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We investigate the observables of the one-dimensional model for anomalous transport in semiconductor de-
vices where diffusion arises from scattering at dislocations at fixed random positions, known as the Lévy-Lorentz
gas. To gain insight into the microscopic properties of such a stochastically complex system, deterministic
dynamics known as the slicer map and fly-and-die dynamics are used. We analytically derive the generalized
position autocorrelation function of these dynamics and study the special case, the 3-point position correlation
function. For this, we derive single-parameter-dependent scaling and compare it with the numerically estimated
3-point position autocorrelation of the Lévy-Lorentz gas, for which the analytical expression is still an open
question. Here we obtained a remarkable agreement between them, irrespective of any functional relationship
with time. Moreover, we demonstrate that the position moments and the position autocorrelations of these
systems scale in the same fashion, provided the times are large enough and far enough apart. Other observables,
such as velocity moments and correlations, are reported to distinguish the systems.
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I. INTRODUCTION

Anomalous transport has been a very active field of re-
search for several decades, but in the past few years it has
received enormous attention due to its potential application in
numerous fields of science that describe many physical phe-
nomena. For instance, this has been observed in charge carrier
motion in semiconductors [1], in polygonal billiards [2,3], in
ion motion within electrolytic cells [4], in single molecules
inside living cells [5], in ultracold atoms [6], in disordered me-
dia [7], in artificially crowded systems and protein-crowded
lipid bilayer membranes [8–10], in experimental evidence on
the mobility of particles in living cancer cells [11], and in
many other cases.

The one quantity of interest to study is transport exponent
γ for which the generalized diffusion coefficient,

Dγ = lim
n→∞

〈(xn − x0)2〉
nγ

∈ (0,∞), (1)

is positive and finite. The numerator 〈(xn − x0)2〉 represents
the mean square displacement (MSD) for the position of par-
ticle xn at time n. The angular brackets 〈·〉 correspond to the
ensemble average over all particles. The exponent γ takes
the values 0 � γ � 2; the transport is called subdiffusive
for 0 � γ < 1, which leads to rapid limit decay; it is called
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standard diffusion for γ = 1 followed by Fick’s law, which
has the basic characteristic that the MSD grows linearly in
time; and it is called superdiffusive when 1 < γ < 2, and
hence the limit diverges, and γ = 2 yields ballistic diffu-
sion. Collectively, except for γ = 1, this represents a wide
spectrum, commonly known as anomalous transport [12–18].
A contemporary summary of a rich variety of anomalous
diffusion processes is provided in [19], whereas standard
diffusion has been widely investigated in the literature, for
instance, see [18,20–22] and references therein. Dynamical
systems that exhibit all possible diffusion regimes in the field
of anomalous transport are rare in the literature, although in
the realm of deterministic dynamics, several authors have in-
vestigated anomalous diffusion [2,3,23]. Moreover, in the era
of deterministic dynamics, the transport phenomenon is well
understood in chaotic systems, which commonly corresponds
to standard diffusion. This has happened due to the fast rate at
which correlation decays. In nonchaotic systems, transport is
still underlying, which may often lead to anomalous transport.
This is since the rate at which correlation decays is much
slower [3,14,17,18,24,25]. In the presence of stochastic ele-
ments, the scenario is often closer to that of chaotic dynamics
[26,27], but numerous questions remain open [16,18,25,28–
35]. In particular, the asymptotic behavior of correlation func-
tions is not understood in general, although it is relevant, e.g.,
to distinguish transport processes that are effectively different
but have the same moments [30]. Numerous investigations
have been devoted to this subject; see, e.g., [36–41].

The slicer map (SM) was introduced by Salari et al. [24]
to study mass transport. The original point of interest was
to construct an exactly solvable model (perfect determinism)
that would reproduce the transport regimes found numerically
in polygonal billiards [3]. The SM diffuses in one scaling

2643-1564/2024/6(3)/033169(12) 033169-1 Published by the American Physical Society

https://orcid.org/0000-0001-9429-6735
https://ror.org/05pgqgb54
https://ror.org/01sb6ek09
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033169&domain=pdf&date_stamp=2024-08-14
https://doi.org/10.1103/PhysRevResearch.6.033169
https://creativecommons.org/licenses/by/4.0/


MUHAMMAD TAYYAB PHYSICAL REVIEW RESEARCH 6, 033169 (2024)

regime and exhibits sub-, super-, and normal diffusion under
a single parameter variation. The position statistics of the
SM, including many systems that exhibit strong anomalous
transport, are dominated by ballistic trajectories [42–45]. It
has been proven by Salari et al. [24] that the SM regenerates
the asymptotic scaling of the position moments of a much
more complex system, the Lévy-Lorentz gas (LLG) [29,35].
The LLG is a one-dimensional random walk in a random
environment in which the scatterers are randomly distributed
on a line according to a Lévy-stable probability distribution.
Burioni et al. [35] used simplifying assumptions to determine
the mean square displacement of the traveled distance and
numerically validated their findings. More recently, Bianchi
et al. [46] presented a rigorous mathematical study to prove
a central limit theorem, and Zamparo [47] investigated large
fluctuations and transport properties of the LLG. It was further
proven by Giberti et al. [48] that when the single parameters α

and ξ of the SM and the LLG, respectively, are properly tuned,
this choice of parameters leads, within the transport regimes
of the LLG, to the equality of the asymptotic scalings of the
2-point position autocorrelation functions. This makes two
very different systems indistinguishable regardless of their
microscopic dynamics, as far as the statistics of positions are
concerned. Indeed, such an agreement does not infer a full
equivalence of the dynamics. For example, the trajectories of
the SM move ballistically in an initial transit and then turn
periodic in a period-2 cycle, then remain oscillating back and
forth between their neighboring cells, while in the LLG all
trajectories are stochastic. This fact is further addressed in
Secs. II A and IV.

The deterministic and time-continuous prototypical model,
fly-and-die (FND) dynamics, was introduced to mimic the
universal features of displacement statistics [42]. The FND
dynamics exhibit a wide spectrum of diffusion, from sub-
to normal to superdiffusion, upon varying a single parame-
ter. In the FND, strong anomalous diffusion (superdiffusion)
emerges due to ballistic trajectories, i.e., the ballistic trajec-
tories that did not undergo transitions up to any finite time
(see for instance [49]). It is further motivated by the fact that
subdominant terms in the FND and the SM contribute like
ballistic flights to the asymptotic behavior; i.e., they contribute
the maximum allowed for a system to belong to the universal
behavior. This is further proven by the fact that, analytically,
all the position moments and the 2-point position correlations
of the FND asymptotically scale as those of the SM despite
having different microscopic structures. Upon tuning the dif-
fusion parameter of the SM and the FND with the LLG in
accordance with this agreement, all the moments coincide
analytically and with remarkable numerical agreement. At the
same time, the 2-point position correlation exhibits the same
power-law behavior as those numerically estimated position
correlations in the LLG [42,48].

