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A widely adopted computational protocol in contemporary materials research is to first relax materials’
geometries using semilocal density functional approximations (DFA), and then determining their electronic
band structures using the more expensive hybrid functionals. This procedure often works well, as the popular
semilocal DFAs, such as the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, yield rather
good geometries for a wide range of materials. However, here we show that, for some of the lead-free halide
double perovskites (HDPs) Cs2BB′X6 (B = Ag+, Na+; B′ = In3+, Bi3+; X = Cl−, Br−), the validity of this
common practice is questionable. We find that, for these HDPs, the geometrical structures, in particular, the
B(B′)-X bond lengths predicted by PBE show large deviations from the experimental values. Additionally, the
band gaps of some of these materials (specifically, the In-based HDPs) are sensitive to the B(B′)-X bond lengths.
As a consequence, the band gaps obtained using the hybrid functionals (such as the Heyd-Scuseria-Ernzerhof
functional) based on the PBE geometries can still be quite off, in particular, for HDPs with B′ = In3+. The
situation is significantly improved by using hybrid functionals with tuned portion of exact exchange, based on
the geometries determined consistently under the same level of theory. The successes and failures of several
popular exchange-correlation (XC) functionals are traced back to the so-called delocalization error, and can
be quantitatively analyzed and understood via a three-atom linear-chain B-X -B′ molecular model. Finally, our
findings provide a practical guide for choosing appropriate XC functionals for describing HDPs and point to a
promising path for band structure engineering via doping and alloying.
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I. INTRODUCTION

Hybrid perovskites (HPs) exhibit excellent transport and
optical properties, such as high carrier mobility [1], long car-
rier diffusion lengths [2–5], and strong absorption coefficients
[6]. The power conversion efficiency of HP solar cells has
reached 26.1% [7]. However, the toxicity and instability issues
of HPs still hinder their widespread applications.

Lead-free halide double perovskites (HDPs) with chemi-
cal formula A2BB′X6 have been proposed as environmentally
friendly alternatives [8–13] to HPs with long working life-
times, and they have been applied in various optoelectronic
devices, such as LEDs [9,12], photocatalysts [14], and solar
cells [15–18]. For most HDPs, A is chosen as a Cs+ or organic
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cation with a large ionic radius to stabilize the crystal struc-
ture, while X represents a halide ion. B and B′ are occupied
by monovalent and trivalent elements, respectively, such as
Ag+, Na+ and Bi3+, In3+. Compared to conventional HPs,
most HDPs have large band gaps which limit their appli-
cations in the visible light region. The band structures can
be engineered by chemical substitution, alloying, and doping
strategies [9,10,12,13,19]. Density functional theory (DFT) is
a powerful tool to study the geometric and electronic struc-
tures of these materials, and therefore may provide useful
guidance for band-structure engineering of HDPs.

The Perdew-Burke-Ernzerhof (PBE) generalized gradient
approximation (GGA) functional [20] is one of the most
widely used functionals for calculating the structural and elec-
tronic properties of HDPs. However, it usually underestimates
the band gaps substantially, which is characteristic of the
Kohn-Sham (KS) scheme under local and semilocal approx-
imations. Hybrid functionals mixed with a portion of exact
exchange are able to reduce the many-body self-interaction
(or delocalization) errors and, thanks to the generalized KS
scheme, produce band gaps in much better agreement with
experimental values. Furthermore, many-body perturbation
theory (MBPT) formulated under the GW approximation and
Bethe-Salpeter equation has been applied to this type of
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material [9,21,22], which is considered to be capable of
providing start-of-the-art accuracy for electronic and optical
properties. In previous first-principles calculations, the elec-
tronic structures of the HDPs calculated by hybrid functionals
and/or MBPT are usually performed using the geometries
obtained by the PBE functional [15,19,23,24]. Such a strategy,
although computationally efficient, may be unreliable, as in
some cases the delocalization errors can alter the potential
energy surface substantially, leading to inaccurate geometries
[25]. Furthermore, it has been shown that the electronic struc-
tures of HDP can be sensitive to their geometries [8,10,11].
Understanding the effect of delocalization errors on the ge-
ometries of HDPs and, subsequently, on their band structures,
will help us choose more appropriate computational protocols.

