
PHYSICAL REVIEW RESEARCH 6, 033175 (2024)
Editors’ Suggestion

Decoherence induced by a sparse bath of two-level fluctuators: Peculiar features of 1/ f
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Progress in fabrication of semiconductor and superconductor qubits has greatly diminished the number of
decohering defects, thus decreasing the devastating low-frequency 1/ f noise and extending the qubits’ coherence
times (dephasing time T ∗

2 and the echo decay time T2). However, large qubit-to-qubit variation of the coherence
properties remains a problem, making it difficult to produce a large-scale register where all qubits have a
uniformly high quality. In this work, we show that large variability is a characteristic feature of a qubit dephased
by a sparse bath made of many (n � 1) decohering defects, coupled to the qubit with similar strength. We model
the defects as two-level fluctuators (TLFs) whose transition rates γ are sampled from a log-uniform distribution
over an interval [γm, γM ], which is a standard model for 1/ f noise. We investigate decoherence by such a bath in
the limit of high-quality qubit, i.e., when the TLF density d is small (the limit of sparse bath, with d = n/w � 1,
where n is the number of TLFs and w = ln [γM/γm] is the log-width of the distribution). We show that different
realizations of the bath produce very similar noise power spectra S( f ) ∼ 1/ f , but lead to drastically different
coherence times T ∗

2 and T2. Thus the spectral density S( f ) does not determine coherence of a qubit coupled to
a sparse TLF bath, as opposed to a dense bath; instead, decoherence is controlled by only a few exceptional
fluctuators, determined by their value of γ . We show that removing only two of these TLFs greatly increases T2

and T ∗
2 times. Our findings help theoretical understanding and further improvements in the coherence properties

of semiconductor and superconductor qubits, battling the 1/ f noise in these platforms.

DOI: 10.1103/PhysRevResearch.6.033175

I. INTRODUCTION

Coherence times of many solid-state qubits are limited
by the noise with spectral density S( f ) ∝ 1/ f , where f is
the linear frequency. For instance, coherence times of spin
qubits in semiconductor quantum dots are shortened by the
background electric field noise with the 1/ f spectral density
[1–17]. Similarly, coherence times of various superconducting
qubits are often limited by the Josephson critical current noise
and/or the magnetic flux noise, both having 1/ f spectral
density [18–35].

This noise is often produced by ensembles of two-level
fluctuators (TLFs) [36–40], i.e., two-state systems undergo-
ing random transitions between the two states at the rate
γ . In quantum dot devices, the TLFs are often associated
with charge traps, which randomly trap/release electrons, or
where the trapped charge can randomly jump between two
nearby positions via tunneling or thermal activation, such as
the two-level systems in dielectric layers and in the vicinity
of semiconducting layers. The randomly fluctuating electric
fields, produced by the charge traps, distort and displace the
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orbital wavefunction of the electron confined in the quan-
tum dot, and these distortions affect the electron spin due
to, for instance, spatial inhomogeneity of the g-factor of the
spatially inhomogeneous magnetic field created by a micro-
magnet [5–12,41–48]. In superconducting devices, the TLFs
located in the insulating barriers of Josephson junctions may
randomly modulate the Josephson critical current; another
likely candidate for the TLFs are the magnetic impurities
producing the magnetic flux noise [24–35,49–53].

TLFs can affect both the qubit lifetime T1 and the qubit
dephasing times, the free dephasing time T ∗

2 (measured, e.g.,
in the Ramsey decay experiments) and the echo decay time T2.
In many superconducting qubits [20,27–29,53,54] the former
effect is dominant, and is caused by the resonant TLFs, i.e.,
by those defects, for which the energy difference between the
two relevant defect states is close to the energy difference
E0 = h̄ω0 between the qubit’s states |0〉 and |1〉. Such TLFs
can undergo resonant flip-flop transitions with the qubit, mak-
ing the qubit to switch between the states |0〉 and |1〉, thus
reducing its lifetime T1. The effect of nonresonant TLFs, for
which the energy difference between the two states is much
smaller than E0, is limited to pure dephasing. The dephasing
caused by a bath of nonresonant TLFs is considerable for
many superconducting qubits and is critical for majority of
quantum dot-based spin qubits, including highly promising
SiMOS and Si/SiGe platforms. This type of baths is the
subject of our studies below.

The conventional approach to decoherence by an ensemble
of TLFs relates the decoherence profile to the noise power
spectrum S( f ), i.e., to the dynamics of the whole TLF
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FIG. 1. Simulated spectral densities of the noise produced by
bath samples of varying density d . Both plots (a) and (b) have the
same ratio of γM/γm = 109. The noise variance nv̄2 = γ 2

m is the same
for all plotted spectra, but the spectra are shifted for clarity. The
horizontal and vertical axes in both plots are scaled logarithmically
(log-log plots). (a) Spectral densities of sample baths with different
values of d . The number of TLFs for the blue, red, and black curves
are respectively n = 5, 30, and 1000, resulting in bath densities of
d ≈ 0.18, 1.08, and 36.19. (b) Spectral densities of sparse sample
baths with fixed values of n and d . For all spectra n = 10, such that
d ≈ 0.36.

ensemble, see, e.g., reviews [31,52]. This approach uses
the standard model of 1/ f noise [37], assuming a large
number of TLFs coupled to the qubit with more or less
comparable strengths, while the values of γ for each TLF
are drawn independently at random from a log-uniform
distribution within the broad range [γm, γM] (γM � γm);
then the noise experienced by the qubit has 1/ f spectral
density for frequencies in the range γm � 2π f � γM , see
Fig. 1. Within the conventional approach, the decay of
the qubit’s coherence is treated in a central limit theoremlike
manner, using the cumulant expansion and retaining only the
second-order cumulant (Gaussian approximation); it predicts
that (i) many TLFs in the bath contribute to decoherence of
the qubit, and (ii) the qubits having the same noise spectrum
S( f ) should exhibit the same coherence decay.

Recent progress in fabrication and in controlling the mate-
rials properties has greatly diminished the number of defects
producing 1/ f noise [6,8,16,24,35,44,45,53,55], thus sig-
nificantly improving the qubit quality. However, variability
in the coherence times between different qubits (or of the
same qubit observed over many hours/days) remains high
[8,15,25,26,28,29,56], making it difficult to create a chip with
a many-qubit register where all qubits would be stable and
have uniformly good coherence. Besides, there is a growing
amount of theoretical and experimental evidence [8,9,28,48]
that in modern high-quality qubits the coherence decay is
controlled by only a handful of TLFs (possibly, even a single
TLF). These features, being at odds with the conventional the-
ories, prompt for a deeper theoretical analysis of the modern
high-quality solid-state qubits.

In this work, we study a model for a high-quality qubit de-
cohered by 1/ f noise [57]. We assume, in a standard manner,
the noise to be created by an ensemble of TLFs, all cou-
pled with comparable strength to the qubit, with log-uniform
distribution of the transition rates γ . However, we focus
on the nonconventional situation of sparse bath, when the

number n of TLFs coupled to the qubit is large, but the range
[γm, γM] is even larger, such that the TLF density d = n/w

is small (w = ln [γM/γm] is the log-width of the distribution).
We demonstrate, both analytically and numerically, how the
conventional approach, based on the central limit theorem,
breaks down at small densities d , even for large number n
of TLFs. We also explain why the Gaussian approximation,
employed in the conventional approach, requires not only the
total number n, but also the density d , to be large. Namely, we
show that for sparse baths, the qubit decoherence is controlled
by only few exceptional TLFs, whose contribution dominates
all other TLFs in the ensemble. These TLFs are determined
not by exceptionally large coupling to the qubit, but by their
transition rate γ . Removing or adding such TLFs to the bath
greatly affects the dephasing times T2 and T ∗

2 , such that the
coherence times fluctuate wildly, as the values of γ of the
exceptional TLFs randomly change from one realization of
the bath (in one qubit) to another (in another qubit), although
the noise spectral density S( f ) remains almost the same.

Non-Gaussian effects in the bath of TLFs, their possible
origins, and their impact on the dynamics of qubit dephasing,
have been explored and discussed before [31,49,52,58–60] for
other models and regimes, focusing mostly on the situation of
broadly distributed coupling strengths. But, to our knowledge,
the non-Gaussian behavior emerging solely from the low den-
sity of TLFs in sparse baths, even when many fluctuators are
coupled with the same or similar strength to the qubit, has
not been analyzed before, and peculiarities of the sparse bath
dynamics have not been studied yet; in fact, the role of the
parameter d or its analog has not been discussed in these
works. In this respect, our work challenges and corrects some
widely accepted statements.

Emergence of exceptional TLFs in the sparse baths offers
a possible way to bridge the standard models, with many
TLFs coupled to the qubit, with the recently proposed models
[9,28,48], where only few TLFs are noticeably coupled to
the qubit [61]. Also, the 1/ f -type noise spectrum is a natural
feature of the many-TLF baths (both dense and sparse), while
in the few-TLF model [9,28,48] it is the consequence of the
coupling of the TLFs to their own environment (decoupled
from the qubit but coupled to the TLFs).