In this paper, we intend to explore the equivalence of
the higher-order position autocorrelation function of the
SM, the FND, and the LLG and see up to which order of
correlation the SM and the FND are indistinguishable from
the LLG. For this, first, we derive the generalized position
autocorrelation function of the SM and the FND, and then, for
the particular case, i.e., the 3-point position autocorrelation
function, we compute a single scaling form that depends only

on one parameter: h2/n2 [cf. Eqs. (12) and (31)], which is sim-
ply the ratio of times. We compare one parameter-dependent
analytical scaling form of correlation with the numerically
estimated position autocorrelation function of the much more
realistic model, the LLG. We find remarkable agreement be-
tween the correlation scaling of the SM, the FND, and all
numerically estimated 3-point position correlations of the
LLG. Regardless of any functional relationship between the
time, all data sit on top of each other and have a nice agree-
ment with the theoretical prediction [cf. Eqs. (12) and (31)].
Moreover, the velocity moments and correlation function are
also reported to observe the dissimilarities in these systems.
On the contrary, we also argue about the statistics of the
position moments and the correlations that scale in the same
way; see Fig. 3. This is due to the fact that, in the correlation
function, separation between different times becomes irrele-
vant as compared to the mean.

This paper is organized as follows: Sec. II A formally sum-
marizes the SM and illustrates its properties. Section II A 2
provides the m-point position autocorrelation function expres-
sion. Section II A 3 demonstrates a scaling formula for the
3-point position autocorrelation function. In Secs. II A 4 and
II A 5, we formally introduce velocity moments and corre-
lation functions of the SM. Section II B does the same for
the FND dynamics. Section III A devotes itself to the LLG,
which characterizes the properties of the system and also
reports numerical results on the applicability of the scaling
formula for the 3-point position autocorrelations. Section IV
summarizes our conclusions.

II. DETERMINISTIC DYNAMICS

A. The slicer map

The SM is one-dimensional, deterministic, and exactly
solvable dynamics [24,48]. Its time evolution is given by the
map

Sα : [0, 1] × Z → [0, 1] × Z

defined by (see Fig. 1)

xn+1 = Sα (xn)

=
{

(xn, m − 1) if 0 � xn � �m or 1
2 < xn � 1 − �m,

(xn, m + 1) if �m < xn � 1
2 or 1 − �m < xn � 1.

(2a)

Here xn = {x + n}, where x is the fractional part (i.e.,
0 � x < 1) and n ∈ N0 a non-negative integer. In each term
xn, n is added to x, and the use of the fractional part function
ensures that xn remains within the interval [0,1]. The initial
ensemble x0 is chosen uniformly in the interval [0,1].

The family of slicers

�m = 1

(|m| + 21/α )α
, with α ∈ R+, (2b)

determines the position of the slicer and chops the slices in
their neighboring cells.

For 1/2 < xn < 1 each iteration of the map increases the
values of m by 1, until xn > �m. Subsequently, the trajectory
enters a stable period-2 cycle, oscillating back and forth be-
tween the two neighboring sites m and m − 1. Similarly, for
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FIG. 1. Demonstration of space-time plot for the slicer map de-
fined by Sα in Eq. (2), where n represents time and m space; shown
is the diffusive spreading of points that at n = 0 are uniformly dis-
tributed initial condition on the unit interval centered around m = 0.
Iteration of the map Sα is shown up to time n = 2; it represents that
points in the centered cell m = 0 start moving in their neighboring
cells as n grows. The lower horizontal strip with back-and-forth signs
on the central and forward-backward signs on the edges denotes
sub-traveling and traveling points, respectively, as n grows.

0 < xn < 1/2 each iteration of the map decreases the values
of m by 1 until xn < −�m, and then the trajectory enters a
stable period-2 cycle. The distance between two trajectories
does not change in time, as long as they are mapped by
the same branch of the map which, for each m ∈ Z, is de-
fined by the “slicer” �m. The distance between two points
xn and xn+1 jumps discontinuously when they reach a cell
m where �m ∈ [xn, xn+1]. Thus, the dynamics is reminiscent
of polygonal billiard dynamics [2,3], where initial conditions
are only separated when they are reflected by different sides
of the polygon. The corners act as slicers of the bundle of
initial conditions. The analogy between the two systems also
includes the fact the SM has a vanishing Lyapunov exponent
and it preserves the phase space volume. Likewise the SM
exhibits sub-, super-, and normal diffusion upon varying the
parameter α that describes the position of the slicers (see
[24,48] and references therein). Therefore such deterministic
dynamics are rare in the literature of transport processes that
shows a wide spectrum of diffusion.

1. pth position moments

Salari et al. [24] introduced the SM and calculated all
moments of the displacement as a function of the number n
of iterations of the map. In the following, we review those
calculations differently, but for the sake of simplest represen-
tation, we shift the origin of the positions by 1/2, so that
the right half of the unit interval coincides with [0, 1/2],
rather than [1/2, 1]. This does not affect the asymptotic results
that are obtained from an ensemble of initial conditions with
m = 0 and x0 uniformly distributed in the right half of the unit
interval. For n � 21/α the pth position moments amount to
following Lemma 1.

Lemma 1. Given α > 0, the pth position moments of the
slicer dynamics for uniformly distributed initial conditions

asymptotically scale as

〈(xn − x0)p〉 ∼

⎧⎪⎪⎨
⎪⎪⎩

constant, for p < α,

2 ln nα

2 , for p = α,

2 p
p−α

np−α, for p > α > 0.

(3)

Proof. See Appendix A 1. �
For p = 2, the MSD 〈(xn − x0)2〉 ∼ nγ , where γ = 2 − α

with 0 < γ < 2, captures all scenarios of anomalous diffu-
sion. The SM exhibits superdiffusion for γ > 1; for γ = 1,
the power law grows linearly in time, i.e., it is normal dif-
fusive; and for γ < 1, it is subdiffusive. Since there is no
drift in the SM, all odd moments vanish. Once we confine
the motion of particles in one direction, we can also identify
all odd position moments.