In this paper, we systematically investigate the geomet-
rical and electronic properties of five HDPs (Cs2AgInCl6,
Cs2NaInCl6, Cs2AgBiCl6, Cs2AgBiBr6, and Cs2NaBiCl6) us-
ing several popular functionals (PBE, PBEsol [26], DFT+U
[27], strongly constrained and appropriately normed func-
tional [28], and screened hybrid HSE-type functionals with
different mixing parameters [29,30]). We quantitatively assess
the size of the delocalization errors in terms of an error func-
tion, based on which we find that the sensitivity of electronic
structure of HDPs to the bond length indeed stems from the
delocalization errors. Among these functionals, only hybrid
functionals mixed with an appropriate amount of exact ex-
change can yield reliable geometries. This analysis provides
a practical guide for a DFT user to choose appropriate func-
tionals for studying and designing HDPs.

II. METHODS

The DFT calculations in this paper are carried out us-
ing the ATOMIC-ORBITAL BASED AB-INITIO COMPUTATION AT

USTC (ABACUS) package [31–33]. As mentioned above, to
systematically analyze the performance of different types of
functionals for the HDP materials, several popular function-
als, including PBE, PBEsol [26], DFT+U [27], SCAN [28],
and HSE [29,30], with α = 0.25 and α = 0.4, are used in our
calculations. Here, we use different mixing parameters in HSE
to investigate the impact of varying ratios of exact exchange
on both the geometries and electronic structures. DFT+U
[34], SCAN [35], and HSE [36–38] have recently been imple-
mented in ABACUS, based on the numerical atomic orbital
(NAO) basis set framework. Hybrid functional calculations
are generally much more expensive than semilocal func-
tionals due to the expense of evaluating the exact-exchange
component. The canonical scaling for evaluating the exact-
exchange contribution is O(N4), with N being a measure
of system size. For NAO basis sets, by exploiting the strict
spatial locality of NAOs and the physically decay behavior
of density matrix, one can design linear-scaling algorithm
for exact-exchange calculations, leading to efficient hybrid
functional calculations, as demonstrated in Ref. [37]. This
enables routine hybrid functional calculations, including ge-
ometry relaxations, for systems containing hundreds of atoms
or even larger. Such types of calculations are still rather chal-
lenging for standard plane-wave-based implementations that
are readily available in the present days. It should be noted that
the speedup brought by NAO-based implementation does not

FIG. 1. Crystal structure of A2BB′X6 with bond lengths dB−X and
dB′−X . The image on the right provides a frontal view of the HDP
crystal structure.

come with a sacrifice of numerical accuracy, as demonstrated
in Refs. [36,38].

If not stated otherwise, in this paper HSE means
the standard HSE with α = 0.25, while HSE(0.4) means
that HSE with an enlarged mixing parameter α = 0.4.
For Ag-contained perovskites (Cs2AgInCl6, Cs2AgBiCl6,
Cs2AgBiBr6), the DFT+U calculations are performed where
a U value of 5.0 eV is adopted for Ag-d orbitals. The
spin-orbit coupling (SOC) effect is taken into account in band-
structure calculations, when necessary. The high-symmetry
path in the Brillouin zone is chosen as L-G-X-W-L-K-G, and
the corresponding coordinates are shown in Table S8.

We adopt the SG15 [39] optimized norm-conserving
Vanderbilt-type pseudopotentials [40], where the valence
electron configurations for different elements are set as
follows: Cs : 5s25p66s, Ag: 4s24p64d105s, In: 4d105s25p,
Cl: 3s23p5, Bi: 5d106s26p3, and Br: 4s24p5. The second-
generation NAO bases, namely, the DPSI bases sets
[41], are used in all calculations. More specifically, the
double-zeta plus polarization NAO basis sets, namely, Cs
with [4s2p1d], Ag with [4s2p2d1 f ], In with [2s2p2d],
Cl with [2s2p1d], Na with [4s2p1d], Bi with [2s2p2d], and
Br with [2s2p1d], are used. The numerical precision that
one can achieve with these optimized NAOs, accessible on
the ABACUS website [33], has been extensively tested [41].
Additionally, 100 Ry energy cutoff is used in ABACUS for the
Hartree potential calculation and for determining the uniform
quadrature grid. An 8 × 8 × 8 �-centered Monkhorst-Pack
k-point mesh is used for self-consistent calculations, and a
12 × 12 × 12 k-point mesh is used to calculate the projected
density of states (PDOS), which serves to characterize the dis-
tribution of electronic states at various energies (states/eV).