The rest of the paper is organized as follows. In Sec. II,
we describe the model for a many-TLF bath coupled to the
qubit, and demonstrate that the noise power spectra have
a 1/ f character, with little sample-to-sample variation for
the whole range of d . In Sec. III, we present analytical and
numerical results, showing that the Ramsey and echo decay
curves, in contrast with the noise power spectra, exhibit large
sample-to-sample variations for sparse baths. We explain
this effect analytically, and show that the Ramsey decay is
controlled by the properties of only a few exceptional TLFs,
whose parameters vary from sample to sample. In Sec. IV,
we demonstrate numerically that for sparse baths, removal of
only two exceptional TLFs makes decoherence substantially
slower, for both individual baths and large ensembles of
baths. We identify these exceptional TLFs for the Ramsey
and for the echo decay. In Sec. V, we demonstrate substantial
improvements caused by the removal of only two exceptional
TLFs, using the decay times and the qubit fidelities as
metrics. In Sec. VI, we show that these results also hold

033175-2



DECOHERENCE INDUCED BY A SPARSE BATH OF … PHYSICAL REVIEW RESEARCH 6, 033175 (2024)

for the baths with reasonably large spread in the coupling
strengths of individual TLFs. In Sec. VII, we briefly discuss
dynamical decoupling for the case of sparse baths, showing
that significant increase in the number of pulses leads to a
moderate slowdown of decoherence but greatly decreases
the sample-to-sample variability of the decay curves. Our
findings are summarized and conclusions are presented
in Sec. VIII.

II. MODEL DESCRIPTION

A large number of defects is unavoidably present in re-
alistic super- and semiconducting qubits due to their meso-
or macroscopic size. However, if the qubit is fabricated with
utmost care then the most egregious defects, particularly
strongly coupled to the qubit, are eliminated (or avoided)
during fabrication or deactivated at the post-fabrication stage
[45,53,55]; the currently manufactured high-quality semicon-
ducting and superconducting qubits seem to approach this
limit. Thus it is natural to assume that the remaining defects
are weakly coupled to the qubit, with more or less similar
strengths, although other parameters may differ substantially.
We represent each defect as a two-level system, incoherently
tunneling [40] or thermally hopping [62,63] between two rel-
evant states; a broad range of defects, including the charge
traps near the gate electrodes, magnetic impurities, etc., under
various conditions, are adequately represented in this way
[26,49,58,64].

The qubit is described as a pseudo-spin 1/2 in the usual
way, using the corresponding Pauli matrices σx = |0〉〈1| +
|1〉〈0|, σy = −i|0〉〈1| + i|1〉〈0|, and σz = |0〉〈0| − |1〉〈1|,
where |0〉 and |1〉 are the computational basis states of the
qubit, separated in energy by E0 = h̄ω0. In the coordinate
frame which rotates with the qubit’s Larmor frequency ω0

(rotating frame [65]), the Hamiltonian describing decoherence
of the qubit by the bath of TLFs has the form

H = 1

2
σz B(t ), B(t ) =

n∑
k=1

vkξk (t ), (1)

where we took into account that the TLFs under consideration
are nonresonant, and thus omitted the terms proportional to
σx and σy. The noise B(t ), acting on the qubit, is created
by an ensemble of n statistically independent TLFs. The
dynamics of each TLF are described as a random telegraph
process [66,67], that is the kth fluctuator is represented by a
two-state random stationary Markov process ξk (t ), which can
assume two values +1 and −1, and makes random transitions
between them with the rate γk , equal for transitions in both
directions (symmetric fluctuator, typical for various defects
in a wide range of conditions [31,68,69]), such that the
correlation function for the kth TLF is

〈ξ (t )ξ (t + s)〉 = exp(−2γk|s|). (2)

Representing quantum two-level defect by a classical random
process is justified when the coupling strength vk of the TLF to
the qubit is smaller than the decoherence rate of the TLF itself
[70]. Following the standard convention, here and below we
set h̄ = 1, expressing all energies and the coupling strengths in
the same units as the rates and the angular frequencies (s−1).

The properties of the TLF bath are characterized by the set

B = {(γ1, v1), . . . , (γk, vk ), . . . , (γn, vn)}, (3)

of the coupling constants and transition rates of all TLFs,
k = 1, . . . , n. The rates γk are independently sampled from
the log-uniform distribution

P� (γ ) = 1

w γ
, γ ∈ [γm, γM], (4)

with sharp lower and higher cutoffs γm and γM , respectively;
the normalization constant w = ln(γM/γm) is the log-width of
the distribution. Such a distribution is natural for many two-
state defects. Whether the transitions between the states are
caused by tunneling or thermal excitations, the corresponding
rates have the form γ = R e−λ; here R−1 is a characteristic
internal timescale of the defect, and λ is either a tunneling
exponent, or, in the case of thermally induced hopping, the
Arrhenius factor λ = Eb/kT , where Eb is the height of the
energy barrier separating the two states of the defect, k is
the Boltzmann constant, and T is the temperature [31,68,69].
For many relevant defects, the parameter λ is distributed
uniformly between the values λm and λM , such that the tran-
sition rate γ ∝ e−λ has the log-uniform probability density
(4). The couplings vk are also taken as a set of independent
identically distributed random variables. We assume them to
be comparable for all TLFs, such that the distribution PV for
each vk is taken either as the Dirac delta distribution (with all
vk = v, k = 1, . . . , n), or the normal distribution with finite
width σv . The opposite situation of a very broad distribution
of the couplings has been considered before [49,58–60].

As will be shown below, an important parameter determin-
ing the dynamics of decoherence is the density of the TLFs,

d = n

w
. (5)

We will refer to the case of small or large d as a sparse or
dense bath, respectively.

For a given qubit, the set B of the bath parameters is
time-independent, meaning that the bath is quenched, such
that the random process B(t ) is stationary, with zero mean and
the variance

β(B) ≡ 〈B2(t )〉 =
n∑

k=1

v2
k , (6)

where the angular brackets 〈. . . 〉 denote averaging over the
noise realizations with a fixed set of parameters B. The sym-
bol B here and below reminds us that the properties of the
noise B(t ) depend on the specific set B, corresponding to the
given realization of the quenched bath. The power spectrum
(first spectral density) of the stationary noise B(t ) is given
by the Fourier transform of its two-point correlation function
[66,67,71], i.e.,

S(B; ω) =
∫ +∞

−∞
dτ eiωs〈B(t )B(t + s)〉, (7)
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where ω = 2π f . For the TLF bath in question, the power
spectrum is a sum

S(B; ω) =
n∑

k=1

4γkv
2
k

4γ 2
k + ω2

, (8)

consisting of the Lorentzian contributions from each inde-
pendent random telegraph process ξk (t ), whose correlation
function is 〈ξk (t )ξk (t + s)〉 = exp (−2γk|s|).

Several representative examples of the power spectra
S(B; ω) for such baths are shown in Fig. 1. Each spectrum was
obtained via direct summation of Lorentzians in Eq. (8), with
the TLF parameters sampled from the distributions P� (γ )
given by Eq. (4), assuming vk = v for all k.

We remind that the presented spectra correspond to the
quenched baths, and do not involve averaging over the bath
realizations. While each spectrum is a sum of Lorentzians,
the overall sum, because of the log-uniform distribution of the
rates γk , has 1/ f dependence for both sparse and dense baths.
Even for sparse baths with d ≈ 0.36, the spectra S(B; ω)
remain practically the same for different bath samples, and
retain clear 1/ f character, see Fig. 1(b). Little wiggles,
produced by the individual Lorentzians corresponding to
individual TLFs, are barely visible, and their positions vary
between different realizations of the bath, and already for
d ∼ 1 such small variations are practically invisible
[Fig. 1(a)].

Our simulations confirm that for both sparse and dense
baths, the sample-to-sample variations in the noise spectrum
remain small, and all spectra remain close to the average noise
spectrum

S(ω) =
∫

S(B; ω)
∏

k

PV (vk )dvk P� (γk )dγk, (9)

with S(B; ω) given by Eq. (8). Since vk and γk are inde-
pendent, and each of them is identically distributed with the
corresponding distribution PV (vk ) or P� (γk ), the average spec-
trum is easily calculated:

S(ω) = 2nv2

w · ω

[
arctan

(
2γM

ω

)
− arctan

(
2γm

ω

)]
, (10)

where v2 = ∫
v2 PV (v) dv. This spectral density has the form

1/ω for γm � ω � γM , with the 1/ω2 cutoff at high frequen-
cies ω � γM and flat cutoff at ω � γm.

These results are in agreement with the conventional wis-
dom about good self-averaging properties of the 1/ f noise
spectrum between γm and γM [31,58,60], and confirm that this
remains true even for sparse TLF baths. However, our results
on the qubit dephasing under the influence of the sparse baths,
presented below in Sec. III, show a very different picture.

III. DEPHASING DYNAMICS OF A QUBIT
COUPLED TO A SPARSE BATH

The noise B(t ) in the Hamiltonian (1) does not change
the populations of the qubit states |0〉 and |1〉, but affects
the phase between these states, leading to dephasing of the
qubit. The rate of dephasing can be assessed in experiments

by measuring the decay of the Ramsey signal F (t ) with time.
Initially, the qubit is prepared in the state (|0〉 + |1〉)/

√
2;

using the standard parametrization of the qubit density matrix
as ρ = (1/2)[1 + mxσx + myσy + mzσz], where 1 is a 2×2
identity matrix, the initial state corresponds to mx = 1 and
my = mz = 0. Then the qubit is left to evolve freely for the
time t under the action of the noise B(t ), such that the
value of mx(t ) is given by the real part of the noise-averaged
exponent

mx(t ) ≡ F (B; t ) = Re

〈
exp

(
−i

∫ t

0
B(s) ds

)〉
, (11)

while the value of mz remains zero; this is also true for my

because the statistics of the noise B(t ) remains invariant under
the change B(t ) → −B(t ). Since the noise is a sum of n inde-
pendent telegraph processes ξk (t ), the Ramsey decay function
F (B; t ) is a product of individual contributions fk (γk, vk ; t )
from each TLF:

F (B; t ) =
n∏

k=1

fk (t ), (12)

where the individual terms are

fk (t ) ≡ f (γk, vk; t ) =
〈
exp

(
−i vk

∫ t

0
ξk (s) ds

)〉
. (13)

Here we used the notation F (B; t ) to emphasize that the Ram-
sey decay function depends on the specific bath parameter set
B; in the text below, we sometimes omit this variable if the
relevant parameter set B is known from the context or is not
relevant.

