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Non-Bloch theory for spatiotemporal photonic crystals assisted by continuum effective medium
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As one indispensable type of nonreciprocal mechanism, a system with temporal modulations is intrinsically
open in the physical sense and inevitably non-Hermitian, but the space and time degrees of freedom are
nonseparable in a large variety of circumstances, which restrains the application of the non-Bloch band theory.
Here, we investigate the spatially photonic crystals (PhCs) composed of spatiotemporal modulation materials
(STMs) and homogeneous media, dubbed as the STMPhC, wherein the spatial and temporal modulations are
deliberately designed to be correlated. To bypass the difficulty of the spatiotemporal correlation, we first employ
the effective medium theory to account for the dispersion of fundamental bands under the influence of Floquet
sidebands. Based on the continuum generalized Brillouin zone condition, we then analytically give the criteria
for the existence of the non-Hermitian skin effect in the STM. Assisted by developing a numerical method
that embeds the plane wave expansion in the transfer matrix, we establish the non-Bloch band theory for the
low-frequency Floquet bands in the STMPhCs, in which the identification of the generalized Brillouin zone
is central. We finally delve into the topological properties, including non-Bloch Zak phases and non-Bloch
bulk-boundary correspondence. Our work validates the idea that the effective medium assists the non-Bloch
band theory applied to the STMPhCs, which delivers a prescription to broaden the horizons of non-Bloch theory.
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I. INTRODUCTION

Recent increasing efforts have been devoted to a myriad
of physically open systems, ranging from condensed matter
to classical waves, thus leading to non-Hermitian physics
[1–6]. The allure of non-Hermitian physics lies in its com-
plex spectrum, although the non-Hermitian systems with
pseudo-Hermiticity can still possess real spectra [7–12]. The
complexification immediately gives rise to two intriguing
spectral features unique to non-Hermitian systems, known as
exceptional degeneracy and point gaps [3,4,13–16]. The for-
mer handles an abundance of geometry formed by exceptional
points and corresponding properties, including higher-order
exceptional lines [17,18], eigenvalue braidings [19,20], the
non-Abelian conservation rule [21], and so on [3,4,13,15,22–
25]. The latter indicates the nonzero eigenvalue winding num-
bers and further implies the wave function localization to the
system boundary under open boundary conditions (OBCs),
dubbed as the non-Hermitian skin effect (NHSE) [26–31].
The emergence of NHSE has led to the failure of the bulk-
boundary correspondence based on the Hermitian Bloch band
theory [26–28]. For restoring it, one prevailing approach is
employing the generalized Brillouin zone (GBZ) to build
up a comprehensive non-Bloch band theory, which works
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excellently in one-dimensional (1D) systems [26,32–34]. In
higher dimensions, the non-Bloch band theory and the GBZs
still have the same role as in one-dimension, although how
to acquire the OBC spectra and wave functions from the non-
Bloch band theory for a particular class of higher-dimensional
systems is still under exploration [35–41].

Aiming to investigate the non-Hermitian photonic crystals
(PhCs), the fact that the non-Bloch band theory is concomi-
tant with the NHSE requires nonreciprocal electromagnetic
materials [42] since the NHSE in lattice models has been
achieved mainly by using nonreciprocal hoppings [26–28].
Besides using external fields or nonlinearity, time modulation
is another possibility to break reciprocity [42,43], and by
using it, a plethora of schemes have then been proposed to
realize a large variety of fancy phenomena, such as temporal
double-slit interference [44], Fresnel drag effect [45], axion
responses [46], time crystals [47–49], and so on [50–58].
As a promising nonreciprocal material, the spatiotemporal
modulation materials (STMs) are excellent candidates for the
component in non-Hermitian PhCs, wherein the existence of
exceptional points has been revealed [59–62]. The occurrence
of NHSE is then seemingly apparent, and so is the non-Bloch
band theory, but establishing it in the STMs is not straightfor-
ward because of the inherently (d + 1)-dimensional problem
herein (d is spatial dimensionality) [63,64]. The difference
between spatiotemporal systems and purely spatial problems
is at least twofold. The complexity of both problems is rooted
in the boundary condition (BC) of whatever spatiality or
spatiotemporality is to be considered [35,38]. However, the
temporal axis possesses its own uniqueness, such as causality,
which fundamentally alters the wave scattering at temporal
interfaces compared with spatial boundaries [47,48,65]. It is
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more worth pointing out that most studies on spatiotemporally
modulated systems nowadays deal with cases where space
and time are separable or possess a uniform modulation speed
in the space-time domain, certainly not fully leveraging the
role of temporal degrees of freedom in non-Hermitian physics
[45,46,56,59–62].