The 2-point position autocorrelation function of the SM
asymptotically scales as those of the numerically estimated
position correlations of the LLG [48]. Since our fundamen-
tal objective is to observe the equivalence of the position
autocorrelation functions of different dynamics, only partial
equivalence at the level of all position moments and the cor-
relation function of order 2 do not suffice to determine the
indistinguishability of the dynamics. This may leave many
unanswered questions; e.g., as far as the statistics of positions
are concerned, one does not know to what extent the SM, the
FND, and the LLG are indistinguishable. To address these
questions, in the following, we explicitly derive the general-
ized position autocorrelation function of the SM and the FND
to see how far equivalence holds to the numerically estimated
correlations of the LLG.

2. Generalized position autocorrelation function

The generalized (or m-point) position autocorrelation func-
tion of the SM for time nm � nm−1 � · · · � n2 � n1 is defined
as

φα (n1, n2, . . . , nm) = 〈(
xn1 − x0

) · · · (xnm−1 − x0
)(

xnm − x0
)〉

= 〈
�xn1 · · · �xnm−1 �xnm

〉
=

∫ 1/2

0
dx �xn1 · · · �xnm−1 �xnm . (4)

According to the flight of trajectories, the integration inter-
val F = (0, 1/2] is partitioned into m + 1 parts, i.e., F =
L> nm ∪ L> nm−1 ∪ · · · ∪ L> n1 ∪ L� 1/2, defined as

φα (n1, n2, . . . , nm) =
∫

L> nm

dx �xn1 �xn2 · · · �xnm

+
∫

L> nm−1

dx �xn1 �xn2 · · · �xnm

+ · · · +
∫

L> n1

dx �xn1 �xn2 · · · �xnm

+
∫

L� 1/2
dx �xn1 �xn2 · · · �xnm , (5)

with nm � nm−1 � · · · � n2 � n1.

The integration limits are separated according to their tra-
jectory flying time:

L> nm = {0 < x < �nm}: All trajectories are flying at all
times, such that �xnk = nk, with k = 1, 2, 3, . . . , m.
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L> nm−1 = {�nm < x < �nm−1}: The trajectory is still flying
at time nm−1, but it has localized (turned periodic) by time
nm, and consequently �xnm = (x−1/α − 21/α ) and �xnk =∏m−1

k=1 nk .
...

L> n1 = {�n2 < x < �n1}: The trajectory is still flying at
time n1, but it has localized by time n2 and subsequent;

consequently �xn1 = n1, and �xnk = (x−1/α − 21/α )k with
k = 2, 3, . . . , m − 1.

L� 1/2 = {�n1 < x < 1/2}: All trajectories get localized
before time n1; hence �xnk = (x−1/α − 21/α )k with k =
1, 2, 3, . . . , m.

Therefore for nm � nm−1 � · · · � n2 � n1 , integrals
emerge as

φα (n1, n2, . . . , nm) 
 2(n1n2 · · · nm)
∫ �nm

0
dx + 2(n1n2 · · · nm−1)

∫ �nm−1

�nm

dx (x− 1
α − 2

1
α )

+ · · · + 2 n1

∫ �n1

�n2

dx(x− 1
α − 2

1
α )m−1 + 2

∫ 1/2

�n1

dx(x− 1
α − 2

1
α )m


 2
m∑

j=0

⎛
⎝m− j∏

k=1

nk

∫ �nm− j

�nm− j+1

dx(x− 1
α − 2

1
α ) j

⎞
⎠ ∼ 2

m∑
j=0

⎡
⎣m− j∏

k=1

nk

(
α

α − j

(
n j−α

m− j − n j−α

m− j+1

))⎤
⎦, (6)

and nm+1 = 0 and n0 = K , where K is constant.

3. 3-point position autocorrelation function

The 3-point position autocorrelation function can be ob-
tained by requesting m = 3 in Eq. (6); the correlation function
amounts to

φα (n1, n2, n3)




⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 n1 n2 n1−α
3

1−α
− 2α n1 n2−α

2
(2−α)(1−α) − 2 α n3−α

1
(2−α)(3−α) , α �= 1,

2 n2 n3
(

ln n1
n2

+ 2
) + 24 ln n3

2 − n2
3

+8 n3
(

ln n3
n2

− 2
)
, α = 1.

(7)

(I) For any fixed time n1 and for the other two equivalent
times n2 = n3, we recover the asymptotic scaling of the MSD
[cf. Eq. (3) with p = 2] as given by

〈(xn − x0)2〉 ∼ 4

2 − α
n2−α, 0 < α < 2. (8)

(II) For n1 = n2 = n3, this reduces to the third moment of
displacement [cf. Eq. (3) with p = 3], such as

〈(xn − x0)3〉 ∼ 6

3 − α
n3−α, 0 < α < 3. (9)

A few cases of the time composition can be defined as
follows:

(1) h1 = n2 − n1, as h1 > 0, either finite or h1 ∼
nq1

1 , q1 � 1, and n1 → ∞.
(2) h2 = n3 − n2, as h2 > 0 either finite or h2 ∼ nq2

1 ,

q2 � 1, where n2 = n1 + h1, and n1 → ∞.
(3) n1 � n2 are fixed and set n3 → ∞.
If one sets that all n times tend to infinity for the 3-point

position autocorrelation function φα (n1, n2, n3), as given in
Eq. (7), the power-law exponent scales in the same way as
found for the third position moment (see Lemma 2 for m = 3).
To address this, we consider the scaling of the correlation
φα (n1, n1 + h1, n1 + h1 + h2) for very large values of n1. For
large n1, when the time lags hk−1 are either constant or scale

as ∼nq for k = 2, 3 with q < 1, the difference among the three
times becomes negligible compared to the mean.

Lemma 2. For 0 < α < m, as all n times tend to infin-
ity and hk−1 = nk − nk−1, for k = 2, 3, . . . , m, where hk−1 is
either fixed or ∼nq

1, q < 1, the m-point position autocorrela-
tion function φα represented in Eq. (7) asymptotically scales
as

φα (n1, n2, . . . , nm) ∼ 2 m

m − α
nm−α

1 , 0 < α < m. (10)

Proof. This is a direct consequence of Eq. (7). �
Remark 1. For 0 < α < m, where m = 2 or 3, as n tends to

infinity, the 2- and 3-point position autocorrelation functions
φ(α), following the hk−1 represented in Lemma 2, exhibit the
same asymptotic scaling as the second moment, i.e., MSD [see
Eq. (10)], and the third moment of displacement [see Eq. (9)],
which is

φα (n1, n2) ∼ 〈(xn − x0)2〉, φα (n1, n2, n3) ∼ 〈(xn − x0)3〉,
(11)

respectively.
For the single-parameter correlation function, we recon-

sider Eq. (7), rearrange some terms, introduce the time lag
h2 = n3 − n2 and h1 = n2 − n1 and the normalization factor
n1 n2−α

2 , and find

φα

(
h2

n2

)
= φα (n1, n2, n3)

n1 n2−α
2


 2

1 − α

[(
1 + h2

n2

)1−α

− α

2 − α

− α(1 − α)

(2 − α)(3 − α)

(
1 + h1

n1

)−(2−α)]
, α �= 1.

