φi fol-
lows the conservative dynamics:

∂tφi + vi · ∇φi = �
δF
δφi

, (1)

which preserves the area of a cell (incompressible cells). The
diffusive relaxation is controlled by minimization of the free
energy functional F = FCH + FREP + FADH. The free energy
contains the Cahn-Hilliard energy in degenerate form [36]:

FCH = 1

Ca

N∑
i=1

∫
�

g(φi )

[
ε

2
||∇φi||2 + 1

4ε

(
φ2

i − 1
)2

]
dx, (2)

where ε controls the interface width, Ca is a parameter for
tuning the cell deformability, and

g(φi ) = 2

3
√

(φi + 1)2(φi − 1)2

is a term to prevent bulk diffusion ensuring φi ∈ [−1, 1],
without affecting the asymptotic behavior as ε → 0 [36]. In
addition, there are two interaction energies, where

FREP = ar

2In

N∑
i=1

∫
�

∑
j �=i

(φi + 1)2(φ j + 1)2dx (3)

is the repulsion energy to prevent overlap of cell interior, and

FADH = aa

2In

N∑
i=1

∫
�

∑
j �=i

(
φ2

i − 1
)2(

φ2
j − 1

)2
dx (4)

is the adhesion energy that promotes overlap of cell bound-
aries. In denotes the interaction strength, and ar and aa are
parameters to tune contribution of repulsion and adhesion
energy, respectively. The adhesive part differs from Ref. [19]
by rewriting the interaction using the equilibrium condition
ε
2‖∇φi‖2 ≈ 1

4ε
(φ2

i − 1)2, see Refs. [33,37–40].
Cell activity is introduced as self-propulsion of each cell

through the advection term. The cell advection field is given
as

vi(x, t ) = v0ei(t )φ̂i(x, t ), (5)

where v0 is used to tune the magnitude of activity:

φ̂i = φi + 1

2
, (6)

TABLE I. Default values of the model parameters. dt denotes the
time step size.

L T ε v0 Ca In aa ar Dr α ractive dt

100 150 0.15 0.5 0.2 0.1 1 1 0.01 0.1 1 0.005

and ei = [cos θi(t ), sin θi(t )] is the direction of self-
propulsion. The migration orientation θi(t ) evolves diffusively
with a drift that aligns with the principal axis of cell elongation
as

dθi =
√

2DrdWi(t ) + α[βi(t ) − θi(t )]dt, (7)

where Dr is the rotational diffusivity, and Wi is the Wiener
process.

The cell elongation is identified by the principal eigen-
vector η+

i of the shape deformation tensor, as described in
Ref. [34]. Here, βi(t ) is the orientation of the cell elongation
and defined as

βi(t ) =
{

arg[η+
i (t )] : ei(t ) · η+

i (t ) > 0

− arg[η+
i (t )] : ei(t ) · η+

i (t ) < 0.
(8)

The parameter α controls the time scale of this alignment.
Setting v0 = 0 for some cells allows for the modeling of a
mixture of active self-propelled cells and passive cells. The
activity ratio ractive is the fraction of cells for which v0 > 0.

Equation (1) is solved numerically on a square domain
� = [0, L] × [0, L] (where L = 100) using periodic boundary
conditions for the time [0, T ]. We are using the finite element
method within the toolbox AMDiS [41,42] and the paral-
lelization concept introduced in Ref. [43], which considers
each cell on a different core and accounts for short-range inter-
action between cells to reduce the communication. The system
of partial differential equations is discretized in time using a
semi-implicit approach. Time step size and mesh resolution
are related to ensure stability. For further details and numerical
tests, see earlier work from Refs. [19,35,38].

The values of the model parameters are listed in Table I,
unless specified otherwise. Movie 1 in the Supplemental Ma-
terial (SM) [44] shows the cell boundaries in a simulation as
per parameters in Table I.