III. RESULTS

A. First-principles calculations

Figure 1 depicts the crystal structure of A2BB′X6 HDPs,
which has the Fm3m space group symmetry. The B and B′
ions are located alternately in the center of the AX6 octahedra.
The B-X (B′-X ) bond length, i.e., the distance between B (B′)
and X in the same octahedral unit is marked as dB−X (dB′−X ).

We first calculate the lattice constants of the five HDPs
using the PBE, HSE, and HSE(0.4), and the obtained re-
sults are presented together with the experimental values in
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TABLE I. Comparison of the lattice constants a0 (in Å) obtained by PBE, standard HSE (α = 0.25), and HSE with α = 0.4 [i.e., HSE(0.4)].
Exp: experimental lattice constants. MAE: mean absolute error. RE: relative error. If there are multiple experimental values, their average value
is employed to estimate RE and MAE.

PBE HSE HSE(0.4)

a0 RE a0 RE a0 RE Exp

Cs2AgInCl6 10.678 1.9% 10.631 1.4% 10.564 0.8% 10.481 [8]
Cs2NaInCl6 10.711 1.8% 10.670 1.4% 10.599 0.7% 10.514 [43], 10.534 [10]
Cs2AgBiCl6 11.106 3.1% 11.002 2.1% 10.946 1.6% 10.777 [19,44]
Cs2AgBiBr6 11.447 1.8% 11.440 1.7% 11.380 1.2% 11.250 [45]
Cs2NaBiCl6 11.036 1.8% 11.028 1.7% 10.966 1.2% 10.839 [46], 10.842 [10]
MAE 0.221 0.180 0.117

Table I. The lattice constants are determined by fitting to the
Birch-Murnaghan [42] equation of states. The mean absolute
errors (MAEs) of the lattice constants predicted by the PBE,
HSE, and HSE(0.4) with respect to the experimental values
are 0.221 Å, 0.180 Å and 0.117 Å, respectively. As can be seen
from Table I, the lattice constants obtained via HSE(0.4) are
in much better agreement with experiment than those yielded
by PBE and HSE.

We then compare the equilibrium bond length d0
B−X as

determined by the PBE, HSE, and HSE(0.4) functionals. To
reduce the degrees of freedom and to facilitate the comparison
with the experimental results, we fix all the lattice constants at
the experimental values. As such, the distance between B and
its adjacent B′ atom is also fixed. We then adjust the position
of X atoms along the B-B′ direction to alter dB−X and dB′−X ,
resulting in a series of modified geometries. As such, increas-
ing the bond length dB−X means decreasing the bond length
dB′−X , whereby the symmetry is maintained. We determine
the equilibrium bond length according to the minimum of the
energy-versus-distance [E (d )] curve for each solid as yielded
by different functionals.

The equilibrium bond lengths d0
B−X for the five HDPs as

determined using the above procedure are listed in Table II, in
comparison with the experimental values. It can be seen that
PBE significantly underestimates the B-X (with B = Na, Ag)
bond lengths [amounting to significantly overestimating the
B′-X (B′ = In, Bi) bond lengths], yielding a MAE of 0.038 Å.
HSE predicts much better B-X bond lengths with a MAE of
0.021 Å, while HSE(0.4) gives the lowest MAE of 0.010 Å.
We also check the influence of dispersion corrections, which
can improve the description of structural properties in case
van der Waals interactions are important. To this end, we

perform PBE-D3 [47] calculations and find that the dispersion
correction has marginal influence on the determined bond
length and lattice constant. For example, for Cs2AgInCl6, the
PBE-D3 lattice constant is 10.654 Å, whereas the PBE value
is 10.678 Å, as shown in Table I. Moreover, the Ag-Cl bond
length is determined to be 2.683 Å by PBE-D3, whereas the
corresponding PBE value is 2.687 Å, as listed in Table II.
These results indicate that vdW interactions doesn’t play a
significant role in HDPs.