(12a)

033169-4



GENERALIZED AUTOCORRELATION FUNCTION IN THE … PHYSICAL REVIEW RESEARCH 6, 033169 (2024)

For α < 1, this scales asymptotically as

φα

(
h2

n2

)
∼

⎧⎪⎪⎨
⎪⎪⎩

2
1−α

( h2
n2

)1−α
, for h2 � n2,

6
3−α

, for h2 � n2, h1 � n1,

4
2−α

, for h2 � n2, h1 � n1.

(12b)

We hence predict a data collapse for the 3-point position
autocorrelation when plotting the left-hand side of Eq. (12b)
as a function of h2/n2. For the regime when h2 � n2, one
can observe the power law as 1 − α, while for h2 � n2, the
correlation converges to some constants. Hence, Eq. (12b)
provides a new way of analysis for the position autocor-
relation function, that depends only on a single parameter
h2/n2, and the scaling form for different time composition
becomes irrelevant [42,48]. The scaling of the 3-point position
autocorrelation function captures salient features which are
commonly observed in anomalous transport dynamics; for
instance when all times n1, n2, and n3 are far separated and
large enough, one commonly observes that correlation grows
with n1n2−α

2 , like 1/(n1n2−α
2 ), in accordance with the predic-

tion of Eq. (12b). In Sec. III C we investigate how far these
qualitative findings are substantial for quantitative comparison
to the LLG [29,35] that does not have mathematical findings
on the position autocorrelation function.

4. Moments of velocity

The velocity of any point of the SM is either +1 or −1 and
moments of the velocity can be determined by evaluating

〈vp(n)〉 = 2
n∑

k=1

v
p
k (n)�k (α) + 2

∞∑
k=n+1

v
p
k (n)�k (α), (13)

where vk (n) is the velocity at time n of particle with
x ∈ [�+

k−1, �
+
k ) where �+

k = 1 − �k and �k (α) = �+
k − �+

k−1 =
α/(kα+1)[1 + o(1)]. The velocity of the particle is given by

vk (n) = I{n<k} − (−1)n−kI{n�k}, (14)

where IA is the indicator of the event A. Then by using
Eq. (14) in Eq. (13), the moments of velocity switch between
even and odd values of p. The even moments of velocity scale
asymptotically like

〈vp(n)〉 ∼ 1, as n → ∞, even p � 2. (15a)

The odd p � 1 moments of velocity scale asymptotically as

〈vp(n)〉 ∼
{

1 − 4 Rα, for even n,

−1 + 4 Rα, for odd n,
(15b)

as n changes between even and odd values, where

Rα =
∞∑

k=1

�2k (α).

5. Velocity autocorrelation function

The velocity of any point of the SM is either +1 or −1, and
its autocorrelation is defined by

〈v(n1)v(n2)〉 = 2
n∑

k=1

v(n1)vk (n2)�k (α)

+ 2
∞∑

k=n+1

v(n1)vk (n2)�k (α), (16)

where vk (l ), the velocity at time l of a particle with position
x ∈ [�+

k−1, �
+
k ), is given in Eq. (14). For n1 = 0, we have

v(0) = 1; hence

〈v(0)v(n2)〉 = 2
n∑

k=1

vk (n2)�k (α) + 2
∞∑

k=n2+1

vk (n2)�k (α).

(17)

Calculations analogous to the previous ones now show that
the velocity autocorrelation function oscillates asymptotically
in n2 between two values. Therefore velocity autocorrelation
follows the same asymptotic scaling, Eq. (15b), as in the odd
moments of velocity

〈v(0)v(n2)〉 ∼ 〈vp(n)〉, as n → ∞, odd p � 1. (18)

The 2-times velocity autocorrelation function is also asymp-
totically split into two cases:

(i) when n1 and n2 are either both even or both odd, then

〈v(n1)v(n2)〉 → 1, as n1 → ∞, n2 > n1; (19)

(ii) when one of the two times is even and the other is odd,
then

〈v(n1)v(n2)〉 → −1, as n1 → ∞, n2 > n1. (20)

B. The fly-and-die dynamics

In the FND dynamics, we label trajectories by their initial
position, x0. Until time tc(x0) such a trajectory moves along
the positive x axis with unit velocity. At time tc(x0) it stops and
remains at position x0 + tc(x0) for all later times. Accordingly,
we call this FND dynamics. Its position at time t will be
denoted as

x(x0, t ) =
{

x0 + t, for t � tc(x0),

x0 + tc(x0), for t � tc(x0).
(21a)

Superdiffusive motion is expected to emerge when the distri-
bution of the times for the flights, tc(x0), has a power-law tail.
To be concrete, we consider here the case

tc(x0) =
(

l

x0

)1/μ

, (21b)

with initial conditions x0 uniformly distributed in the interval
[0, 1], and μ > 0. In the following, we explore the position
and velocity moments and correlations of this ensemble of
trajectories. The ensemble average is denoted by 〈·〉. The
probability P(> t ) to perform a flight longer than t amounts
to the fraction of initial condition x0 with tc(x0) > t such that

P(> t ) = x0(t ) = l

tμ
. (22)
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1. pth position moments

Lemma 3. For μ > 0, the pth position moment of the FND
for the trajectories starting at initial position x0 asymptotically
scales as

〈|�x(t )|p〉 ∼

⎧⎪⎪⎨
⎪⎪⎩

μ

μ−p l p/μ, for p < μ,

l ln tμ

l , for p = μ,

p l
p−ξ

t p−μ, for p > μ.

(23)

Proof. See Appendix A 2. �
In more detail, for a specific case p = 2, the MSD scales

〈|�x(t )|2〉 ∼ tγ , where γ = 2 − μ and 0 < γ < 2. This ex-
hibits a wide spectrum of diffusion: When the transport
exponent γ < 1, this yields to subdiffusion; at γ = 1 this
grows linearly in time (i.e., normal diffusion); and for γ > 1
it is superdiffusive. Thus the FND dynamics capture all the
transport regimes computed for SM. The FND dynamics for
p > μ, when adopting l ≡ 2 and μ = α, capture all the posi-
tion moments that are computed for the SM, Eq. (3).