III. FLOW PROFILE OF T1 TRANSITIONS

A T1 transition reconfigures the junctions between neigh-
boring cells as illustrated in Figs. 1(a)–1(c). The two
three-way vertices represented by red dots move toward each
other, shrinking the corresponding junction [Fig. 1(a)]. Within
multiphase field models, T1 transitions occur spontaneously
as cells deform and move as a result of activity. Further, in
multiphase field models, a T1 transition has a finite duration
[19] that starts when the junction vanishes, creating a tran-
sient extracellular gap (approximated as a four-way vertex), as
shown in Fig. 1(b). The T1 transition concludes when a new
pair of three-way vertices nucleate, forming a new junction,
as in Fig. 1(c). We define the orientation ζ of a T1 transi-
tion as the angle of the newly formed junction with respect
to the x axis. We use this angle ζ to reorient different T1
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FIG. 1. Configuration of four cells (a) before, (b) during, and (c) after a T1 transition. The three-way vertices involved in the T1 are marked
by red dots. Junction angle ζ is the orientation of the newly formed junction after a T1 transition measured counterclockwise from the positive
x semiaxis. (d) Histogram of the junction angle after a T1 transition ζ . (e) Histogram of change in junction angle due to the T1 transition.
Steps involved in transformation of the velocity field to align it with respect to a T1 transition: (f) A small section of a field is shown in black.
A T1 transition is shown with the cells that lose neighbors colored in pink, while the cells that gain neighbors are colored in blue. A magenta
reference frame is attached to the epicenter of the T1 and is aligned with the orientation of the T1, ζ . (g) The epicenter is shifted to the origin.
(h) The frame is rotated to align with the horizontal axis. (i) The orientation of the vector field is rotated by ζT 1.

transitions and their velocity profiles to compute ensemble-
averaged transient flows, as described next.

A. Ensemble average

We start by computing the T1 orientation angle ζm of the
mth T1 transition in an ensemble of NT 1 T1 events.

Let us denote the four cells associated with one T1 tran-
sition by A, B,C, and D. Before a T1, let the list of cell
neighbor pairs be

Before T1: (A, B), (A,C), (A, D), (C, B), (D, B).

Suppose, at the start of a T1 transition, cells A and B lose
contact, and at the end of the T1 transition, cells C and D
make contact. This changes the cell neighbor list to

After T1: (C, D), (A,C), (A, D), (C, B), (D, B).

We denote the start and end times of the mth T1 transi-
tion as tm,s and tm,e, respectively. Before tm,s, the three-way
vertices where the cells (A, B,C) and (A, B, D) meet move
toward each other, shrinking the common junction between
them, and eventually, the junction vanishes at tm,s. Between
tm,s and tm,e, there is an extracellular gap between the four
cells. After tm,e, two new three-way vertices where the cells
(A,C, D) and (B,C, D) meet are created, and they move away
from each other. Let sm,1 and sm,2 be the positions of the two
three-way vertices a short time after tm,e. The orientation of the
new junction between sm,1 and sm,2 is ζm = arg(sm,1 − sm,2).
This is also illustrated in Fig. 1(c). Similarly, we can also
compute the orientation of the old junction before the mth T1
transition. Figure 1(d) shows the histogram of the orientations
of NT 1 T1 transitions, which implies that the orientations of

the T1 transitions are close to being uniformly distributed.
Figure 1(e) shows the histogram of the difference in junc-
tion angle before and after the T1 transition. The histogram
peaks at around π/2, implying that the junctions before
and after a T1 transition are mostly perpendicular to each
other.

For each T1 transition, we also find the location of its
epicenter as we have done in Ref. [19]. The epicenter is
defined as the location of a point whose sum of distances to the
four cells involved in the T1 transition is the minimum, at the
midpoint time tm,s+tm,e

2 . We denote the location of the epicenter
of the mth T1 transition by sm,c. Essentially, this point lies
within the gap formed between the four cells during the T1
transition.

At any given time t , we define the global velocity field as

vg(x, t ) =
N∑

i=1

φ̂i(x, t )
ri(t ) − ri(t − dt )

dt
, (9)

where ri(t ) is the location of the center of the ith cell at time t ,
and dt is the time step size. Therefore, vg(x, t ) in the interior
of a cell is equal to the velocity of the center of mass of the
cell.