An explicit expression for the Ramsey decay function
f (γ , v; t ) for an individual TLF can be obtained with a variety
of methods [49,58,72–75],

f (γ , v; t ) = e−γ t
(

cosh αt + γ

α
sinh αt

)
, (14)

where α = (γ 2 − v2)1/2. The overall shape of the decay func-
tion f (γ , v; t ) is determined by the relation between v and γ .

For v � γ , the decay happens mostly at t � γ −1, and
if the qubit is coupled to n � 1 such TLFs, then the
overall decay happens very quickly, on a timescale of
the order of ts = (v

√
n)−1. Indeed, when v � γ , at short

times f (γ , v; t ) ≈ exp (−v2t2/2), and the product of n � 1
such factors leads to the decay F (t ) = exp (−nv2t2/2), the
standard result for quasi-static Gaussian dephasing. In the
opposite case, v � γ , the decay happens almost completely
at t � γ −1, when the decay shape is practically exponential,
corresponding to the regime of motional narrowing [65,71],
f (γ , v; t ) ≈ exp (−v2tγ −1/2). For our work, the latter case
is of most physical interest and importance, and we focus
on the situation when most TLFs are motionally narrowed,
with vk � γk .

Statistical properties of the dephasing curves for sparse
and dense baths are compared in Fig. 2. For these figures, a
large number M = 105 of independent samples of the bath
parameter sets B was produced. The values γk for each TLF
(k = 1, . . . , n) for every set Bm (m = 1, . . . , M) were inde-
pendently drawn from the distribution P� (γ ) given by Eq. (4),
with certain cutoff values γm and γM , while the couplings
vk were chosen equal, vk = v̄, for all TLFs. The Ramsey
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FIG. 2. Ramsey decay for sparse vs dense baths. The ratio
γM/γm = 105 is fixed in all panels. (a) Samples of the Ramsey decay
curves F (t ) for sparse baths with n = 10 TLFs, which corresponds
to d ≈ 0.87; the coupling strengths are the same for all TLFs, vk =
v̄ = γm. Thirty randomly chosen samples are shown. (b) Samples
of the Ramsey decay FR(t ) for dense baths with n = 160, which
corresponds to d ≈ 13.9; the coupling strengths are the same for all
TLFs, vk = v̄ = 0.25γm. The value of v̄ is reduced in comparison
with panel (a), such that the variance β(B) of the field B(t ) is
the same in both panels, see text for details. Ten randomly chosen
samples are shown; the number of curves is reduced in compari-
son with (a) to make the individual curves clearly visible. [(c) and
(d)] Two-dimensional histograms of the estimated p.d.f.’s PF (F, t )
of the Ramsey decay curves, presented in a qualitative form, for
sparse baths (c) and for dense baths (d). Each panel comprises 109

two-dimensional rectangular bins (pixels), obtained by dividing the
time axis t into lt = 103 bins, and the axis F into lF = 103 bins.
The value of PF (F, t ) was estimated by drawing M = 105 samples of
the bath parameter sets Bm (m = 1, . . . , M) from the corresponding
distributions, and calculating the Ramsey decay function Fm(t ) for
each Bm. Every Fm(t ) was evaluated at the center tp of every time
bin (p = 1, . . . , lt ), and, according to the value Fm(tp), the point was
added to the appropriate bin along the axis F . The total number
K (q, p) of the points in the pixel centered at (Fq, tp) is taken as an
estimate for PF (F, t ) at the point (F = Fq, t = tp); see the text for
more details. For the figures, the total number K (q, p) in each pixel
is divided by 100, and the values smaller than 10 are linearly mapped
to the color bar, while those greater than or equal to 10 are mapped
to the darkest shade of the color bar.

decay curves Fm(t ) ≡ F (Bm; t ) were calculated for each bath
sample Bm as a product [see Eq. (12)] of contributions fk (t ) of
individual TLFs given by Eq. (14). Several randomly chosen
samples of the dephasing curves Fm(t ) for sparse and for dense
baths are shown in Figs. 2(a) and 2(b), respectively, with the
corresponding densities d ≈ 0.87 and d ≈ 13.90. In order to

make a meaningful comparison between different baths with
different number n of TLFs, the value v̄ was adjusted for each
bath parameter set B in such a way that all baths have the same
variance β(B) of the noise B(t ) [see Eq. (6)]. In this manner
we ensure that the noise spectral densities S(Bm; ω) have the
same overall amplitude for all bath samples in the physically
relevant region γm � ω � γM .

In order to present cumulative statistics of the Ramsey de-
cay curves Fm(t ) over all M = 105 bath samples, in Figs. 2(c)
and 2(d), we show the two-dimensional density plots of the
Ramsey decay curves. Namely, we divide the range [0,1] of
the quantity F into lF = 103 bins, each of the length δF =
10−3; similarly, the range [0, Tmax] of the time variable t is
divided into lt = 103 bins, each of the length δt = Tmax ×
10−3. Thus we obtain 109 square bins (pixels) on the two-
dimensional F–t plane. For every function Fm(t ), we calculate
a set of values Fm(tp) at the time points tp (p = 1, . . . , lt ),
where tp is the center of the p-th time bin. The curve Fm(t )
is thusly represented as a set of lt points with the coordinates
(F = Fm(tp), t = tp) on the F -t plane. Every such a point
is placed in an appropriate bin along the axis F , centered
at F = Fq; therefore, each curve fills lt pixels on the F–t
plane, one point per time bin. As more and more curves Fm(t )
are sampled, the number K (q, p) of the points in the pixel
centered at (Fq, tp) increases, and, with proper normalization,
the value K (q, p) gives an estimate for the probability den-
sity function (p.d.f.) PF (F, t ) at the point (F = Fq, t = tp),
thus characterizing the statistics of the curves Fm(t ) obtained
for a given ensemble of the bath parameters. The result-
ing estimated p.d.f.’s are shown in Figs. 2(c) and 2(d) in a
qualitative form.

The stark contrast between the behavior of the dephasing
curves in Fig. 2 and the noise spectra in Fig. 1 is obvious. For
the dense baths, all dephasing curves Fm(t ) in Fig. 2(b) stay
close to each other, and the density PF (F, t ) in Fig. 2(d) is
sharply concentrated around a single decay curve, such that
the sample-to-sample variations in the Ramsey decay curves,
and in the corresponding dephasing time T ∗

2 , are small. For
the sparse baths, the dephasing curves in Fig. 2(a) vary wildly
between different bath samples, and the density PF (F, t ) in
Fig. 2(c) is spread over large area, such that the sample-to-
sample variations in the Ramsey decay signals and in the
dephasing times T ∗

2 are very large. This is drastically different
from the behavior of the noise power density curves in Fig. 1,
which remain close to each for different realizations Bm of the
bath parameters, for both sparse and dense baths. Thus, for
sparse baths, the relation between the Ramsey decay F (B; t )
and the noise spectrum S(B; ω), predicted by the conventional
approach [52,58–60,76,77], does not hold. The central limit
theorem-type treatment appears incorrect when applied to
the sparse baths, even though the total number n of TLFs
is large.

In order to understand such a behavior at the qualita-
tive level, let us consider the situation when all TLFs are
motionally narrowed, with γk � v̄ for all k = 1, . . . , n. In that
case, the Ramsey decay has the form [see Eqs. (12) and (14)]

F (t ) ≈
n∏

k=1

exp
( − v̄2tγ −1

k /2
) = exp (−Z v̄2t/2), (15)
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and the statistics of the curves F (t ) are determined by the
statistics of the quantity

Z =
n∑

k=1

γ −1
k . (16)

It appears that for small TLF density d � 1, the probability
distribution of Z has the form PZ (z) ∝ z−1+d , being controlled
primarily by a single TLF with the largest value of γ −1

k . This
is shown via direct, although somewhat lengthy, calculation
in Appendix, here we present only a simplified argument,
explaining the essence of the phenomenon.

The quantities γk , as well as γ −1
k , all have identical log-

uniform distributions (4), such that their logarithms ζk = ln γk

are uniformly distributed between ln γm and ln γM , in the
region of the width w = ln (γM/γm). When n such quanti-
ties ζk are independently drawn from the region of width
w, and ordered in an ascending order, the typical difference
between two adjacent values of ζk is of the order w/n =
1/d , which is large for d � 1. The corresponding quantities
γ −1

k = exp (−ζk ) are also ordered, in a descending manner,
and each subsequent term is much smaller than its prede-
cessor, being multiplied by a small factor of the order of
exp (−1/d ). As a result, the value of Z is determined mostly
by the single largest term in the sum

∑
k γ −1

k , i.e., by the
single smallest γk , which is distributed according to Eq. (4).
Therefore, PZ (z) ∝ z−1 for d � 1, which is close (up to small
correction ∼d) to the exact result PZ (z) ∝ z−1+d given in
Appendix.

This simplified argument suggests that the validity of the
Gaussian treatment is restored for dense baths with d � 1:
in that case, n ordered quantities ζk are close to each other
(the typical difference between two adjacent values is still of
the order of 1/d , which is now small), and the same is true
for the quantities γ −1

k = exp (−ζk ). In that case, the sum Z
consists of a large number n of terms, and most of them are
comparable to each other in magnitude, which is the situation
where the central limit theorem is valid.