To examine how the geometrical structure affects the elec-
tronic structure in the HDP materials, we calculate the band
gap as a function of the B-X bond length using the aforemen-
tioned functionals: PBE, PBEsol, DFT+U , SCAN, HSE, and
HSE(0.4). Figure 2(a) presents the results for Cs2AgInCl6 as
an illustrating example, which shows that the calculated band
gaps from all functionals, despite being of different sizes,
increase linearly with increasing Ag-Cl bond length, dAg−Cl.
As a side remark, our calculations indicate that Cs2AgInCl6
shows a negligible SOC effect on the band structure and,
therefore, we only show the results without including SOC.
As can be seen from Fig. 2(a), the band gap given by HSE(0.4)
at the PBE Ag-Cl bond length (2.687 Å) is approximately
2.671 eV, which is substantially smaller than the HSE(0.4)
band gap obtained at its own Ag-Cl bond length (2.724 Å),
3.023 eV. Obviously, the latter is in much better agreement
with the experimental value (3.3 eV), marked by the red tri-
angle in the figure. This result clearly shows that calculating
the band gaps using HSE-type functionals on the geometry
obtained by the PBE functional, which is a commonly adopted
computational procedure, may still significantly underesti-
mate the band gap. PBEsol, a revised PBE functional for
solids, yields a similar optimized Ag-Cl bond length (2.684 Å)

TABLE II. Comparison of the equilibrium bond lengths d0
B−X (in Å) obtained by PBE, standard HSE (α = 0.25), and HSE with α = 0.4

[i.e., HSE(0.4)]. Exp: experimental B-X bond lengths. MAE: mean absolute error. RE: relative error.

PBE HSE HSE(0.4)

d0
B−X RE d0

B−X RE d0
B−X RE Exp

Cs2AgInCl6 2.687 −1.7% 2.709 −0.9% 2.724 −0.3% 2.733 [8]
Cs2NaInCl6 2.716 −1.2% 2.733 −0.5% 2.745 −0.1% 2.748 [43]
Cs2AgBiCl6 2.673 −1.3% 2.689 −0.7% 2.696 −0.4% 2.707 [19,44]
Cs2AgBiBr6 2.771 −1.1% 2.787 −0.6% 2.798 −0.2% 2.803 [45]
Cs2NaBiCl6 2.708 −1.7% 2.721 −1.2% 2.734 −0.7% 2.754 [46]
MAE 0.038 0.021 0.010
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FIG. 2. (a) Band gaps of Cs2AgInCl6 with a lattice constant of
10.481 Å predicted by HSE(0.4), HSE, SCAN, DFT+U , PBE, and
PBEsol as a function of bond length dAg−Cl. The experimental struc-
ture and band gap are obtained from Ref. [8]. (b), (c) Band structure
and partial DOS of Cs2AgInCl6 with d0

Ag−Cl calculated using the
HSE(0.4) functional.

as PBE, but slightly smaller band gap (0.682 eV). Moreover,
DFT+U calculations were also performed for this system.
The DFT+U method introduces an on-site Hubbard U cor-
rection to the DFT Hamiltonian and, here, a U value of 5 eV
is adopted for the Ag-d orbitals. However, the calculated bond
length (2.693 Å) and band gap (1.108 eV) are not appreciably
improved compared to PBE. This is understandable, as the
major contributions to the band edges of Cs2AgInCl6 are not
of Ag d character, but stem from Cl p and In s orbitals, as
can be seen from the partial DOS (PDOS) plot presented in
Fig. 2(c). Thus, it is not surprising that applying the Hubbard
U correction to the semicore Ag d states does not alter the
band gap of Cs2AgInCl6 significantly.

The recently developed meta-GGA SCAN functional [28]
has shown promising performance for a wide range of appli-
cations [48,49]. Here we also applied SCAN to calculate the
band structure of Cs2AgInCl6. The obtained SCAN band gap
and bond length are noticeably better than the PBE, PBEsol,
and DFT+U results, but a severe underestimation of the band
gap by more than a factor of 2 persists. Finally, we per-
formed calculations using the standard HSE functional (with
α = 0.25), and the obtained band gap is halfway between the
results obtained by semilocal functionals and that given by
HSE(0.4). The HSE band gaps at PBE and HSE optimized
bond lengths (2.687 Å and 2.709 Å) are 1.93 eV and 2.14 eV,

respectively, yielding a difference of 0.21 eV in the band gaps
obtained at these two geometries. This is smaller than the
corresponding value of 0.35 eV obtained between the PBE
and HSE(0.4) geometries, as it should be. These results reveal
that, although it is crucial to incorporate a portion of exact
exchange in the functional to yield quantitatively accurate
band gaps for HDPs, the proper amount is not a priori clear.
The default ratio α = 0.25 is not always the best choice.