For the mth T1 transition, at any time t , we can transform
the global field to obtain its T1 flow velocity field as

vm(x, t ) = Rζm vg[Rζm (x − sm,c), t], (10)

where Rζm is the two-dimensional (2D) rotation matrix
with rotation angle ζm. This vm(x, t ) is centered such that
the epicenter is at the origin, and the junction formed af-
ter the T1 transition is aligned along the horizontal axis.
Figures 1(f)–1(i) visualize the transformation from vg(x, t )
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to vm(x, t ) in three steps for an arbitrary field: (i) the field is
translated such that the origin coincides with the epicenter of
the T1 transition; (ii) the grid is rotated such that the junction
formed after the T1 transition aligns along the horizontal axis;
and (iii) the vectors themselves are rotated while being fixed
in space to reflect the right orientation with respect to the
epicenter. Periodic boundary conditions are considered while
transforming the fields by numerically wrapping the compu-
tational domain.

Let an arbitrary field f at time τ before and after a T1
transition be denoted by f (x, tm,s − τ ) and f (x, tm,e + τ ), re-
spectively. We consider the ensemble average over the NT 1

transitions measured at time relative to the start or end of a
T1 transition as 〈 f (tm,e/s ± τ )〉 = 1

NT 1

∑NT 1
m=1 f (tm,e/s ± τ ). With this, we

define the average of the T1 flow velocity field at time τ

after/before T1 as

v±
T 1(x, τ ) = 〈vm(x, tm,e/s ± τ )〉. (11)

Similarly, the average magnitude of the T1 flow velocity
field at τ is given as

v±
T 1(x, τ ) = 〈|vm(x, tm,e/s ± τ )|〉. (12)

To further explore the directional motion, we define the
average velocity polarization field as

p±
T 1(x, τ ) =

〈
vm(x, tm,e/s ± τ )

|vm(x, tm,e/s ± τ )|
〉
, (13)

such that |p±
T 1| ∈ [0, 1], where |p±

T 1| = 0 corresponds to ran-
domly oriented T1 flow velocities, and |p±

T 1| = 1 for preferred
directional orientation of T1 flow velocities.

In Figs. 2(a) and 2(c) and Figs. 2(b) and 2(d), we plot
v−

T 1(x, 0) and v+
T 1(x, 0), respectively. The streamlines suggest

that the flow comprises quadrupolar vortices with alternating
circulation centered at the epicenter. The flow has a saddle-
point structure, allowing us to identify the vertical axis of cells
making contact and horizontal axis of cells breaking contact.
The time evolution of v−

T 1 and v+
T 1 is shown in Movies 2 and 3,

respectively in the SM [44]. The magnitudes in Figs. 2(a) and
2(b) correspond to |p−

T 1(x, 0)| and |p+
T 1(x, 0)|. The approxi-

mate profile of the four cells involved in the T1 transition can
be discerned by the high values of |pT 1| around the epicenter.
The values of |pT 1| inform on the likelihood of the observed
orientation of the streamlines, where a higher polarization
indicates that the streamlines shown are more likely to occur.
The low values of |pT 1| away from the epicenter suggest that
cells that are not involved in a T1 do not have a preferred
velocity orientation. The magnitudes in Figs. 2(c) and 2(d)
correspond to v−

T 1 and v+
T 1. From Fig. 2(c), we discern that,

at the end of a T1 transition, there is a localized surge of
speed around the epicenter, suggesting cells involved in a T1
transition move faster than the rest of the cells in the mono-
layer. From Movie 5 in the SM [44], we see that the speed
in the vicinity of the epicenter decays over time to the global
average. Before a T1 transition, there is no such surge in vT 1

observed near the epicenter (see Movie 4 in the SM [44]).
These results are consistent with those in Ref. [19], where
similar results were obtained for the evolution of average
speed of the four cells involved in a T1 transition. It would
be interesting to compare these flow profiles with the charac-

FIG. 2. Ensemble-averaged flow profile of T1 transitions.
Streamlines in (a) and (c) correspond to flow at the start of a T1
transition [v−

T 1(x, 0)], and those in (b) and (d) correspond to flow at
the end of a T1 transition [v+

T 1(x, 0)]. Magnitude of the colormap in
(a) and (b) correspond to |p−

T 1(x, 0)| and |p+
T 1(x, 0)|. Magnitude of

the colormap in (c) and (d) correspond to v−
T 1(x, 0) and v+

T 1(x, 0).
The cell size (square root of cell area) is ∼10 units. The time evolu-
tion of these fields is shown in Movies 2–5 in the SM [44].

teristic flow field of defects in coarse-grained active nematics,
polar, or more generally, in active p-atic liquid crystals. The
corresponding hydrodynamic models have been proposed in
Refs. [45,46].