This argument also suggests that the total number n of
TLFs in a sparse bath is not a decisive parameter, as long
as it is not small, and that only a few TLFs, which we
will call exceptional TLFs from now on, with the smallest
switching rates γ , determine the form of the Ramsey decay
and the decay time T ∗

2 . Large sample-to-sample variabil-
ity of the curves F (t ) comes from the fact that every bath
parameter set B has its own exceptional TLFs, and their
number is small, such that their specific parameters strongly
fluctuate from one set B to another. This conjecture is in-
deed supported by the numerical calculations presented below
in Sec. IV.

Meanwhile, it is interesting to explore similar qualitative
difference between sparse and dense baths in the case of the
echo decay. In the same manner as above, we assume that
the qubit is prepared in the initial state with mx = 1, my =
mz = 0, and interacts with many TLFs as described by the
Hamiltonian (1). After a period of free evolution of duration
τ , a refocusing π pulse is applied to the qubit, and the system
evolves for another time period of duration τ ; the value of
mx(t = 2τ ) is measured [65] at t = 2τ . The shape of the echo

decay for a qubit coupled to a single TLF is also known
[49,58,72–74],

e(γ , v; t ) = e−γ t

(
γ 2

α2
cosh αt + γ

α
sinh αt − v2

α2

)
, (17)

with α = (γ 2 − v2)
1
2 , and the echo decay for a bath of

n independent TLFs is a product of the individual decay
factors

mx(t = 2τ ) ≡ E (B; t ) =
n∏

k=1

ek (t ), (18)

where ek (t ) ≡ e(γk, vk ; t ).
The echo decay factor for a slow TLF with γ � v has

the form e(γ , v; t ) ≈ exp (−γ t ). For a fast TLF with γ � v,
just like in the case of the Ramsey experiment, the decay
mostly happens at t � γ −1, and the echo decay factor has
the same form, e(γ , v; t ) ≈ f (γ , v; t ) ≈ exp [−v2tγ −1/2].
Therefore, when the qubit is coupled to a bath of many
TLFs with similar coupling strengths vk ∼ v̄, the slow fluc-
tuators with very small γ , as well as very fast TLFs with
very large γ , contribute little to the overall echo signal de-
cay, and the form of E (B; t ) is mostly controlled by the
TLFs with γk ∼ v̄. Therefore, for investigating the echo de-
cay in the physically relevant and interesting regime, we
need to consider baths where v̄ ∼ √

γm · γM , such that all
three types of TLFs, with γk � v̄, γk ∼ v̄ and γk � v̄, are
present.

The results of such simulations are presented in Fig. 3.
Similarly to Fig. 2, there is a stark contrast between sparse
and dense baths. Variability of the echo decay curves E (t )
is very high for sparse baths with d � 1, and the individual
curves differ greatly. For dense baths, the curves E (t ) are
very close to each other, and the p.d.f. PE (E , t ) is sharply
concentrated around a single curve. This happens in spite of
the fact that all baths, whether sparse or dense, have very
close noise power spectra S(Bm; ω), so that the conventional
approach [31,52,58–60,76,77] is not applicable to the case of
the echo decay caused by sparse baths.

These results suggest the possibility that the echo decay
E (t ) is also controlled by only one or a few important TLFs,
analogously to the situation with the Ramsey decay F (t ).
However, in the case of echo such exceptional fluctuators
can not be the slowest (with γk � v̄) nor the fastest (with
γk � v̄), because TLFs of both these types contribute little
to the echo decay. It is logical to assume that the shape
of E (t ) is controlled by the TLFs which are the closest to
satisfying the condition γk ∼ v̄. The results presented below
in Sec. IV confirm this conjecture. Therefore, large sample-
to-sample variation of the curves E (t ) is also due to the
fact that the number of such exceptional TLFs is small, and
their parameters significantly fluctuate from one set B to
another.

Note that many previous works exploring non-Gaussian
behavior incorrectly assume that a bath of many TLFs, cou-
pled equally strongly to the qubit, automatically enters Gaus-
sian regime and can be treated in a central limit theoremlike
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FIG. 3. Echo signal decay for sparse vs dense baths. The ra-
tio γM/γm = 1012 is fixed in all panels. (a) Samples of the echo
decay curves E (t ) for sparse baths with n = 16 TLFs, correspond-
ing to d ≈ 0.58; the coupling strengths are the same for all TLFs,
vk = v̄ = γm × 107. Thirty randomly chosen samples are shown.
(b) Samples of the echo decay E (t ) for dense baths with n = 100
and d ≈ 3.62; the coupling strengths are the same for all TLFs,
vk = v̄ = 4γm × 106, such that the variance β(B) of the field B(t )
is the same as in (a). Ten randomly chosen samples are shown in
order to make the individual curves clearly visible. [(c) and (d)]
Two-dimensional histograms of the estimated p.d.f.’s PE (E , t ) of the
echo decay curves, presented in a qualitative form, for sparse baths
(c) and for dense baths (d). The p.d.f.’s are obtained using M = 105

bath parameter samples and are calculated and presented in the same
way as in Figs. 2(c) and 2(d).

manner. Our arguments above show that this expectation is
too naive, and more care is required.

IV. THE ROLE OF INDIVIDUAL FLUCTUATORS
IN DEPHASING OF A QUBIT

We have established in the previous section that the Ram-
sey decay, in the case of weakly coupled TLFs, is governed
by only a few exceptional TLFs with the smallest values of the
switching rate γ . We have also conjectured that the echo decay
is also controlled by a few exceptional TLFs, whose switching
rates γ are close to the coupling v̄. A very straightforward way
to check, whether these statements are correct, is to remove
these exceptional TLFs, and analyze the changes in the decay
curves F (t ) and E (t ).

For that, we generate a large number M of samples of
the bath parameter sets Bm, m = 1, . . . , M. Each set Bm is

modified by removing two exceptional TLFs, producing the
corresponding modified parameter set B̃m. The curve Fm(t ) ≡
F (Bm, t ), calculated using the original set Bm, and the curve
F̃m(t ) ≡ F (B̃m, t ), calculated using the corresponding modi-
fied set B̃m, are compared with each other, both individually
(separately for every m) and statistically [comparing the en-
sembles of Fm(t ) and F̃m(t )].

For dense baths, the decay curves F̃m(t ) for every m remain
practically the same as the corresponding Fm(t ) curves, and
the same happens for the echo decay curves Em(t ) and Ẽm(t ).
This is precisely what is expected in a Gaussian regime, where
the effect of any individual TLF is small. However, for sparse
baths, such a minor modification of the bath parameters leads
to significant changes.

Figure 4 shows substantial difference in the Ramsey de-
cay curves F (t ), occurring after removal of two exceptional
fluctuators. As seen in Fig. 4(a), the curves Fm(t ) change sub-
stantially upon modification, and the modified curves F̃m(t )
decay much slower than the original ones. Figure 4(b) demon-
strates that this happens for every single parameter set: each of
the color-coded original curves Fm(t ) undergoes such changes,
and for every instance m, the function F̃m(t ) decays much
slower than the corresponding Fm(t ).

This trend is maintained statistically, for the ensemble of
M = 105 original baths Bm (m = 1, . . . , M) and the corre-
sponding modified baths B̃m. This is shown in Figs. 4(c)
and 4(d), which compare the estimated p.d.f. PF (F, t ) of the
original Ramsey curves F (t ) with the estimated p.d.f. P̃F (F̃ , t )
of the modified curves F̃ (t ). The estimated p.d.f.’s were ob-
tained as described above in Figs. 2(c) and 2(d) and in the
corresponding text. Upon removal of exceptional TLFs, the
density of the Ramsey decay curves F (t ) moves upwards
very noticeably, demonstrating significant slowdown of the
Ramsey decays.

The same conclusions hold for the echo decays, as seen in
Fig. 5, where we show the changes in the echo decay curves
E (t ) caused by removal of two exceptional TLFs from the
bath. In the same manner as it was done above for the Ramsey
decay curves, we generate a large number M of samples of
the bath parameter sets Bm, m = 1, . . . , M; we modify each
Bm, producing the corresponding modified set B̃m. The curves
Em(t ), calculated using the original set Bm, and the curves
F̃m(t ), calculated using the corresponding modified set B̃m,
are compared with each other, both individually (separately
for several randomly chosen values of m) and statistically
(comparing the ensembles of Em(t ) and Ẽm(t )). The com-
parison shows that the echo decay for each individual bath
greatly slows down upon removal of two exceptional TLFs,
see Figs. 5(a) and 5(b). This effect remains significant also at
the level of large ensembles: as shown in Figs. 5(c) and 5(d),
substantial fraction of the p.d.f.’s PE (E , t ) moves upwards,
demonstrating substantial slowdown of the echo decay at the
level of ensembles. Note that the decisive role of similar
individual TLFs has also been recognized in earlier stud-
ies [49,58,60], although for other bath models and regimes.
Agreement with these previous results provides assurance
that our results remain valid in a sufficiently broad range of
physical situations.
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FIG. 4. Drastic changes in the Ramsey decay due to removal of
two exceptional defects from sparse bath. All panels correspond to
baths with the ratio γM/γm = 105, containing n = 12 TLFs, such
that d ≈ 1.04; the coupling strengths are the same for all TLFs,
vk = v̄ = γm. (a) Fourty randomly chosen samples Fm(t ), obtained
with the original sets Bm, are shown as blue lines; the corresponding
curves F̃m(t ), obtained with the modified parameter sets B̃m, are
shown as red lines. Drastic slowdown of the Ramsey decay upon
removal of two exceptional TLFs is clearly seen. (b) Compari-
son of the individual Ramsey curves obtained with original (solid
lines) and modified (dashed lines) bath parameter sets. The curves
F1(t ), . . . , F5(t ) are color-coded, each color denoting one parameter
set, B1 to B5. Each parameter set is modified by removal of two
exceptional TLFs, producing the modified sets B̃1 to B̃5, and the
corresponding curves F̃1(t ), . . . , F̃5(t ) are plotted with dashed lines,
such that the curve F̃m(t ) for every m = 1, . . . , 5 has the same color
as the original Fm(t ). Comparison between the solid and the dashed
lines of the same color shows drastic slowdown of the Ramsey
decay for each individual bath sample. [(c) and (d)] Two-dimensional
histograms of the estimated p.d.f. PF (F, t ) of the original Ramsey
curves F (t ) (c) and of the estimated p.d.f. P̃F (F̃ , t ) of the modified
curves F̃ (t ) (d). The estimated p.d.f. PF (F, t ) was obtained from the
set of Ramsey curves Fm(t ) (m = 1, . . . , M), which were calculated
using the original parameter sets Bm. Then every parameter set was
modified by removing two exceptional TLFs, and the p.d.f. P̃F (F̃ , t )
was obtained from the Ramsey curves F̃m(t ), which were calculated
using the modified sets B̃m. Both histograms used M = 105 samples
of the bath parameter sets; both estimated p.d.f.’s are produced and
presented in the same manner as in Figs. 2(c) and 2(d).