2. Generalized position autocorrelation function

The generalized (or n-point) position autocorrelation func-
tion for the FND dynamics is defined as

ρμ(t1, t2, . . . , tn)

= 〈�x(t1) �x(t2) · · · �x(tn)〉
= 〈[x(x0, t1) − x0][x(x0, t2) − x0] · · · [x(x0, tn) − x0]〉

=
∫ 1

0
dx0[x(x0, t1)−x0][x(x0, t2) − x0]

· · · [x(x0, tn) − x0], (24)

where it is assumed that t1 < t2 < · · · < tn. To evaluate the
integral we follow the convention that tn is always larger or
equal to t1. Accordingly, we split the integration range into n
intervals:

0 < x0 < P(> tn): The trajectories are still flying at
time tn such that �x(t1) = t1, �x(t2) = t2, . . . ,�x(tn−1) =
tn−1, �x(tn) = tn.

P(> tn) < x0 < P(> tn−1): The trajectories are still flying
until time tn−1 but they have died by the time tn. Conse-
quently, �x(t1) = t1, �x(t2) = t2, . . . ,�x(tn−1) = tn−1, and
�x(tn) = tc(x0).

...

P(> t1) < x0 < 1: The trajectories died before t1. Conse-
quently, �x(t1) = �x(t2) = · · · = �x(tn) = tc(x0).

Splitting the integral and performing a calculation allows
us to interpret it as follows:

ρμ(t1, t2, . . . , tn) = (t1t2 · · · tn)
∫ l/tμ

n

0
dx0

+ (t1t2 · · · tn−1)
∫ l/tμ

n−1

l/tμ
n

dx0

(
l

x0

) 1
μ

+ (t1t2 · · · tn−2)
∫ l/tμ

n−2

l/tμ
n−1

dx0

(
l

x0

) 2
μ

+ · · · +
∫ 1

l/tμ
1

dx0

(
l

x0

) n
μ

=
n∑

j=0

⎛
⎝n− j∏

k=1

tk

∫ l/tμ
n− j

l/tμ
n− j+1

dx0

(
l

x0

) j
μ

⎞
⎠. (25a)

Simple integration allows us to write a general expression of
the n-point position autocorrelation function as

ρμ(t1, t2, . . . , tn) = l
n∑

j=0

n− j∏
k=1

tk

[
μ

μ − j

(
t j−μ
n− j − t j−μ

n− j+1

)]
,

(25b)

where tn+1 = ∞ and t0 = l1/μ. When adopting l ≡ 2 and
μ = α, correlation Eq. (25b) yields the same scaling as found
for the m-point position autocorrelation of the SM, Eq. (6).
Therefore the higher-order position autocorrelation function
of the SM and the FND asymptotically scales in the same
trend. Subsequently, we derive the 3-point position correlation
function, upon setting n = 3 and performing calculations on
Eq. (25b). Consequently, when μ �= 1, we find

ρμ(t1, t2, t3) 
 l t1 t2 t1−μ
3

1 − μ
− l μ t1 t2−μ

2

(2 − μ)(1 − μ)

− l μ t3−μ
1

(2 − μ)(3 − μ)
. (26)

(I) At a fixed time t1, when considering two equivalent
subsequent times t2 and t3, the MSD [cf. Eq. (23) with p = 2]
exhibits an asymptotic scaling,

〈|�x(t )|2〉 ∼ 2 l

2 − α
t2−μ, 0 < μ < 2. (27)

(II) For t1 = t2 = t3, this reduces to the third moment for
the displacement, Eq. (23), with p = 3,

〈|�x(t )|3〉 = 3 l

3 − μ
t3−μ, 0 < μ < 3. (28)

Some functional relationships between the times are de-
fined as follows:

(1) varying t1, t2, and t3 while keeping a fixed time lag,
with h1 = t2 − t1 and h2 = t3 − t2;

(2) varying t1 while setting t2 = t1 + t q1
1 and t3 = t1 +

t q1
1 + t q2

1 for some fixed value of q1 < 1 and q2 < 1;
(3) keeping t1 � t2 fixed while setting t3 to vary.
Like the SM, when all n values approach infinity for

the 3-point position autocorrelation function ρμ(t1, t2, t3), as
defined in Eq. (26), the power-law exponent exhibits the
same scaling behavior as that found for the third position
moment (see Lemma 2 for the case where m = 3). To bet-
ter understand this, we need to look at how the correlation
ρμ(n1, n1 + h1, n1 + h1 + h2) behaves when n1 is very large.
In this context, for large n1, if the time lags hk−1 (for k = 2, 3)
are either constant or grow as nq with q < 1, the differences
between the three times n1, n1 + h1, and n1 + h1 + h2 become
insignificant compared to the average value of n1. This means
that as n1 increases, the relative differences between these
times diminish, leading to a simpler scaling relationship for
the correlation function.
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Lemma 4. For 0 < μ < n, as all t times tend to infinity
and hk−1 = tk − tk−1, for k = 2, 3, . . . , n, where hk−1 is either
fixed or ∼t q

1 , with q < 1, the n-point position autocorrelation
function ρμ as represented in Eq. (26) asymptotically scales
as

ρμ(t1, t2, . . . , tn) ∼ n l

n − μ
t n−μ
1 , 0 < μ < n. (29)

Proof. This follows directly from Eq. (26). �
Remark 2. For 0 < μ < n, with n = 2, 3 when all times

t tend to infinity, the 2- and 3-point position autocorrelation
functions ρμ, following the hk−1 represented in Lemma 4,
have the same asymptotic scaling, Eq. (29), as for the sec-
ond, i.e., MSD, Eq. (27), and third moments of displacement,
Eq. (28), i.e.,

ρμ(t1, t2) ∼ 〈|�x(t )|2〉, and ρμ(t1, t2, t3) ∼ 〈|�x(t )|3〉,
(30)

respectively.
Therefore, it is observed that when time is significantly

large, the position moments and correlation function of
the SM and the FND scale in the same way. Like the
SM, a single-parameter-dependent scaling of the correlation
function, reconsider Eq. (26) and perform calculations, in-
troducing the time lag h2 = t3 − t2 and h1 = t2 − t1, and
normalizing by the factor t1t2−μ

2 ; the position autocorrelation
as a function of h2/t2 is entailed as

ρμ

(
h2

t2

)
= φμ(t1, t2, t3)

t1t2−μ
2


 l

1 − μ

[(
1 + h2

t2

)1−μ

− μ

2 − μ

− μ(1 − μ)

(2 − μ)(3 − μ)

(
1 + h1

t1

)−(2−μ)]
, μ �= 1.