By targeting the establishment of non-Bloch band theory
for the (1 + 1)-dimensional PhCs, we spatially stack the STM
possessing a traveling-wave modulation in its permittivity and
permeability with other homogeneous media, constituting the
so-called STMPhCs. Firstly, we deploy the effective medium
theory (EMT) to represent the fundamental Floquet band of
STM influenced by the Floquet sidebands. By further using
the continuum GBZ condition, we analytically work out the
criterion for the existence of NHSE in STM (Sec. II). With
the recipe for STM in hand and by generalizing the transfer
matrix method (TMM) through embedding plane wave expan-
sion (PWE), we establish the non-Bloch band theory for the
STMPhCs by identifying the GBZ and the OBC spectra and
electromagnetic fields (Sec. III). To validate the established
non-Bloch band theory, we finally explore the non-Hermitian
topological behaviors, including the non-Bloch Zak phase and
topological edge states (TESs) in Sec. IV. The discussions and
conclusions are drawn in Sec. V.

II. NON-BLOCH PROPERTIES OF SPATIOTEMPORAL
MODULATION MATERIALS

The non-Bloch band theory requires knowing the map
f and its inverse f −1 from the complex frequency (en-
ergy) domain C to the complex wave number domain Cd

[26,32,33,36], which is the beginning of exploring non-Bloch
properties. Compared to traditional stationary models, the
complex dispersion relationships arising from the interaction
between wave numbers and Floquet quasifrequencies pose
challenges to the study of the non-Bloch properties of STM

and the ensuing STMPhCs. The EMT, a method only valid
in the long-wavelength limit, establishes the map f analyti-
cally, thereby mitigating the complexity of using non-Bloch
band theory [66,67]. Aiming to utilize such analyticity and
convenience, we first establish the EMT for the STM with
non-Hermitian modulations in this section, which embeds the
influence of Floquet sidebands in the zeroth band analytically
as the effective parameters. For straightforwardly revealing
the power of EMT in spatially and temporally correlated mod-
ulations, the permittivity and permeability under investigation
are of a traveling-wave manner as

D(x, t ) = ε0ε(x, t )E(x, t ), B(x, t ) = μ0μ(x, t )H (x, t ),
(1)

ε(x, t ) = εr[1 + 2αεcos(gx − �t + φε )], (2)

μ(x, t ) = μr[1 + 2αμcos(gx − �t + φμ)], (3)

where εr (μr) represents the background permittivity (per-
meability), αε (αμ) represents the complex modulation of
permittivity (permeability), φε (φμ) denotes the initial phase
of the modulation in permittivity (permeability), and g (�) is
the spatial (temporal) frequency. Figure 1(a) depicts a typical
spatiotemporal modulation of material parameters and the
corresponding Floquet band structure (BS) calculated by the
PWE for Ez polarization is illustrated by the red lines and
circles in Fig. 1(b) (see the Supplemental Material [68] for
the method details; this includes Refs. [69–79]). The leading
three sets of bands, namely, the fundamental order and two
sidebands of order ±1, have been displayed in Fig. 1(b),
wherein several frequency gaps are from the interaction be-
tween the fundamental bands and sidebands. If we focus on
the long-wavelength limit that EMT works, namely, the bands
highlighted in the black dashed box, the STM defined by
Eqs. (1)–(3) can be modeled as a homogeneous bianisotropic
material [45,80] (see Ref. [68] for details),
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where c = 1/
√

ε0μ0, v = 1/
√

ε0μ0εrμr , and the effective medium parameters are

εeff,x = εr, μeff,x = μr, (5)

εeff,y = εeff,z = εr

(
1 + α2

ε

2�2

v2g2 − �2

)
, μeff,y = μeff,z = μr

(
1 + α2

μ

2�2

v2g2 − �2

)
, (6)

ξeff = αεαμ

2cg�

v2g2 − �2
cos(φε − φμ). (7)

The matching dispersion relation and eigenmodes for Ez

polarization are

k± = ω

c
ξeff ± ω

c
neff , ψ± =

(
1

∓ 1
Zeff

)
, (8)

where the subscript ± denotes the waves propagating
along the +x and −x directions, neff = √