Figure 2(b) shows the band structure of Cs2AgInCl6 cal-
culated using the HSE(0.4) functional, with dAg−Cl also
determined by HSE(0.4). The corresponding PDOS are shown
in Fig. 2(c). The lowest conduction band of Cs2AgInCl6 is
very dispersive, which is dominated by the delocalized Cl
3p and In 5s electrons, but also contains some contributions
from the Ag 5s states. The dispersive bands suggest that the
electrons have very small effective masses (Table S2), and
therefore large carrier mobility, which is good for photoelec-
tronic device applications. The highest VB is much flatter
and, in particular, there is a flat band between the � and X
points. This flat band is composed of Cl 3p and Ag 4d orbitals
[Fig. 2(c)] near the Fermi level.

B. Delocalization error analysis

Based on the extensive benchmark results using six rep-
resentative XC functionals presented above, we conjecture
that the high sensitivity of the band gap to the Ag-Cl bond
length, and the strong dependence of the determined Ag-Cl
bond length on the employed functional, stems from the com-
petition between the Ag-Cl bond and In-Cl bond, as well
as the difficulty for the common XC functionals to prop-
erly capture the delicate balance between these two bonds.
It is highly likely that the latter has an origin in the de-
localization error inherent in these functionals. To have a
deeper analysis of the underlying driving mechanism, we
construct a simple model system, i.e., a linear-chain molecule,
Ag-Cl-In, and examine the effect of the delocalization errors
of four of the functionals [PBE, SCAN, HSE, and HSE(0.4)]
on the geometry and the electronic structure. The length of
the molecular chain is 5.2405 Å, equivalent to its value in
the bulk, which is half of the experimental lattice constant
of Cs2AgInCl6 [inset of Fig. 3(b)]. Similar to the bulk case,
we fix the length of the full molecular chain, but vary the
Ag-Cl (and hence the In-Cl) bond lengths and monitor how
things change. First, we verify that different functionals per-
form similarly for the model molecule and for the HDP bulk
material, as can be seen from Figs. 3(a) and 3(b), where
the total energies as a function of the Ag-Cl bond length
are presented, for both the bulk and molecular systems, re-
spectively. For bulk Cs2AgInCl6, the equilibrium Ag-Cl bond
lengths predicted by PBE, SCAN, HSE, and HSE(0.4) are
2.687, 2.697, 2.709, and 2.724 Å, respectively, while for the
molecule, the corresponding values are 2.737, 2.765, 2.772,
and 2.795 Å, respectively. Thus, for both the bulk system and
molecular model, the calculated Ag-Cl bond lengths follow
the following sequence: dAg−Cl[HSE(0.4)]> dAg−Cl(HSE) >

dAg−Cl(SCAN) > dAg−Cl(PBE). Obviously, the opposite be-
havior is true for the In-Cl bond.

An interesting question arising in this context is whether
the above-noted functional dependence of the equilibrium
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FIG. 3. (a), (b) The total energies of the bulk Cs2AgInCl6 (a) and the Ag-Cl-In molecular model (b) as a function of the Ag-Cl bond length,
as calculated by the PBE (green), SCAN (purple), HSE (orange), and HSE(0.4) (blue) functionals. The inset of (b) depicts the structure of
the molecule model. (c) f (x) for fractional ionization of the molecule model at dAg−Cl = 2.739 Å. (d) The equilibrium Ag-Cl bond lengths as
determined by the four functionals for both the bulk system and molecular model versus the curvature a.

bond length is rooted in the delocalization error of the indi-
vidual functionals [50]. To address this question, following
Ref. [51], we use a simple function f (x) to quantify the
delocalization error, which is defined as

E (N − x) = E (N ) + x f (x)(E (N − 1) − E (N )). (1)