V. IMPROVEMENTS IN THE QUBIT PROPERTIES
UPON REMOVAL OF EXCEPTIONAL TLFs

The results of the previous section suggest that it might be
possible to drastically improve the coherence properties of a
qubit by eliminating only a few most offending TLFs, without
radical changes in the device or in the fabrication process. For
instance, it has been demonstrated [45,53,55] that individual

FIG. 5. Drastic changes in the echo decay upon removal of two
exceptional defects from sparse bath. All panels correspond to baths
with the ratio γM/γm = 1012, containing n = 20 TLFs, such that
d ≈ 0.72; the coupling strengths are the same for all TLFs, vk =
v̄ = γm. The bath parameter sets were modified by removing two
exceptional TLFs, whose switching rate γk is the closest to the value
v̄. (a) Thirty randomly chosen samples Em(t ), obtained with the
original sets Bm, are shown as blue lines; the corresponding curves
Ẽm(t ), obtained with the modified parameter sets B̃m, are shown as
red lines. Drastic slowdown of the echo decay upon removal of two
exceptional TLFs is clearly visible. (b) Comparison of the individual
echo decay curves obtained with original (solid lines) and modi-
fied (dashed lines) bath parameter sets. The curves E1(t ), . . . , E5(t ),
obtained using the parameter sets B1 . . .B5, are color-coded. The cor-
responding curves Ẽ1(t ), . . . , Ẽ5(t ), obtained from the modified sets
B̃1 . . . B̃5. are plotted with dashed lines of the corresponding color,
as in Fig. 4(b). Comparison between the solid and the dashed lines
of the same color shows drastic slowdown of the echo decay for each
individual bath sample. [(c) and (d)] Two-dimensional histograms of
the estimated p.d.f. PE (E , t ) of the original echo curves E (t ) (c), and
of the estimated p.d.f. P̃E (Ẽ , t ) of the modified curves Ẽ (t ) (d). The
p.d.f.’s were obtained in the same way as in Figs. 4(c) and 4(d). Both
histograms used M = 105 samples of the bath parameter sets.

defects can be deactivated in the already fabricated devices
by adjusting the working point parameters. For the devices
where the defects make up a sparse bath, similar to the one
studied here, such deactivation may be effective. However,
we do not discuss here, how realistic is this possibility: this
decision is to be made by experimentalists, material scientists
and engineers. We focus on theoretical investigation of great
potential benefits of this option.

We quantify the improvements by analyzing two metrics.
The first one is the Ramsey decay time T ∗

2 , defined as the
time when the Ramsey decay curve reaches the value 1/e.
The second one is the Ramsey decay fidelity F , defined as
the value of the Ramsey decay function at a certain small
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FIG. 6. Improvements in the qubit quality, quantified by two
metrics, the Ramsey decay time T ∗

2 and the qubit fidelity F = F (t0),
where t0 = 1/γm. The same parameters as in Fig. 4 were used to
produce the plots. (a) Estimated p.d.f.’s of the fidelity F for the orig-
inal (blue) and modified (red) baths. The p.d.f. moves to the region
of larger fidelities upon removal of the exceptional TLFs, showing
improvements in the fidelity. M = 107 samples of the bath param-
eters were used; the bin width δ = 1.75 × 10−3 for original baths
and δ = 1.606 × 10−3 for modified baths. (b) Estimated c.c.d.f.’s of
the fidelity F for the original (blue line) and modified (red line)
baths. The red line is noticeably shifted upwards and to the right,
to the region of higher fidelities, in comparison with the blue line.
The fraction of the high-fidelity qubits, with F > 0.9, increases by a
factor of 7.7 upon removal of two exceptional TLFs. Bin parameters
are the same as in panel (a). (c) Estimated p.d.f.’s of the decay time
T ∗

2 for the original (blue) and modified (red) baths. M = 106 samples
were used; the bin width is 8.28 × 10−2/γm for original baths and
8.46 × 10−2/γm for modified baths. (d) Estimated c.c.d.f.’s of the
decay time T ∗

2 for the original (blue line) and modified (red line)
baths. Bin parameters are the same as in (c). Statistics of the time T ∗

2

shows the same trends as the fidelity F . In particular, the fraction of
the high-quality qubits, with the decay time T ∗

2 � 20/γm, increases
by a factor of 14.2 upon removal of two exceptional TLFs.

time t0, i.e., F ≡ F (t0). In order to quantify the improvements
caused by eliminating the exceptional defects, we calculate
the p.d.f.’s and the complementary cumulative distribution
functions (c.c.d.f.’s) for both quantities, T ∗

2 and F ; the c.c.d.f.
CX of a quantity X , which is distributed with the p.d.f. PX (x),
is defined as CX (x) = ∫ ∞

x PX (u)du.
Figure 6 shows how p.d.f.’s and c.c.d.f.’s of both metrics,

T ∗
2 and F , change upon modification of the bath parameter

sets. The plots were produced by sampling M = 107 original
sets Bm, and removing two exceptional TLFs from each set,
thus obtaining the modified set B̃m for every m = 1, . . . , M.
The Ramsey decay curves Fm(t ) and F̃m(t ) were calculated,

and the values of T ∗
2 and F were extracted for each m.

These values were used for estimating p.d.f.’s and c.c.d.f.’s
of the two metrics, by distributing the results into 500 bins of
the width δ; the number of counts in each bin was divided
by the factor M · δ in order to normalize the estimated p.d.f.’s
PX (u) as

∫
PX (u)du = 1 for both X = T ∗

2 and X = F .
As seen from Figs. 6(a) and 6(c), both metrics are greatly

improved after removing two exceptional TLFs. Specifically,
the fraction of high-fidelity qubits, with F > 0.9, increases by
a factor of 7.7, as shown in Fig. 6(b), and the fraction of qubits
with T ∗

2 � 20/γm improves by a factor of 14.
The same conclusions hold if we quantify the echo de-

cay in a similar way, using the echo decay time T2 and the
echo fidelity E as metrics; the echo fidelity is defined as the
value of the echo decay function at certain small time t0, i.e.,
E ≡ E (t0). Figure 7 shows how p.d.f.’s and c.c.d.f.’s of both
metrics change after modification of the bath parameter sets.
The data were binned, and the p.d.f.’s normalized, in the same
manner as in Fig. 6. Significant improvements, similar to those
observed for the Ramsey decay, are clearly seen. Removal of
two exceptional defects enhances the fraction of high-fidelity
qubits, whose echo fidelity exceeds 0.9 at time t = 10−6/γm,
by a factor of 3.9. The fraction of high-quality qubits,
with the echo decay time T2 � 4 × 10−6/γm, increases by a
factor of 7.5.

VI. SPARSE BATHS WITH FINITE DISPERSION
OF THE COUPLING STRENGTHS

Here we address the question of possible finite dispersion
in the coupling strengths of the TLFs comprising the bath. An
infinitely narrow distribution of coupling strengths, when all
TLFs have the same values of the parameters vk , is a crude ap-
proximation. It would be interesting to see, whether our results
remain correct for a somewhat more realistic distribution of
couplings. For this purpose, we consider normal distribution
of the coupling strengths, characterized by the mean value v̄

and the standard deviation σv .
However, if the sparse bath in question contains a TLF

whose strength is too large, then the noise power spec-
trum S(B, ω) acquires a conspicuous Lorentzian peak at the
corresponding frequency. Such a peak (or other equivalent
signatures of an unusually strongly coupled TLF) would be
visible in experiments, and the noise spectrum would notice-
ably deviate from the 1/ f form, assumed in this work. Such
situations are realistic, but are outside of the scope of the
present work, where we focus on the baths with reasonably
smooth 1/ f noise spectrum.