The source of this tissue flow is ultimately linked to the
dispersion of cell motion. Cells that are caged among their
neighbors undergo small shape fluctuations and experience re-
sistance to their motion due to cell-cell interactions. However,
these small fluctuations may build up and can bring two three-
way vertices closer together. This leads to the accumulation
of energy near those vertices. Eventually, this can induce a
T1 transition releasing energy, thereby helping the cells to
uncage. This is akin to the buildup prior to a slip event in
stick-slip dynamics [47]. Provided there is no preferred orien-
tation of the T1 transition [see Fig. 1(d)], the cells move away
from their initial neighbors and disperse across the tissue. In
the next section, we quantify the statistical properties of cell
dispersion.

IV. CELL DISPERSION

The vortical flow induced by T1 transitions is reflected in
the dispersion of cells relative to each other and thus in the
mixing of cells. We can quantify the flow properties indirectly
through the relative dispersion of cells. We use the center of
mass denoted by ri for the ith cell to track cell migration. The
mean-squared displacement of the cells quantifies the single
particle dispersion and is given as

σ 2(t ) = 1

N

N∑
i=1

|ri(t + t0) − ri(t0)|2, (14)
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FIG. 3. Temporal snapshots of the evolution of a cell triplet. T1 transitions break the contact between cells in the triplet and increase the
area spanned by the triplet.

where N is the total number of cells. This measures how far
a cell has migrated from its initial location at t0 in a time lag
t . Similarly, the mean pair separation distance in a time lag t
quantifies the relative dispersion and is defined as

�(t ) = 1

NP(t0)

NP (t0 )∑
j=1

|r j,1(t ) − r j,2(t )|, (15)

where NP(t0) is the number of pairs of cells that were neigh-
bors at an initial time t0. Here, r j,1 and r j,2 are the positions
of the two cells corresponding to the jth neighbor pair at
t0. To better quantify the dynamics of the three-way ver-
tices, we also consider the dispersion of triplets. A triplet
consists of three cells where each cell is a neighbor to the
other two cells. Let rk,1, rk,2, and rk,3 be the positions of the
three cells corresponding to the kth triplet. The corresponding
lengths of the edges in the triplet triangle are ā = |rk,1 − rk,2|,
b̄ = |rk,2 − rk,3|, and c̄ = |rk,3 − rk,1|. Given the perimeter of
the triangle s̄ = ā + b̄ + c̄, the triangle area of the kth triplet
is Ak = s̄(s̄ − ā)(s̄ − b̄)(s̄ − c̄). Thus, we can also define the

mean triplet separation area as

�(t ) = 1

NT (t0)

NT (t0 )∑
k=1

Ak (t + t0), (16)

where NT (t0) is the number of triplets of cells at time t0. Here,
�(t ) is the average area of all triangles made by a triplet
of cells that were mutually adjacent at time t0. Snapshots
from the evolution of one such triplet triangle are shown in
Fig. 3. Geometrically, the dispersion of cells is associated with
deformations, translations, and rotations of the triplet triangle.
See Appendix A for details on handling the periodic boundary
conditions.

The initial area of the triplet triangles is nonzero and is
related to the cell size. Notice that the cells remain mutually
adjacent for a transient time until the three-way vertex shared
between them is destroyed in a T1 transition by merging with
another three-way vertex. From hereon, the cells are likely
to further separate from each other due to subsequent T1
transitions. The triplet area can also collapse to zero when the
three cells become collinear [see Figs. 3(c) and 3(d)].