(31a)

In the large time limit the asymptotic scaling for large and
small values of h2/t2 and h1/t1 for μ < 1 yields as

ρμ

(
h2

t2

)



⎧⎪⎪⎨
⎪⎪⎩

l
1−μ

( h2
t2

)1−μ
, for h2 � t2,

3l
3−μ

, for h2 � t2, h1 � t1,
2l

2−μ
, for h2 � t2, h1 � t1.

(31b)

This scaling is identical to the SM expression when l ≡ 2,
Eq. (12b), for large and small times. Therefore the asymptotic
scaling of the 3-point position correlation as a function of
h2/t2, the SM, and the FND scale in a similar fashion [cf.
Eqs. (12b) and (31b)]. Hence we can predict data collapse of
the 3-point position correlation irrespective of the time rela-
tionship. In Sec. III C, we emphasize this fact by comparing
the qualitative prediction with LLG [29,34,35].

3. Moments of velocity

In the FND dynamics, the velocity of each trajectory is +1;
these flying trajectories contribute to the velocity moments
where other trajectories stop v = 0 and do not contribute.
Therefore only those trajectories will contribute that are still
flying v = 1. The moments of the velocity 〈vp(t )〉 are obtained

as

〈vp(t )〉 = 〈|v(xo, t ) − v0|p〉 =
∫ 1

0
dx0 |v(xo, t ) − v0|p

=
∫ P(>t )

0
dx0 t p =

∫ l/tμ

0
dx0,

which asymptotically scales as

〈vp(t )〉 ∼ l t−μ, p � μ. (32)

This behavior is not shared by the velocity moments of the
SM, Eq. (15).

4. Velocity autocorrelation function

The velocity of each flying trajectory in the FND dynamics
is +1. The trajectories are flying with the velocity v = 1, till
they stop, v = 0. Therefore only those trajectories contribute
to the velocity autocorrelation functions with t1 � t2 � · · · tn
that are still flying at time tn. Thus denoting velocity correla-
tion ρv (t1, t2, . . . , tn), we obtain

ρv (t1, t2, . . . , tn)

= 〈�v(t1)�v(t2) · · · �v(tn)〉
= 〈[v(x0, t1) − v0][v(x0, t2) − v0] · · · [v(x0, tn) − v0]〉

=
∫ 1

0
dx0[v(x0, t1)−v0][v(x0, t2) − v0] · · · [v(x0, tn) − v0]

=
∫ P(>tn )

0
dx0[v(x0, t1) − v0][v(x0, t2) − v0]

· · · [v(x0, tn) − v0]

=
∫ l/tμ

n

0
dx0,

and therefore the velocity autocorrelation asymptotically
scales as

ρv (t1, t2, . . . , tn) 
 l t−μ
n , n > μ, (33)

where tn = tn−1 + hn−1, n ∈ {2, 3, . . .} and h > 0.
This exhibits the same power-law tail, −μ, for any order

of velocity correlation function; moreover velocity moments
and correlation asymptotically scale in the same power-law
behavior [cf. Eq. (32)]. For n = 2, we find the 2-point velocity
correlation function ρv (t1, t2) 
 l t−μ

1 , 0 < μ < 2. This be-
havior is not shared by the 2-time velocity autocorrelation
function of the SM [cf. Eqs. (19) or (20)], and thus can be
used to distinguish the transport processes.

III. STOCHASTIC PROCESS

A. The Lévy-Lorentz gas

The LLG was introduced in Barkai and Fleurov [29] as
a one-dimensional model for anomalous transport in semi-
conductor devices where diffusion arises from scattering at
dislocations at fixed random positions. Subsequently, it has
been investigated by many authors [34,35]. The LLG is a one-
dimensional model that comprises ballistic flights between
scatterers at fixed random positions. The distances d between
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neighboring scatterers are independently and identically dis-
tributed random variables sampled from a Lévy distribution
with probability density

λ(d ) ≡ ξ

d0

(
d

d0

)−(ξ+1)

, d ∈ [d0,∞), (34)

where ξ > 0 and d0 is the minimum distance between scat-
terers. A point particle moves ballistically with velocity ±v

between the two consecutive scatterers when it hits a scatterer;
then it is either transmitted or reflected by the probability 1/2.
Barkai et al. [34] calculated bounds for the MSD for equi-
librium and nonequilibrium initial conditions. Subsequently,
Burioni et al. [35] adopted some simplifying assumptions to
find the asymptotic form for nonequilibrium conditions of all
moments 〈|d (t )|p〉 with p > 0:

〈|d (t )|p〉 ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t
p

1+ξ , for ξ < 1, p < ξ,

t
p(1+ξ )−ξ2

1+ξ , for ξ < 1, p > ξ,

t
p
2 , for ξ > 1, p < 2ξ − 1,

t
1
2 +p−ξ , for ξ > 1, p > 2ξ − 1.

(35)

For the MSD, p = 2, this result implies

〈d (t )2〉 ∼ tη, η =

⎧⎪⎪⎨
⎪⎪⎩

2 − ξ 2

(1+ξ ) , for ξ < 1,

5
2 − ξ, for 1 � ξ < 3/2,

1, for 3/2 � ξ .

(36)

Unlike the SM and the FND, which enjoy subdiffusive trans-
port for α > 1 and μ > 1, respectively, the nonequilibrium
initial conditions for the LLG only lead to superdiffusive
(0 < ξ < 3/2) or diffusive (ξ � 3/2) regimes; subdiffusion
is not expected.

The moments of the SM in its superdiffusive regime (0 <

α < 1) can be mapped to those of the LLG [24,48]. All
moments of the SM, Eq. (3) [and so FND, Eq. (23)], scale
like those conjectured and numerically validated for the LLG,
Eq. (35), once the second moments do. This is the case if the
following holds [cf. Eqs. (3) and (23)]:

α = μ =

⎧⎪⎪⎨
⎪⎪⎩

ξ 2

(1+ξ ) , for 0 < ξ � 1,

ξ − 1
2 , for 1 < ξ � 3

2 ,

1, for 3
2 < ξ.

(37)

When adopting this mapping all other moments of the SM, the
FND, and the LLG agree with those of the LLG, Eq. (35). This
means that Eq. (37) makes these processes asymptotically in-
distinguishable from the point of view of all position moments
and the 2-point position autocorrelation function [42,48]. We
thus now extend this equivalence to the 3-point position auto-
correlation function and check whether the higher correlations
differ or they follow the same equivalence agreement. The
single dimensionless time ratio h2/t2 expressions for the 3-
point correlations are calculated analytically for the SM and
the FND [cf. Eqs. (12) and (31)]. This will then be compared
to numerically estimated data for the LLG. For the position
autocorrelation function in the LLG, there are no analytic
results of any order, such as those of Burioni et al. [35] for the

moments. We numerically estimate the 3-point displacement
correlation in Sec. III B 1.