εeff,zμeff,y, Zeff =√
μeff,y/εeff,z, and ψ = (

√
ε0Ez,

√
μ0Hy)T . The dispersions

by Eq. (8) are displayed by solid green lines in Fig. 1(b), and
excellent agreement with the PWE is seen within the black
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FIG. 1. (a) Schematic of the permittivity distribution in the space-time domain of an STM. (b) A typical Floquet BS for the STM (red
lines and circles), wherein only real parts of the frequency are plotted. The green lines represent the EMT dispersions. (c), (d) Contour plot
of 	 in the arg(αε)-arg(αμ) plane (c) and the g-k� plane (d). The red pentagram in (c) and the dashed line in (d) denote the scenario of (b),
and the black pentagram denotes the scenario that will be investigated in Fig. 2(a). The solid red line in (d) represents the speed of light in
the background material. g0 is a parameter that accounts for the concrete physical system, facilitating the nondimensional coordinates here.
Besides the parameters indicated in the figures, other parameters are εr = 6, μr = 1, and φε = φμ = 0.

dashed box, which motivates us to utilize EMT to investigate
the non-Bloch properties of STM.

When the effective medium defined by Eq. (4) is placed
in a cavity (its length being L) with its boundaries being
perfect electric conductors (PECs) or perfect magnetic con-
ductors (PMCs), the eigenfrequency and specific form of the
eigenmodes under the OBC can be analytically derived (see
the Supplemental Material [68] for details). From the specific
forms of these OBC eigenmodes, we can see the potential
emergence of NHSE. Its occurrence prevents the OBC eigen-
modes from being expressed as linear combinations of tradi-
tional Bloch states. Therefore, it becomes necessary to extend
the Bloch states, initially confined to the Brillouin zone (BZ),
to non-Bloch states in the GBZ. Meanwhile, the OBC spectra
in the thermodynamic limit (L → ∞) being essentially the
same under various BCs also beg for the non-Bloch theory,
namely, the determination of GBZ. The essence of the non-
Bloch band theory is to identify the GBZ from the unit cell,
so we need the non-Bloch theory for the continuum effective
medium to resolve the complex wave numbers corresponding
to the OBC eigenmodes and spectra. Technically speaking, the
GBZ is of the same dimension as the physical one, and thus,

on top of vanishing the characteristic polynomial, another
constraint is required to derive from the BCs in one dimension
to determine the GBZ. The number of BCs applied at each
end of the cavity is 1, and the continuum GBZ condition is
then Im k+ = Im k− [34,75]. A simple physical interpretation
of this condition is that in the thermodynamic limit, to form a
standing wave, the two counterpropagating waves involved in
the linear combination must exhibit the same decay behavior.
By expressing Im k± explicitly from Eq. (8) as

Im k±(ω) =
(

ω′′

c
ξ ′

eff + ω′

c
ξ ′′

eff ± ω′′

c
n′

eff ± ω′

c
n′′

eff

)
, (9)

the condition Im k+(ωO) = Im k−(ωO) = τ (ωO) gives the
following (ωO denotes the OBC spectrum),

τ (ωO) = kc(−n′′
effξ

′
eff + n′

effξ
′′
eff )/n′

eff = kc	, (10)

where kc = Re(ωO)/c ∈ R+ is a continuous variable in the
thermodynamic limit and

	 = (−n′′
effξ

′
eff + n′

effξ
′′
eff )/n′

eff . (11)

The prime and double prime superscripts denote the real
and imaginary parts, respectively. The quantity e−τ here plays
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the same role as |β| in the GBZ of lattice models, where β

describes the localization behavior of non-Bloch states; its
formal definition is β = eik (k is the complex wave number).
Equation (10), together with Eq. (8), already determines the
continuum GBZ of STM for the fundamental Floquet bands.
Note that we focus on the n′

eff �= 0 case [Eq. (11)] because
n′

eff = 0 only occurs at the transition of modulation speed
from the superluminal to the subluminal region, which will
be discussed later. Equation (10) not only provides the oc-
currence criteria for NHSE but also indicates that the sign
of τ (ωO) delineates the localization characteristics of NHSE.
Hence, the dispersion relation [Eq. (8)] shall be solved to-
gether with the continuum GBZ condition to identify τ (ωO)
and the ensuing OBC spectra. As alternative evidence, the
non-Bloch properties can also be examined by the dynamical
degeneracy splitting (DDS) approach, which yields the same
result as Eq. (11) (see the Supplemental Material [68] for
details).