In order to avoid such features in the noise spectrum, we
impose the condition that the ratio of σv to v̄ is much smaller
than the ratio of the cutoff rates γM and γm, i.e.,

σv

v̄
� γM

γm
. (19)

Note that this condition does not preclude the distribution
of the coupling strengths from being rather broad: de-
pending on the specific values of γM and γm, this regime
may include the situation of large dispersion in the cou-
pling strengths, with σv ∼ v̄, such as the one addressed
in Fig. 9.
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FIG. 7. Improvements in the qubit quality, quantified by two
metrics, the echo decay time T2 and the echo fidelity E = E (t0),
where t0 = 10−6/γm. The same parameters as in Fig. 5 were used
to produce the plots. (a) Estimated p.d.f.’s of the fidelity E for the
original (blue) and modified (red) baths. The p.d.f. moves to the
region of larger fidelities upon removal of the exceptional TLFs,
showing improvements in the fidelity. M = 107 samples of the bath
parameters were used, with the data distributed over 300 bins of
the width δ = 2.112 × 10−3 for original baths and δ = 2.02 × 10−3

for modified baths. (b) Estimated c.c.d.f.’s of the fidelity E for the
original (blue line) and modified (red line) baths. The red line no-
ticeably shifts to the region of higher fidelities, in comparison with
the blue line. The fraction of the high-fidelity qubits, with E > 0.9,
increases by a factor of 3.9 upon removal of two exceptional TLFs.
Bin parameters are the same as in panel (a). (c) Estimated p.d.f.’s
of the echo decay time T2 for the original (blue) and modified (red)
baths. M = 2 × 105 samples were used, with the data distributed
over 200 bins of the width δ = 3.49 × 10−8/γm for original baths
and δ = 3.92 × 10−8/γm for modified baths. (d) Estimated c.c.d.f.’s
of the echo decay time T2 for the original (blue line) and modified
(red line) baths. Bin parameters are the same as in (c). Statistics of T2

shows the same trends as the fidelity F . The fraction of high-quality
qubits, with the decay time T2 � 4 × 10−6/γm, increases by a factor
of 7.5 upon removal of two exceptional TLFs.

In this regime, we see the same qualitative features as
above. Figure 8(a) shows high variability of the Ramsey de-
cay curves, and the drastic slowdown of the Ramsey decay
upon removal of two exceptional TLFs, whose switching rates
are closest to the mean coupling value v̄. Figure 8(b) shows
significant increase in the fraction of the qubits with high
fidelity (F > 0.9), by a factor of 7.5 in comparison with
the original baths. Figure 8(c) shows significant increase in
the fraction of the high-quality qubits, with T ∗

2 � 20/γm, by
factor of 14.2, upon removal of the exceptional TLFs. Sim-
ilar features are seen in Fig. 9 for the echo decay and the

FIG. 8. Improvements in the Ramsey decay upon removal of two
exceptional defects in the case of a normally distributed coupling
strengths. The bath contains n = 12 TLFs, and the ratio of the cut-
off rates γM/γm = 105, such that the TLF density d ≈ 1.04. The
coupling strengths are normally distributed with the mean v̄ = γm

and the standard deviation σv = γm/10. (a) Thirty samples of the
Ramsey decay curves obtained using the original (blue curves) and
the modified (red curves) baths. Each bath sample was modified by
removing two TLFs with the switching rates closest to v̄, i.e., with
the smallest rates γk . (b) Estimated c.c.d.f. of the Ramsey fidelity
F = F (t0), where t0 = 1/γm for the original (blue line) and the
modified (red line) baths. The fraction of high-fidelity qubits, with
F > 0.9, increases by a factor of 7.5 upon modification of the bath.
(c) Estimated c.c.d.f. of the Ramsey decay time T ∗

2 for the original
(blue line) and the modified (red line) baths. The fraction of high-
quality qubits, with T ∗

2 � 20/γm, increases by a factor of 14.2 upon
removal of the exceptional TLFs.

corresponding metrics, the echo decay time T2 and the echo
fidelity E .

VII. DYNAMICAL DECOUPLING OF THE QUBIT
FROM SPARSE BATHS

A very efficient way to protect the qubit from dephas-
ing is to employ the dynamical decoupling (DD) technique,
by applying a train of refocusing π pulses to the qubit
[31,65,74,76–79]. A natural question arises about the dy-
namics of a qubit coupled to a sparse bath in the DD
regime.

The calculation of the dephasing signal in that case can be
performed in the same manner as for the Ramsey and the echo
decays above. Assume that the qubit is prepared in the initial
state with mx = 1, my = mz = 0, and undergoes dephasing
under the action of the Hamiltonian (1). To be specific, let us
focus on the Carr-Purcell (CP) decoupling protocol, with ideal
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FIG. 9. Improvements in the echo decay upon removal of two
exceptional defects in the case of a normally distributed coupling
strengths. The bath contains n = 20 TLFs, and the ratio of the cut-
off rates γM/γm = 1012, corresponding to d ≈ 0.72. The coupling
strengths are normally distributed with the mean v̄ = 106γm and the
standard deviation σv = v̄. Each bath parameter sample was modified
by removing two TLFs with rates closest to v̄. (a) Thirty samples of
the echo decay curves obtained using the original (blue curves) and
the modified (red curves) baths. The slowdown of the echo decays
is clearly seen. (b) Estimated c.c.d.f. of the echo fidelity E = E (t0),
where t0 = 110−6/γm, for the original (blue line) and the modified
(red line) baths. The fraction of high-fidelity qubits, with F > 0.9,
increases by a factor of 2.9 upon modification of the bath. (c) Esti-
mated c.c.d.f. of the echo decay times T2 for the original (blue line)
and the modified (red line) baths. The fraction of high-quality qubits,
with T2 � 4 × 10−6/γm, increases by a factor of 3.9 upon removal of
the exceptional TLFs.

instantaneous decoupling pulses being applied to the qubit at
the moments of time t j = (2 j − 1)τ , with j = 1, 2, . . . , N ,
such that a total of N pulses is applied with the interpulse
delay 2τ . The value mx(t ) is measured at the moment of
time t = 2 N τ , i.e., with the delay τ after the last refocusing
pulse.

The shape of the CP signal decay for a qubit cou-
pled to a single TLF is also known [74], and has a
form

c(γ , v; t ) = 1

2
e−γ t

[
γ 2 cosh 2ατ − v2

α
√

γ 2 cosh2 2ατ − v2
(μN

+ − μN
−)

+μN
+ + μN

−

]
, (20)

FIG. 10. Qubit decoherence for sparse baths in the weak cou-
pling regime under different qubit control sequences. (a) Ramsey
decay, (b) Echo decay, (c) CP decoupling sequence with 20 pulses,
(d) CP decoupling sequence with 200 pulses. Each panel shows
the decay curves for the same thirty samples of the bath parameter
sets Bm, m = 1, . . . , 30, the samples were obtained with the same
procedure as in all other figures. Each bath contains n = 10 TLFs,
the ratio γM/γm = 105, corresponding to d = 0.87. The coupling
strengths are normally distributed with the mean v̄ = 0.5 · γm and
the standard deviation σv = 0.01 · γm. The decay curves show that
significant increase in the number of pulses leads to only moderate
improvement in the decoherence rate, but significantly reduces the
sample-to-sample variability.

where

μ± = γ

α
[sinh 2ατ ±

√
cosh2 2ατ − v2/γ 2]. (21)

with α = (γ 2 − v2)
1
2 . The CP signal decay curve for a bath

of n independent TLFs is a product of the individual decay
factors

C(B; t ) =
n∏

k=1

ck (t ), (22)

where ck (t ) ≡ c(γk, vk ; t ).
The corresponding decoherence curves for sparse baths in

the weak coupling regime, with v̄ < γm and small dispersion
σv , are shown in Fig. 10. The results are very surprising:
improvements in the decoherence time are rather modest,
even for 200 decoupling pulses. Instead, the sample-to-sample
variability, so pronounced in the Ramsey and in the echo
decays, is greatly reduced by the CP sequence. Besides, the
overall decay curve acquires Gaussian form, in contrast with
the Ramsey and the echo decays, having a well-pronounced
exponential form.

To understand this strange behavior, we notice that in the
limit of very large number of pulses N , shown in Fig. 10(d),
and small couplings vk � γk , the role of the terms μN

− is

033175-11



M. MEHMANDOOST AND V. V. DOBROVITSKI PHYSICAL REVIEW RESEARCH 6, 033175 (2024)

negligible, while the factor multiplying the term μN
+ inside the

square brackets of Eq. (20) is close to 2. Thus the individual
decoherence factor for a single TLF has an approximate form

c(γ , v; t ) ≈ e−γ tμN ,

ln μ ≈ 2γ τ − v2 2γ τ − tanh(2γ τ )

2 γ 2
, (23)

such that

c(γ , v; t ) ≈ exp

[
−v2t2

2N2
Q(γ τ )

]
,

Q(γ τ ) = 2γ τ − tanh(2γ τ )

γ 2τ 2
. (24)

By taking the product over all TLFs, we obtain the result

C(B; t ) = exp

[
− v̄2t2

2N2

∑
k

Q(γkτ )

]
(25)

where we took into account that the dispersion of the coupling
strengths is small, σv � v̄, such that vk ≈ v̄.

Now let us look closer at the sum
∑

k Q(γkτ ) in the situa-
tion of a sparse bath, where γk are distributed log-uniformly
over a wide range of values, such that γ τ varies in a broad
range. We follow the same approach as in Sec. III, introduc-
ing the quantities ζk = ln γk , which are distributed uniformly
over the range [ln γm, ln γM]. In terms of the parameters ζ ,
the function in question is expressed as Q(γ τ ) = Q0(ζ + θ ),
where we introduced the quantity θ = ln τ and the function

Q0(x) = 2 ex − tanh(2ex )

e2x
. (26)

The function Q0(x) has a bell-like shape, with a broad peak
stretching from ∼ − 2 to ∼2, while the quantity ζ is dis-
tributed uniformly over the range w = ln 105 ≈ 12 (the value
used in Fig. 10). That is, more than 1/3 of all TLFs contribute
to decoherence with comparable effect. At the same time, the
value of θ changes weakly (logarithmically) as t increases,
and does not significantly shift the relevant range of ζ . As a
result, we restore, to a noticeable extent, the Gaussian regime
of decoherence, when many TLFs contribute to decoherence
with similar effect. Equation (25) demonstrates how, in this
regime, the overall form of the signal decay acquires Gaussian
form. We note that similar effect was observed for a single
TLF [74,76], but the non-Gaussian features of a sparse bath
of TLFs were not studied there.