Figures 4(a)–4(c) show the mean-squared displacement
(σ 2) and relative dispersion of pairs (�) and triplets (�) as

FIG. 4. Evolution of (a) σ 2, (b) �, and (c) � plotted against time. (d) σ 2 and (e) � plotted against the cumulative number of T1 transitions
within the tissue. (f)

√
� plotted against �. Different colors correspond to different cell activities defined by the self-propulsion speed v0 as

per the legend at the top.
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FIG. 5. Data collapse of the relative dispersion curves as a
function of the cumulative T1 transitions for various model pa-
rameters and setups: (a) Cell deformability (Ca) is varied for
v0 = 1. (b) Rotational noise D and shape alignment α are varied for
v0 = 1. (c) Repulsion vs repulsion and adhesion cell-cell interaction.
(d) Mixtures of active and passive cells with a fraction ractive of active
cells with v0 = 1.

functions of time lag t for different activities v0. Within the
computational time, we observe that the cells are superdif-
fusive with a scaling exponent that lies between 1 (normal
diffusion limit) and 2 (ballistic limit). For all three quantities,
their values at a given time lag increase with cell activity,
which is consistent with the observation that the flow fluc-
tuations increase with activity [22] (see also Appendix C). At
low activities, we notice that there is almost no dispersion of
cell pairs and triplets. While the pair separation � increases
with time lag, the triplet area �(t ) remains constant for a
initial transient period. A single T1 transition would destroy
the three-way vertex shared by the cells in the triplet, but
two pairs out of three initial pairs in the triplet remain. The
triplet area starts to diverge when at least one of the cells
breaks contact with the other two cells in the triplet, which
requires a minimum of two T1 transitions (see Appendix B).
Thus, in this initial period, the area of the triplet triangle
Ak (t ) fluctuates around Ak (t0). As the cells undergo further
T1 transitions and move apart, the area spanned by the triplet
� increases monotonically with the time lag.

Figures 4(d) and 4(e) show the net dispersion of single cells
[σ 2(t )] and cell pairs [�(t )] plotted against the cumulative
number of T1 transitions within the tissue in time lag t . Inter-
estingly, the curves for � for different v0 collapse into a linear
master curve. A similar collapse is also present for the triplet
area, which shows that these two quantities are directly related
to the number of T1 transitions. However, this is not the case
for σ 2 because cells can also migrate in local flocks, which
affects σ 2 but does not change � and � since the cell-cell
connectivity is preserved [1]. In the absence of T1 transitions,
cells are topologically caged within their neighbors, and this
makes it difficult to generate flow fluctuations (when T2 and
T3 transitions are also absent). It takes ∼250 T1 transitions

across the tissue of 100 cells, or equivalently 10 T1 transitions
per cell, for the mean pair separation to double its value. Two
neighboring cells must undergo ∼10 T1 transitions each, such
that their cell centers can be two cell widths apart. When

√
�

is plotted against �, initially,
√

� is constant, and later, it
varies linearly with � [see Fig. 4(f)].

To further explore the robustness of this data collapse, we
also vary other model parameters, i.e., cell deformability Ca,
rotational noise D, shape alignment α, adhesion parameter aa,
and activity ratio ractive. For high values of Ca, the cells are
more deformable. The rotational diffusion coefficient D and
the rate α at which cells tend to align their preferred direction
of motion with the direction of their elongation control the
dynamics of the self-propulsion mechanism. For aa = 0, the
interactions between cells are purely repulsive, while aa > 0
corresponds to additional attractive interaction between cells.
Here, ractive is the fraction of cells which have nonzero activity.
The mean pair separation distance as a function of cumulative
number of T1 transitions for these scenarios is plotted in
Fig. 5. In all these scenarios, we see similar scaling behav-
ior, suggesting that T1 transitions affect relative dispersion in
similar ways irrespective of model parameters.