Remark 3. For t → ∞, the asymptotic behavior of the
third moment of displacement of the LLG can be obtained
by requesting p = 3 in Eq. (35); one finds

〈d (t )3〉 ∼ tη, η = η + 1. (38)

B. Generalized position autocorrelation function

We define the generalized (or n-point) position autocorre-
lation function of the LLG as follows,

ϕξ (t1, t2, . . . , tn) = E [d (t1) d (t2) · · · d (tn)], (39)

where E denotes the averages, first average over the particles
and then on the given random scatterers realization. We intend
to compare the asymptotic form of the position autocorrela-
tion function with the SM and the FND.

Lemma 5. For ξ > 0, and all t’s tending to infinity, the
n-point position autocorrelation function ϕξ , Eq. (39), of the
LLG has the following asymptotic form,

ϕξ (t1, t2, . . . , tn) ∼ c(h1, h2, . . . , hn−1)tωp

1 , (40)

for p = 2, . . . , n, where the h’s represent the time differ-
ence, c(h1, h2, . . . , hn−1) denotes the prefactor, and ωp is
the power-law exponent for the respective order of the cor-
relation function; this will be obtained by best fit to the
data.

We intend to compare the asymptotic form of the 3-point
position autocorrelation function with the SM and the FND.
In what follows, we define the 3-point position correlation
function of the LLG.

1. 3-point position autocorrelation

We define the 3-point position autocorrelation function of
the LLG by requesting n = 3 in Eq. (39) as follows,

ϕξ (t1, t2, t3) = E [d (t1) d (t2) d (t3)], (41)

where E denotes the averages, first average over the particles
and then on the given random scatterers realization. Since our
aim is to check the asymptotic equivalence of the position
autocorrelation function with the SM and the FND, we follow
the same time composition as adopted in Sec. II A 3:

(1) h1 = t2 − t1, as h1 > 0 either finite or h1 ∼ t q1
1 ,

q1 < 1, and t1 → ∞;
(2) h2 = t3 − t2, as h2 > 0 either finite or h2 ∼ t q2

1 ,

q2 < 1, where t2 = t1 + h1, and t1 → ∞;
(3) t1 � t2 are fixed and set t3 → ∞.
The asymptotic scaling form for the moments and the

2-point position correlation of the SM and the LLG have
been tested [24,48], when α and ξ obey Eq. (37). In
the following, we now verify the theoretical prediction of the
3-point position autocorrelation as a function of h2/t2 of the
SM [Eq. (12)] and FND [Eq. (31)] with numerically estimated
correlations of the LLG [Eq. (41)] that α, μ, and ξ obey the
same relation [Eq. (37)]. The importance of single qualitative
scaling predicts the data collapse of the LLG for small and
large h2/t2.
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FIG. 2. The 3-point position autocorrelation functions ϕξ (t1, t2, t3) of the LLG are plotted for ξ = 0.1 (left panel) and ξ = 0.6 (right panel).
We obtain a data collapse for a vast data set of combinations of t1, t2, and t3 by plotting the left-hand side of Eqs. (12) or (31) as a function
of h2/t2. The different symbols denote data for d0 = 0.1, where we varied the time t1, while setting t2 = t1 + h1 and t3 = t1 + h1 + h2, for
h1 and h2 any positive constants (see legend) for the regime h2 < t2, and also we varied t1 while setting t2 = t1 + t q1

1 and t3 = t1 + t q1
1 + t q2

1

(see legend) for the regime h2 < t2. Similarly, for h2 > t2, keep t2 � t1 fixed and vary t3 (see legend). The dashed lines show the parameter
dependence Eq. (12) predicted by the SM [or so FND, Eq. (31)].

Remark 4. The asymptotic behavior of the 1-time velocity
autocorrelation function of the LLG scales like 〈v(0) v(t )〉 ∼
t−3/2, as obtained by Barkai et al. [29]; hence it can be
used to distinguish the LLG from the SM and the FND
dynamics.

C. Scaling test of the 3-point position autocorrelation function
of the SM, FND, and LLG

In this section, we explore the equivalence of the 3-point
position autocorrelation of the SM, the FND, and the LLG.
We try here to extend this equivalence to the 3-point cor-
relations, since the 2-point position correlation provides the
faithful description of these systems [48]. We start by recalling
the scaling of the 3-point position correlation represented in
Eqs. (12) or (31) and see how far it captures the correlation of
the LLG. We adopt different settings of time composition; in
these settings, all data of different cases of correlation function
sit on the same curve (see Fig. 2).

Data analysis

We have obtained a sufficient amount of numerically es-
timated data concerning the correlation function, exploring
various relationships among the three time variables. In all
these functional relationships between the times defined in
Sec. III B 1, we find that the position autocorrelation function
of the SM and the FND followed the dependence on Eqs. (12)
or (31), and adopted the mapping of parameters α, μ, and
ξ [cf. Eq. (37)]. This is demonstrated in Fig. 2, for the data
collapse for one parameter-dependent 3-point position au-
tocorrelation function with different functional relationships
between three times. For h2 < t2, we observe an excellent
match between the LLG data and quantitative prediction of
the SM, Eq. (12), and the FND, Eq. (31), at least for small
values of ξ . For h2 > t2, there is a different scaling and the
agreement becomes gradually worse as ξ increases. The three
times t1, t2, and t3 are far separated for the asymptotic scaling
of small h2/t2.