It has been proven by Perdew et al. [52] that the energy E of a
system with N − x electrons (where N is a positive integer
and x lies between 0 and 1) is exactly given by the linear
interpolation between the energies at N and N − 1. Thus, the
ideal value of f (x) in Eq. (1) is 1. Hait and Head-Gordon [51]
found that f (x) is well described by a linear fit of ax + b,
with b = 1 − a as required by the constraint f (x = 1) = 1.
Here we investigate the delocalization errors of PBE, SCAN,
HSE, and HSE(0.4) by computing E (N − x) with 0 � x � 1
and thereby determine f (x) for the Ag-Cl-In molecule. The
obtained f (x)’s for the four functionals as a function of x
are plotted in Fig. 3(c), where a linear behavior of f (x) for
all the functionals is clearly observed. Here, the slope a of
f (x) corresponds to the curvature of E (N − x), and the linear
behavior of f (x) means that E (N − x) follows a nearly per-
fect parabolic behavior as a function of the fractional charge
x. Moreover, a > 0 corresponds to the convex behavior of
E (N − x), implying the presence of a delocalization error, as

is the case for all four functionals investigated here. In fact,
the magnitude of a can be used as a quantitative measure of
the delocalization error of a given functional. In Fig. 3(d),
we plot the equilibrium Ag-Cl bond lengths as determined
by PBE, SCAN, HSE, and HSE(0.4) for both the bulk system
and molecular model versus the curvature a—a measure of the
delocalization error—for the four functionals. Remarkably, a
nearly linear relationship is observed for both the bulk and
molecular systems. This strongly suggests that the functional
dependence of the determined equilibrium bond length in
Cs2AgInCl6 is indeed governed by the delocalization error
in the employed functionals and, moreover, the underlying
driving physics can already be captured by a simple molec-
ular model. Since the model only contains three atoms, and
an increase of Ag-Cl bond length means a decrease of the
In-Cl, one may well conclude that it is the difficulty for
the commonly used functionals to sufficiently capture the
competition between the Ag-Cl and In-Cl bonds that renders
a first-principles description of HDP materials particularly
challenging.

Another interesting aspect that Fig. 2(a) reveals is that
the band gap of Cs2AgInCl6 increases almost linearly as the
Ag-Cl bond length increases (or, equivalently, as the In-Cl
bond length decreases). In fact, as further shown in Fig. S1(a)
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TABLE III. Mulliken charge analysis of the model Ag-Cl-In
chain molecule, as obtained by PBE, SCAN, and HSE(0.4) function-
als. In our calculations, the neutral Ag, Cl, and In atoms contain 19,
7, and 13 electrons, respectively.

PBE SCAN HSE(0.4)

Ag+ 19.069 19.067 19.054
Cl− 7.392 7.396 7.439
In3+ 12.539 12.537 12.506

of the Supplemental Material (SM) [53], upon increasing the
Ag-Cl bond length, the VBM of Cs2AgInCl6 of decreases,
while the CBM increases almost linearly, resulting in a gradu-
ally enlarged band gap. As indicated in the partial DOS plotted
in Fig. 2(a), the VBM is mainly composed of Cl 3p states,
while the CBM mainly derives from the In 5s states. One
can think of the following scenario, namely, as the In-Cl bond
shrinks, the hybridization strength between the frontier In 5s
and Cl 3p orbitals increases, resulting in an enlarged band gap.
Naturally, a counteractive effect occurs between the Ag 3d
and Cl 3p states. However, this effect seems to be outweighed
by the In-Cl hybridization due to the stronger interaction of
the latter. To check the validity of this conjecture, we exam-
ined the variation of the HOMO (highest occupied molecular
orbital) and LUMO (lowest unoccupied molecular orbital)
levels of the Ag-Cl-In linear molecule upon increasing of the
Ag-Cl bond length. The results are shown in Fig. S1(b), from
which one can see that the change of the HOMO and LUMO
levels is very similar to the VBM and CBM of the Cs2AgInCl6
bulk, as a function of the Ag-Cl (or In-Cl) bond length.
This indicates that the variation of the band gap with respect
to the Ag-Cl bond length can indeed also be understood from
the competition of the Ag-Cl and In-Cl bonds within a simple
Ag-Cl-In molecular model, with interaction strength of the
In-Cl bond dominating over the Ag-Cl bond. Further evi-
dence comes from the Mulliken charge analysis of the model
Ag-Cl-In molecule, as shown in Table III, where one can see
the charge transfer between In and Cl atoms is much more
pronounced than that between Ag and Cl atoms, for all three
functionals, suggesting stronger hybridization between In and
Cl than that between Ag and Cl. Moreover, Table III reveals
that the charge transfer between In and Cl yielded by the
HSE(0.4) functional is slightly stronger than its counterparts
given by PBE and SCAN functionals. This is consistent with
the fact that the In-Cl bond length determined by HSE(0.4) is
shorter than those determined by PBE and SCAN.