V. DISCUSSION AND CONCLUSIONS

In summary, we have put forward a quantitative way to
study the connection between T1 transitions, tissue fluidiza-
tion, and cell dispersion. We have shown that T1 transitions,
as topological events of neighbor exchanges, are transient and
localized saddle-point flows generating fourfold vortices. The
average polarization is high and localized along the principal
axes of the saddle point centered at the epicenter of a T1
transition, showing that there is persistent directional flow
along these directions which feeds to vortical flow over longer
distances. Such flows could possibly contribute to active tur-
bulence within the monolayer [22].

We have demonstrated that tissue flows where cells dis-
perse relative to each other are promoted solely by T1
transitions. While the temporal behavior of the cell dispersion
(single, pair, or triplet) depends on the model parameters, we
found a robust linear dependence of the relative dispersion of
pairs and triplets of cells on the number of T1 transitions. The
data collapse of the different dispersion curves onto a linear
master curve suggests that the rate of relative dispersion is
directly proportional to the occurrence rate of T1 transitions
regardless of the underlying nucleation mechanism. This un-
veils a deeper connection between topological rearrangements
and mixing in densely packed systems, in general. As relative
dispersion and the number of T1 transitions are measurable
observables also in experimental studies of epithelial cell
monolayers, our model predictions are accessible for future
experimental validation.
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FIG. 6. The triangle with red-dotted sides is connected to the
cells in the computational domain, while the triangle with black sides
is connected to the location of the cells in an infinite two-dimensional
(2D) domain. Time evolves from top to bottom.

discussions with Amin Doostmohammadi, Richard D. J. G.
Ho, Per Arne Rikvold, and Dag K. Dysthe.

APPENDIX A: PERIODIC BOUNDARY CONDITIONS

While the general notion of periodic boundary conditions
is standard, the definition of the mean dispersion of a sin-
gle cell (σ 2), cell pairs (�), and triplets (�) requires some
additional thought. We essentially assume that, when a cell
crosses the periodic boundary, it moves into an identical but
distinct copy of the domain that lies adjacent to the domain,
as illustrated in Fig. 6. The history of the cell motion is used
to determine the modified location of center of mass in the
resulting infinite domain.

APPENDIX B: TRIAD DISPERSION

Figure 7 shows an illustration of a section of a hexagonal
lattice comprising hexagonal cells. A triangle is marked that
joins the cell centers of the three red cells. In the left figure, all
three cells are mutually adjacent, while on the right figure, two
of the three cells are not in contact. The areas of the triangles
are the same in both situations. For a triplet area to diverge
significantly, at least one of the three cells must break contact

FIG. 7. A triangle joining 3 red cells is shown when (left) all 3
cells are mutually adjacent and (right) one pair are not neighbors.

from the other two cells. This is why, multiple T1 transitions
per triplet are required before the mean triplet separation area
(λ) starts to increase significantly.

APPENDIX C: GLOBAL STATISTICS

Figures 8(a) and 8(b) show the single-particle dispersion
[σ (T )] and relative dispersion [�(T )] at a given time lag T
as a function of cell activity v0 and deformability Ca. Both
quantities increase monotonically with v0; only the relative
dispersion is sensitive to Ca. This suggests that, on average,
cells tend to spread out at the same rate regardless of whether
they are stiffer or softer. Nonetheless, stiffer cells tend to dis-
perse less relative to each other than softer cells. To quantify,
the collective flocking motion of the cells, we compute the
global polar order at a given time as

ψ (t ) = 1

N

∣∣∣∣∣
N∑

i=1

[ri(t ) − ri(t ′)]
t − t ′

∣∣∣∣∣, (C1)

such that ψ (t ) ≈ 1 corresponds to cells moving as a flock in
the same direction, while ψ (t ) ≈ 0 represents cells moving
uncoordinatedly and in random directions. In Fig. 8(c), we
see the flocking tendency is higher for stiffer cells. This is

FIG. 8. (a) Mean-squared displacement and (b) mean pair sepa-
ration for the time lag T = 150. (c) Average polar order. (d) Average
shape index.
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consistent with their tendency to preserve their neighbors
(disperse less relative to each other) that helps coordinate their
motion better. In Fig. 8(d), we see that the average cell shape

index, defined by the ratio of the perimeter of cells to the
square root of area of the cells, also increases monotonically
with activity and cell deformability.
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