Detailed investigation of various regimes of the signal
decay for a dynamically decoupled qubit interacting with a
sparse bath of TLFs is beyond the scope of the present paper,
and will be studied in a separate publication. However, it is
important to spell out an essential observation made here,
namely, that the behavior of the qubit coupled to a sparse
bath of TLFs and subjected to a train of closely spaced control
pulses is rather different from Ramsey or echo decay. In the
latter cases, there are only one or two exceptional TLFs,
which almost fully control the decoherence dynamics; these
TLFs are determined by the relation between the switching
rate γ and the coupling strength v. In the case of dynamical
decoupling, the effect of a given TLF, weakly coupled to the
qubit, is determined instead by the relation between γ and the

delay τ , and this effect, quantified by the function Q0(x), is
not very selective, restoring Gaussian decoherence regime.

VIII. SUMMARY AND CONCLUSIONS

In this work, we investigated dynamics of dephasing of a
qubit coupled to a bath of TLFs producing 1/ f noise. We
focused on the case of sparse bath, where the number n of
TLFs, although large, is still much smaller than the log-width
w = ln [γM/γm] of the range [γm, γM] of the switching rates γ ,
such that the density d = n/w is small. We have shown that
this bath possesses a number of very unconventional features.
In order to separate the effect of the TLF density, we con-
sidered the baths where the coupling strengths of individual
TLFs to the qubit are comparable, or have moderate dispersion
[Eq. (19) and Fig. 9], such that the main (or sometimes the
only) difference between different baths is the set of specific
values of the switching rates of individual TLFs.

(i) We have demonstrated, both analytically and numeri-
cally, that the Gaussian regime of decoherence requires not
only a large number n � 1 of TLFs in the bath, as one might
expect, but also large density d . For small d , even with a very
large number of TLFs, the dynamics of decoherence is very
far from Gaussian regime.

We remind the reader that Gaussian regime does not nec-
essarily imply Gaussian form of the Ramsey or echo decay,
but describes the situation when the decoherence dynamics is
fully described by the first two moments of the random noise
B(t ) in Eq. (1), the mean 〈B(t )〉 and the correlation function
〈B(t )B(t + s)〉.

(ii) We have demonstrated, using direct analytical calcu-
lation, see Sec. III and Appendix, that the quantity Z that
controls the form of the Ramsey decay, is not distributed
normally even for large n, unless d is also large. In the situa-
tion when d � 1, the quantity Z has the distribution density
PZ (z) ∝ zd−1, and the normal distribution is recovered only
for d � 1.

This calculation is illustrated and confirmed by the nu-
merical simulations, and the nature of the transition from the
regime of sparse bath to the dense bath regime is explained in
detail.

(iii) We have demonstrated, using numerical simulations,
that the noise spectral density, or, equivalently, the correlation
function of the noise B(t ) produced by the bath of TLFs,
shows very little sample-to-sample variability for different
sets of parameters B describing individual TLFs comprising
the bath. For both dense and sparse baths, the noise spectra
S(B; ω) demonstrate very similar 1/ f form (with cutoffs at
γm and γM), with little variation in the magnitude or in shape,
for different sets B.

(iv) In contrast, the Ramsey decay curves in the case of
sparse baths show significant sample-to-sample variability.
The same level of large variability is seen in the echo decay
curves produced using different bath parameter sets. However,
dense baths do not show such a variability, with different sam-
ples producing very similar Ramsey and echo decay curves.

(v) Therefore we demonstrate, using both analytical and
numerical tools, that the situation of sparse baths is not
described by the conventional theory, which predicts direct re-
lation between the noise power spectrum S(ω) ∝ 1/ω and the
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dynamics of decoherence, i.e., the form of the Ramsey decay,
echo decay, and the coherence decay for various dynamical
decoupling sequences.

(vi) We have demonstrated, using both analytical and nu-
merical tools, that the Ramsey decay and the echo decay in the
case of sparse baths are almost completely controlled by the
parameters of only one or two TLFs, called here exceptional
TLFs. We identified these fluctuators for both Ramsey and
echo decoherence.

We have directly demonstrated the role of these special
TLFs by removing them from the bath in our simulations, and
comparing the Ramsey and the echo decay curves before and
after removal. We have explicitly shown that removal of the
exceptional TLFs lead to significant slowdown of the Ramsey
and the echo decay. We have shown that this happens for
both individual bath parameter samples, and for ensembles of
sparse baths.

We emphasize here that the strong effect of the exceptional
TLFs on decoherence is not caused by their particularly strong
coupling to the qubit. It is caused by the special values of their
switching rates, and therefore represents an effect caused by
the intrinsic dynamics of the bath.

(vii) We have shown that the removal of the excep-
tional TLFs can greatly improve the coherence properties of
the qubit ensembles. To characterize this improvements in
the case of Ramsey decay, we used the decay time T ∗

2 and
the qubit fidelity (defined as the value of the Ramsey decay
function F (t0) at a certain small value of time t0). We have
shown that the fraction of high-quality qubits, where these
metrics exceed certain threscholds, increases by a factor of
3–4, and sometimes even by a factor of 18, upon removal of
only two exceptional TLFs from the baths comprising a total
of 10–20 fluctuators.

Similar study was performed for the echo decay, and sim-
ilar conclusions were reached. The echo decay time T2 and
the echo fidelity (defined in analogy with the Ramsey fidelity)
were used as the metrics. The simulations have shown that the
fraction of high-quality qubits increases by a factor of 3–4,
and sometimes even by a factor of 18, upon removal of only
two exceptional TLFs from the baths comprising a total of
10–20 fluctuators.

We note that it has been demonstrated in experiments
[45,53,55] that individual defects can be deactivated in the
already fabricated devices by adjusting the working point
parameters. If the exceptional TLFs, identified in this work,
can be deactivated or avoided at the fabrication stage, that
would greatly help in creation of large-scale qubit registers
with uniformly high quality of the qubits. We do not discuss,
how realistic this possibility is; such a verdict is to be made by
experimentalists, material scientists and engineers. We point
out that our theoretical investigation demonstrated great po-
tential benefits of removal of only 1–2 exceptional TLFs from
a bath made of many fluctuators.

(viii) We have demonstrated that our findings hold in the
situation where the coupling strengths of individual TLFs
have finite dispersion. We have considered the normally dis-
tributed coupling strengths, and saw the same effects even
when the standard deviation σv was equal to the mean v̄

coupling strength. Thus we have confirmed that the unusual
effects associated with the sparse baths are not artifacts of

the particular model, but represent real effects, which can be
observed in real devices.

(ix) We have briefly studied more complex modes of
control, investigating dephasing of a qubit coupled to a
sparse bath and subjected to a train of closely spaced decou-
pling pulses (Carr-Purcell sequence). We have demonstrated
that, contrary to possible expectations, a large number of
pulses leads to rather modest improvements in the decoher-
ence rate. However, it greatly reduces the sample-to-sample
variability in the signal decay curves, which seem to ac-
quire Gaussian shape. We provided an analytical explanation
for this effect. More detailed investigation devoted to DD
of qubits coupled to sparse baths of TLFs is deferred to
subsequent work.

Therefore our work has provided several important in-
sights: firstly, into the nature of the Gaussian and non-
Gaussian regimes in the baths made of many TLFs and
exhibiting 1/ f type of noise; secondly, into the role played by
individual defects in the baths comprised of many fluctuators;
and thirdly, into the possible ways of improving the quality
of the solid-state qubits. Moreover, our work offers a pos-
sible path towards bridging conventional theories, ascribing
decoherence of semi- and superconducting qubits to the baths
made of many defects, and the recently suggested theories
[9,28,48] emphasizing the role of individual defects.
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APPENDIX: RAMSEY DECAY OF A QUBIT COUPLED
TO A SPARSE BATH

In order to gain analytical insight into the unusual features
of the Ramsey decay of a qubit coupled to a sparse bath, we
consider the situation when all TLFs are motionally narrowed,
with γk � v̄ for all k = 1, . . . , n. In that case, the Ramsey
decay has the form [see Eqs. (12) and (14)]

F (t ) ≈ exp (−Z v̄2t/2), (A1)

where

Z =
n∑

k=1

γ −1
k , (A2)

such that we should analyze the statistics of the quantity Z ,
and the region of most interest is the region of small Z , where
its contribution to the function F (t ) is the largest. We focus
primarily on the situation of a sparse bath, where the density
of TLFs is small, d � 1.

For convenience, let us denote xk = γ −1
k . Since we assume

that γk are independent identically distributed (i.i.d.) vari-
ables, so are the quantities xk , and each xk has exactly the same
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log-uniform p.d.f. P(xk ) as the rate γk , namely,

P(x) = 1

w x
, x ∈ [xm, xM ], (A3)

with the width w = ln [γM/γm] and sharp cutoffs at xM =
1/γm and xm = 1/γM ; note that the lower cutoff of xk is the
upper cutoff of γk and vice versa, such that w = ln [xM/xm].