C. Other HDP materials

After having thoroughly discussed the geometrical and
electronic structures of Cs2AgInCl6, we turn to other HDP
materials. We first briefly discuss Cs2NaInCl6, which amounts
to replacing Ag in Cs2AgInCl6 by Na. In Fig. S2(a) of the
SM, we present the band gap of Cs2NaInCl6 as a function
of the Na-Cl bond length, and find that the overall varia-
tion trend of the band gap with respect to the Na-Cl bond
length is very similar to that of Cs2AgInCl6. The partial
DOS analysis reveals that the frontier orbitals are almost
exclusively of In and Cl characters, i.e., contributions from

Na are vanishingly small. This means that the Na-Cl bond
plays a less important role in Cs2NaInCl6 than the Ag-Cl
bond in Cs2AgInCl6. The dependence of the determined
Na-Cl and In-Cl bond lengths on the functionals follows a
similar pattern as Cs2AgInCl6. For this material, the mea-
sured experimental optical band gaps also show large scatter,
with reported values between 3.7 to 4.7 eV [10,43,54,55].
Since the lattice constant used in our calculations is taken
from Ref. [43], we also take the experimentally reported
gap (4.7 eV) from this paper as the experimental reference
value for comparison. It is indicated by the red triangle
in Fig. S2(a), which sits in between the theoretical band
gaps given by HSE and HSE(0.4). It is worth noting that
Cs2NaInCl6 exhibits a greater exciton binding energy com-
pared to Cs2AgInCl6 [9,22]. Moreover, electron-phonon and
exciton-phonon coupling effects [9,43,55] significantly con-
tribute to the electronic properties of HDP materials, thereby
complicating the direct comparison between calculated and
experimental results [56].

The next material we would like to analyze is Cs2AgBiCl6,
which is obtained by substituting In in Cs2AgInCl6 by Bi.
A larger change in the band structure is expected, since,
compared to Cs2AgInCl6, Cs2AgBiCl6 has a larger lattice
constant of 10.777 Å and the Bi ion introduces a strong SOC
effect. Indeed, different from Cs2AgInCl6 and Cs2NaInCl6,
Cs2AgBiCl6 has an indirect band gap. This feature can be
correctly described by both PBE and HSE functionals, with
or without including SOC. In Fig. 4(a), we plot the (indi-
rect) band gap of Cs2AgBiCl6 as a function of the Ag-Cl
bond length for several different functionals, including PBE,
SCAN, DFT+U , PBEsol HSE(0.4). Similar to the case of
Cs2AgInCl6, all functionals, except for HSE(0.4), produce too
small band gaps. Moreover, all functionals predict that the
band gap increases with increasing Ag-Cl bond length for
Cs2AgBiCl6, although the magnitude of the change is less dra-
matic, as shown in Fig. 4(a). In analogy with Cs2AgInCl6, this
behavior must stem from the increased hybridization between
Bi 6p and Cl 3p states as the Bi-Cl bond shrinks.

The PBE calculated band gap at the HSE(0.4) Ag-Cl bond
length is 1.807 eV without including SOC, and decreases to
1.547 eV after SOC is included, indicating the importance
of SOC for this materials. Compared to the experimental
value of 2.77 eV, PBE significantly underestimates the band
gap, regardless of whether the SOC is included or not. The
situation also holds for other semilocal functionals. The band
gap calculated by the HSE(0.4) functional at the bond length
determined by this functional is approximately 3.13 eV with-
out SOC, and 2.63 eV when the SOC is included. The latter is
in excellent agreement with the experimental gap marked as
the red triangle in Fig. 4(b). For this material, if the HSE(0.4)
band gap were calculated using the PBE optimized Ag-Cl
bond length, its value would be 0.15 eV smaller.

The band structure of Cs2AgBiCl6 calculated by HSE(0.4)
is shown in Fig. 4(b). Results obtained both with (red solid
lines) and without (blue dashed lines) SOC are plotted. In
these calculations, the experimental lattice constant is used,
and the Ag-Cl bond length is determined using HSE(0.4).
As can clearly be seen in Fig. 4(b), the strong SOC of the
Bi atoms leads to giant splitting of the low-lying conduction
bands, which significantly reduces the band gap.
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FIG. 4. (a) Band gaps of Cs2AgBiCl6 with a lattice constant
of 10.777 Å predicted by different methods (i.e., HSE(0.4),
HSE(0.4)+SOC, SCAN, DFT+U , PBE and PBEsol, and
PBE+SOC) as a function of bond length dAg−Cl. The experimental
structure and band gap were obtained from Ref. [44]. (b), (c) Band
structure and partial DOS with SOC of Cs2AgBiCl6 with d0,HSE(0.4)

Ag−Cl

calculated using the HSE(0.4)+SOC functionals.