In Fig. 3, we represent the theoretical mapping of the SM
(or so FND) and the LLG by their (ξ ; α,μ) relation shown in

Eq. (37). We also represent the fitted values for some ξ along
the curve of the position moments and correlations. The posi-
tion moment data are obtained by numerically estimating the
power-law exponents η and η of the second moment 〈d2(t )〉
and third moment 〈d3(t )〉, respectively, and adopting μ(ξ ) =
α(ξ ) = 2 − η(ξ ) 
 3 − η(ξ ). Likewise, the fitted values of
the position correlations ϕξ are obtained by estimating the
power-law exponent of Eq. (40), ωp, with p = 2, 3, where the
exponents ω2 and ω3 render the 2- and 3-point position cor-
relation functions, respectively, and adopting μ(ξ ) = α(ξ ) =
2 − ω2 
 3 − ω3 [cf. Eqs. (11) and (30)]. The power-law
scaling of the position autocorrelation function does the same
as the asymptotic scaling of the position moment amounts
with single time t (see Remark 2). These findings confirm
the prediction of exponents provided by Eq. (37). Hence they
can be used for the higher-order position moments and the
correlation functions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

FIG. 3. This figure represents the parameters (ξ ; α,μ) functional
relationship, Eq. (37), of the SM (or so FND) and the LLG, along
with fitted values for some ξ . The fitted values with their bounds as a
function of ξ for the position moments and the correlations of order
n = 2 and n = 3 are obtained by the best fit to the data and adopting
α(ξ ) = n − best fit.
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IV. DISCUSSION AND CONCLUSION

The investigation on the equivalence of observables be-
tween the SM and the LLG was started by Salari et al. [24],
who observed that the moments scale in the same fashion.
Since moments contain only partial information on the trans-
port systems, knowledge of the correlation is an essential
ingredient to highly characterize anomalous transport dynam-
ics [30]. Therefore, Giberti et al. [48] derived the 2-point
position autocorrelation function of the SM in several scal-
ing forms and compared it with the numerically estimated
position autocorrelation function of the LLG. They found a
remarkable agreement in scaling, at least for lower scatterer
density (i.e., for small values of ξ ). Findings on the coin-
cidence of the position moments and the 2-point position
autocorrelation function are not a hallmark of the indistin-
guishability of these transport systems. Other observables are
needed to distinguish these processes; for instance, the ve-
locity autocorrelation functions of these processes are quite
different.

In this paper, the general order position autocorrelation
functions φα of the SM [Eq. (6)] and ρμ of the FND [Eq. (25)]
are analytically computed. For a special case, their 3-point
position autocorrelation functions are also presented. Based
on these analytical expressions, a single scaling relation for
the 3-point position autocorrelation function is established,
allowing the representation of the correlation function in a
scaling form where it only depends on the ratio of times h2/t2
[cf. Eqs. (12) and (31)]. The excellent agreement between the
numerical data of the LLG and the predictions obtained by
the SM and the FND (symbols and dashed lines in Fig. 2)
establishes a new way to analyze correlations in anomalous
transport. Additionally, it is argued that the position moments
and correlations are posed in the same way, provided that the
(ξ ; α,μ) relation follows Eq. (37), as represented in Fig. 3. It
only depends on the exponent η characterizing the MSD and
the prefactor of that asymptotic power law.

To conclude, at the very least, for small ξ , the 3-point
position autocorrelation function of the SM and the FND
can capture the main features of the correlation function for
the nontrivial anomalous transport process. We argued that
systems with different microscopic dynamics but enjoying
the same transport properties, such as position moments and
correlation functions up to order 3, should be considered.
Consequently, for superdiffusive transport, the position mo-
ments and autocorrelation functions of the SM, the FND, and
the LLG are dominated by ballistic trajectories. The behavior
of rare events at large distances in the SM, the FND, and
the LLG is determined by the same physical origin: a single
ballistic jump. This is described in the general framework of
a single big jump in [44,45]. This ballistic jump determines
all the dynamical correlations when the diffusive parameters
of these systems are small enough. Conversely, at short dis-
tances, the typical dynamical evolution differs significantly.
The big jump principle holds not only for power-law distribu-
tions with small exponents but also in models characterized by
subexponential distributions, as noted in [50]. However, when
parameters such as α, μ, or ξ change, the big jump is observed
in different observables. For instance, the big jump determines
the correlation functions specifically for a power-law proba-

bility density function with a sufficiently small exponent. In
the SM and the FND, the typical asymptotic dynamics are
frozen; the trajectories become periodic within their neigh-
boring cells in the SM and die in the FND. In contrast, for the
LLG, the typical asymptotic dynamics can be diffusive or sub-
diffusive, depending on the value of ξ [45]. It is conjectured
that the position moments and the autocorrelation function
apply to a wide class of such systems [42]. Even with entirely
different microscopic dynamics, the models agree regarding
the characteristics of the displacement. However, the moments
and correlations of the velocities may differ. In summary,
these concepts have potential applications in various fields,
ranging from dynamical systems and ecology to statistical
physics, providing valuable insights into the behavior of com-
plex systems.
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APPENDIX: SUPPORTING DERIVATION FOR THE
POSITION MOMENTS

1. Derivation for pth position moments of the SM

In this Appendix we show the derivation of pth position
moments, which is represented in Lemma 1. The position
moments are a function of the number n of iterations of the
map Sα . For n � 21/α one obtains

〈(xn − x0)p〉 
 2
∫ �n

0
dx np + 2

∫ 1/2

�n

dx (x−1/α − 21/α )p


 2 np �n + 2

1 − p/α

(
2−1+p/α − �1−p/α

n

)+O(1)

∼ 2 p

p − α
np−α + O(1) (A1)

∼
{

constant, for p < α,

2 p
p−α

np−α, for p > α > 0,
(A2)

while for p = α, Eq. (A1) leads to

〈(xn − x0)α〉 ∼ 2 ln
nα

2
. (A3)

Collecting terms from Eqs. (A2) and (A3) completes the proof
of Lemma 1.

2. Derivation for pth position moments of the FND

This Appendix shows the derivation of pth moments of the
FND; the asymptotic scaling is represented in Lemma 3. For
p = μ, the pth position moments can be obtained,

〈|�x(t )|p〉 =〈|x(x0, t ) − x0|p〉

=
∫ 1

0
|x(x0, t ) − x0|pdx0

=
∫ P(>t )

0
tμ dx0 +

∫ 1

P(>t )
[tc(x0)]μdx0, (A4)
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where tc(x0) is the final position of the particle and has a power-law tail, expressed in Eq. (21b). The probability P(> t ) to perform
a flight longer than t amounts to the fraction of initial condition x0 with tc(x0) > t [cf. Eq. (22)], such that from Eqs. (21b) and
(22), we can write Eq. (A4) as follows:

〈|�x(t )|p〉 =
∫ l/tμ

0
tμ dx0 +

∫ 1

l/tμ

[tc(x0)]μdx0 = t p l

tμ
+ l p/μ

1 − p/μ

[
1 −

(
l

tμ

)1−p/μ
]
. (A5)

Rearranging and collecting terms for the t p−μ and l p/μ, one finds

〈|�x(t )|p〉 = pl

p − μ
t p−μ + μ

μ − p
l p/μ.

Analogous derivation for p = μ, and in the limit of long times t > l1/μ, completes the proof of Lemma 3.
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