In order to find the p.d.f. PZ (z), we use the slightly modified
Markov method as presented in Ref. [80]. Since

Z =
n∑

k=1

xk, (A4)

its p.d.f. can be written as

PZ (z) =
∫

δ(Z − z)
n∏

k=1

P(xk )dxk

=
∫

δ

(
n∑

k=1

xk − z

)
n∏

k=1

P(xk )dxk . (A5)

Using the representation

δ(Z − z) = 1

2π

∫ +∞

−∞
exp [iλ(Z − z)] dλ, (A6)

we find that

PZ (z) = 1

2π

∫ +∞

−∞
exp [−iλz] Pn(λ) dλ, (A7)

where

Pn(λ) =
∫ n∏

k=1

eiλxk P(xk )dxk =
[∫

eiλx P(x)dx

]n

=
[

1

w

∫ xM

xm

eiλx

x
dx

]n

, (A8)

since all xk are i.i.d. variables with the p.d.f. given by Eq. (A3)
We are interested in macroscopically (or at least meso-

scopically) large baths, with n � 1, but finite (and small)
density d . Formally, this means that we consider the limit
n → ∞ and w → ∞ with fixed d = n/w. In this limit, we
must be careful with the integral (A8) because of the asso-
ciated singularities, which determine its behavior, especially
in non-Gaussian regimes, beyond the region described by the
central limit theorem [81], see detailed discussion in Ref. [82].

Therefore we are employing the method suggested in
Ref. [81] and rewrite the integral as

Pn(λ) =
[

1 −
∫ (

1 − eiλx
)
P(x)dx

]n

=
[

1 − 1

w

∫ xM

xm

1 − eiλx

x
dx

]n

(A9)

using the fact that
∫

P(x)dx = 1. In the limit n → ∞ and
w → ∞, we can rewrite the latter integral as

Pn(λ) = e−d Y (λ), Y (λ) =
∫ xM

xm

1 − eiλx

x
dx, (A10)

using the fact that 1/w = d/n and the limit (1 − a/n)n →
exp (−a) at n → ∞.

Now we need to address the issue of the limits: the physi-
cally meaningful situation is when xm → 0 and xM → ∞. The
lower limit, xm → 0, can be eliminated in a rather straight-
forward manner, by expressing the integral Y (λ) via the
exponential integral function Ein(z) [83,84], which is analytic
on the whole complex plane and vanishes at z → 0. Therefore,
we replace xm by 0, obtaining

Y (λ) =
∫ xM

0

1 − eiλx

x
dx. (A11)

The upper limit is to be kept as is; there are two reasons
for that. The first reason is quite formal, the function Y (λ)
diverges at xM → ∞. The second reason is more subtle, being
associated with the appearance of the non-Gaussian regime,
and will be discussed and clarified later.

We consider the limit of xM → ∞, where asymptotic be-
havior of Y (λ) = Y1(λ) + iY2(λ) is known [83,84]:

Y1(λ) = ln (γE xM |λ|) + O(e−xM |λ|),
(A12)

Y2(λ) = − π

2
sgnλ + O(e−xM |λ|),

where γE is the Euler-Mascheroni constant and sgnλ is the
sign function. Omitting the exponentially small terms in the
expressions above, we have

eY (λ) = −iγE xMλ,

e−d Y (λ) = (−iγE xMλ)−d = (γE xM |λ|)−d ei πd
2 sgnλ. (A13)

Thus we obtain

PZ (z) = 1

2π

∫ +∞

−∞
e−iλze−d Y (λ) dλ

= 1

2π

∫ +∞

−∞
e−iλz(γE xM |λ|)−d ei πd

2 sgnλ dλ. (A14)

We immediately see that the integral has the singularity λ−d ,
which is a weak integrable singularity for d � 1, but becomes
strong for d � 1.

For dense baths with d � 1, behavior of the integral (A14)
is controlled by this singularity, i.e., by the region where λ

is small. This is precisely the region where we replaced the
finite quantity xm = 1/γM by zero. Now we see that such a re-
placement is allowed only for d < 1, where λ−d is integrable,
and is prohibited otherwise, especially for large values of d . In
fact, it is not difficult to repeat the calculations above keeping
xm finite and consider the asymptotics d → ∞, practically
reproducing the classical calculations presented in Ref. [80].
The answer is precisely what one would anticipate, the normal
distribution PZ (z). Thus the Gaussian part of the function
PZ (z) is controlled by the function Pn(λ) in the region of small
λ, and this is what determines the form of PZ (z) for d � 1.

However, as we already mentioned, this part is negligible
for small d , and in that case the function PZ (z) is controlled
by the regions where λ is large. Continuing the last line
of Eq. (A14), and considering the regions λ > 0 and λ < 0
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FIG. 11. Histograms (blue) estimating the p.d.f. of PZ (z) for different values of the bath density d and the number n of TLFs. Solid black
curves show the analytically obtained dependence PZ (z) ∝ zd−1. The p.d.f.’s are evaluated using 108 samples of Z .

separately, we obtain

PZ (z) = 1

π

∫ +∞

0
(γE xMλ)−d cos

(
λz − πd

2

)
dλ, (A15)

and, with the change of variable ν = λz, we find

PZ (z) = 1

π

zd−1

(γE xM )d

(
Gc cos

πd

2
+ Gs sin

πd

2

)
, (A16)

where [85]

Gc =
∫ ∞

0

cos ν

νd
dν = cos

π (1 − d )

2
�(1 − d ),

Gs =
∫ ∞

0

sin ν

νd
dν = sin

π (1 − d )

2
�(1 − d ). (A17)

where �(·) is the Gamma function, and we obtain the answer
we were looking for

PZ (z) = zd−1 �(1 − d )

π

cos π (2d−1)
2

(γE xM )d
, (A18)

or, simply,

PZ (z) ∝ z−(1−d ). (A19)

The essence of the calculations performed in this Ap-
pendix can be extracted, producing the simplified qualitative
argument presented in Sec. III of the main text.

The result PZ (z) ∝ z−(1−d ) is confirmed in numerical cal-
culations, where n values of γk were sampled from the
distribution (A3) and the value Z = ∑

k γ −1
k was calculated.

Performing this sampling 108 times, the results shown in
Fig. 11 were obtained, demonstrating very good agreement
with the analytical calculations even at rather large density
d = 0.5.

Note that the analytical calculations above have been per-
formed in the limit n � 1, and assuming that xm � 1 and
xM � 1. In numerical simulations, with finite values of n, xm

and xM , there are no values of Z in the region Z < n · xm.

Besides, the p.d.f. PZ (z) differs from the analytical prediction
for Z > (n − 1)xm + xM : this region corresponds, in essence,
to a bath made of n − 1 TLFs, with the remaining TLF having
x = xM . Formally, Eq. (A11) needs to be corrected in that
region of Z . The boundary of the region Z > (n − 1)xm + xM

is marked by a small red arrow in each panel of Fig. 11, and a
cusp in PZ (z) is clearly seen there.

These edge effects of finite xm = γ −1
M and xM = γ −1

m are
irrelevant in the limit considered here. However, they play
an important role as the bath becomes denser, i.e., with in-
creasing d . We pointed out above that the integral PZ (z) for
d � 1 is dominated by the region where λ is small, such
that the finite value of xm becomes crucial. In that case, as
d increases, the region Z > n xm (where the analytical cal-
culations above belong) starts to overlap strongly with the
region Z > (n − 1)xm + xM , and with other similar regions,
namely (n − 2)xm + 2xM > Z > (n − 1)xm + xM [where the
next cusp in PZ (z) occurs], etc. As all these regions overlap
more and more, the shape of PZ (z) changes, and finally, for
d � 1, the function PZ (z) acquires Gaussian form, corre-
sponding to the limit expected from the central limit theorem.
This is illustrated in Fig. 12. Note that, as d increases,
the characteristic values of the quantity Z change signifi-
cantly; in order to make the comparison more clear, Fig. 12
shows the estimated p.d.f.’s of the rescaled quantity, Z̄ =
(Z − μZ )/σZ , where μZ and σZ are the mean and the standard
deviation of Z .

Finally, we quickly discuss the region of the actual bath
parameters, where our analytical calculations and arguments
are applicable. The approximation fk ≈ exp (−v̄2tγ −1

k /2) for
the Ramsey decay under the action of the kth TLF is valid
when t � γ −1

k and v � γk . Since the values of γk are dis-
tributed log-uniformly, roughly half of the TLFs have γ < γC ,
where γC = √

γm · γM . Thus roughly half of the TLFs are
in the regime of motional narrowing when time t becomes
sufficiently large, t � tC = γ −1

C . Before the time moment tC
is reached, the Ramsey decay has quasi-static character, with
fk ≈ exp (−v̄2t2/2). For our calculations to be valid, most of
the Ramsey decay should happen in the regime of motional
narrowing, such that the initial quasistatic decay should be
negligibly small, i.e.,

n∏
k=1

exp
( − v̄2t2

C/2
) = exp

( − nv̄2t2
C/2

) ≈ 1, (A20)
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FIG. 12. Qualitative changes in the form of the p.d.f. PZ (z), taking place for increasing density d . To make the qualitative comparison
more clear, the values of Z were rescaled, such the figures show the p.d.f.’s of the rescaled quantity Z̄ = (Z − μZ )/σZ , where μZ and σZ are
the mean and the standard deviation of Z , respectively. Each probability density is estimated using 108 samples of Z . The number of TLFs,
n = 20, remains the same while d decreases from d = 30 in (a), to d = 1 in (b) and d = 0.9 in (c), down to d = 0.8 in (d). For large density,
d = 30, the function PZ̄ (z̄) practically coincides with the normal distribution (solid black curve).

which leads to the requirement

v̄ � t−1
C /

√
n =

√
γmγM/n. (A21)

This requirement is easily satisfied, since our analysis of the
Ramsey decay is performed for the baths where γM = γmen/d

with d � 1 or even d � 1. In that regime, in order to satisfy
the requirement (A21), we need only

v̄ � γm · en/(2d )/
√

n, (A22)

while en/(2d )/
√

n is a large quantity at n ∼ 10 and d � 1.
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