Notably, the SOC has a significant impact on the band
structure of Cs2AgBiCl6. Especially, the lowest conduction
bands become much less dispersive after turning on SOC,
resulting in an enlarged effective mass of the electrons. This
is different from Pb-based perovskites, where SOC actually
reduces the electron effective mass. The partial DOS [see
Fig. 4(c)] analysis shows that the lowest conduction bands
are made up mainly of Bi-6p states hybridized with Ag-5s
and Cl-3p states, which split into two distinct peaks upon
including SOC. Shi and Du proposed that the flat conduction
bands in the Bi-based HDPs is due to the large electronega-
tivity difference among cations and the large nearest-neighbor
distances in cation sublattices [57]. Savory et al. argued that
the flat conduction band is due to a mismatch in angular
momentum of the frontier atomic orbitals of the B and B′
ions [23]. Here we show that SOC also plays a crucial role
for inducing the flat conduction bands in the Bi-based HDPs.

Regarding the impact of the SOC on the geometries, it
has also been shown that structural optimization using HSE
with SOC is important for proper descriptions of defect
states in halide perovskites [58]. In the present case, we
checked that the bond lengths of Cs2AgBiCl6 obtained with
or without SOC are both 2.696 Å, indicating that the SOC

effect has no impact on the geometries. Therefore, performing
HSE(0.4)+SOC calculations based on the optimized structure
using HSE(0.4) is a legitimate procedure.

The band structures of Cs2NaBiCl6 and Cs2AgBiBr6 have
very similar features to those of Cs2AgBiCl6. Detailed results
for these two materials are given in the SM (Figs. S3 and S4).

All the above results and analysis are based on the ex-
perimental lattice constants. The same calculations were also
carried out for fully relaxed structures for each material. The
obtained lattice constants, bond lengths, and corresponding
band gaps with and without SOC corrections are presented
in Tables S9–S12, respectively. From these results, the same
behaviors can be observed, and thus the analysis performed
above carries over to full relaxed geometries directly.

IV. SUMMARY

In this paper, we investigate the geometrical and elec-
tronic structures of Cs2BB′X6 (with B = Ag, Na, B′ = In,
Bi, and X = Cl, Br) HDPs via DFT calculations under dif-
ferent approximations to the XC functional. It is found that
the commonly used computational protocol, i.e., performing
band-structure calculations using HSE-type hybrid function-
als on top of geometries determined by semilocal functionals,
is not adequate for some of these materials, in particular, for
In-based HDPs. Hybrid functionals incorporating appropriate
portions of exact exchange can provide a satisfactory descrip-
tion of both the geometries and band gaps for this class of
materials. This is because the B-X and B′-X bond lengths are
sensitive to the employed functionals, and the VBM and CBM
of the materials in turn depend almost linearly on the B-X
(or B′-X ) bond length. An in-depth analysis reveals that the
determined equilibrium B-X (or, equivalently, B′-X ) bond
length is strongly correlated with the delocalization errors of
these functionals, and moreover the change of the band edges
with respect to the bond length is mostly governed by the
variation of the hybridization strength between the frontier
orbitals of B′ and X . We show that the underlying driving
mechanism of the intriguing behavior of the structural and
electronic properties of the HDPs can already be understood
via a simply linear three-atom B-X -B′ molecular model. In
practical calculations, it is advised that one should start with
local-density approximation (LDA) and GGA, which typi-
cally underestimate and overestimate the lattice parameters,
for structure relaxations to get initial ideas. If the electronic-
structure properties obtained using LDA and GGA structures
show large variation, it is then worthwhile to check what hap-
pens by relaxing the geometries using a consistent approach
at the level of hybrid functionals.

Our paper provides an analysis framework and a practical
guide for choosing appropriate functionals to reliably describe
HDP materials. From the application point of view, we remark
that the sensitivity of band gaps of the HDPs to their geome-
tries offers a promising path for band structure engineering by
doping and alloying.
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