Since all the above considerations converge to the crite-
rion for the emergence of NHSE, we depict in Figs. 1(c)
and 1(d) the distribution of 	 in different parameter planes.
By considering |αε,μ| 	 1 in reality, resulting in n′′

eff 	 n′
eff

and n′
effξ

′′
eff 
 n′′

effξ
′
eff , we set φε = 0 and φμ = 0 through-

out this work to maximize ξeff . Consequently, we investigate
	 in two parameter planes: [arg(αε ), arg(αμ)] and (g,�).
Since the dominant contribution is from n′

effξ
′′
eff , the maxi-

mum value of 	 in the arg(αε ) − arg(αμ) plane occurs at
arg(αε ) + arg(αμ) = π/2 + nπ , consistent with Fig. 1(c).
This relation, which the modulation phase of αε and αμ should
satisfy to maximize 	, indicates that synchronously modulat-
ing imaginary parts of ε and μ does not imply the NHSE.
In contrast, modulating real parts of ε (μ) and imaginary
parts of μ (ε) simultaneously will maximize the localization
of skin modes. Besides the magnitude of 	, Fig. 1(c) also
shows its sign change by varying arg(αε ) and arg(αμ), which
is seemingly straightforward from Eq. (7), whereas the sign of
	 also flips when the modulation transits from the subluminal
region (� < vg) to the superluminal one (� > vg) with all
other parameters fixed. For the modulation at the red markers
in Fig. 1(c), we show in Fig. 1(d) the distribution of 	 in the
g−� plane. The sign change is clearly seen when the modula-
tion goes across the speed of light (� = vg), but the effective
medium near � = vg becomes near zero-index material, at
which Eqs. (10) and (11) should be amended (see Ref. [68]
for details). Since the EMT near � = vg cannot capture the
essence of STM, we do not delve into the green region near the
diagonal in Fig. 1(d) [81,82]. It is worth pointing out that the
NHSE is absent when the modulation becomes purely spatial
(� = 0) or temporal (g = 0) since therein exists symmetry to
make the spectra purely real or complex pairs, leading to the
absence of point gaps [7–12,29–31].

To validate our findings, we conduct a detailed investiga-
tion of the two marked examples (red and black pentagrams)
in Fig. 1(c). The Floquet BS, the OBC spectra, and a typical
state are presented in Figs. 2(a) and 2(b) [Figs. 2(c) and 2(d)]
for the parameters highlighted by the black (red) pentagram
in Fig. 1(c). The consistency (disparity) between the periodic
boundary condition (PBC) and OBC spectra in the top panel
of Fig. 2(b) [Fig. 2(d)] shows the absence (appearance) of the
NHSE, as demonstrated by the state (labeled by the black

arrow) shown in the bottom panel of Fig. 2(b) [Fig. 2(d)].
Moreover, the non-Bloch properties of STM calculated by
PWE (markers) are reflected nicely by the EMT results (solid
lines), as shown in Fig. 2. Crucially, the OBC spectra have
been benchmarked by the continuum GBZ condition (see
Ref. [68] for details). All demonstrate the validity of Eq. (11).

Until now, we have expounded the fundamental Floquet
bands in the long-wavelength limit of the STM with their
critical features under both PBC and OBC able to be captured
by the EMT faithfully. More precisely, the EMT excellently
models the envelope of time-averaged electromagnetic fields
over the period 2π/� in the long-wavelength limit (see
Ref. [68] for details). This not only illustrates the valid
range of EMT but also reflects that the EMT quantifies the
slow-varying components in the STMs. The fast-varying com-
ponents, which the EMT cannot describe, contribute to the
difference in the NHSE between STMs and EMT framework
(see Ref. [68] for details). However, for the fundamental Flo-
quet bands, the power and conciseness of EMT afford a handy
way toward scrutinizing the non-Hermitian system contain-
ing the STM as one component, which will be demonstrated
next.

III. GENERALIZED BRILLOUIN ZONE OF
SPATIOTEMPORAL PHOTONIC CRYSTALS

In order to corroborate the EMT recipe for the STM
that can successfully embed in the composite non-Hermitian
system, we now consider a spatial PhC composed of homo-
geneous materials and STMs, as illustrated in Fig. 3(a). The
boundaries are still formed spatially and, thus, we dub the
system in Fig. 3(a) the STMPhC. Let us begin with solving
the PBC spectra of this STMPhC. Due to the periodicity in
space-time, the modes still obey the form of Bloch-Floquet
states, and the PWE method shown in Ref. [68] is then avail-
able to determine the PBC spectra, as displayed by the open
stars in Fig. 3(b). Only the lower two bands are shown herein
because Re(ω/2πc) � 0.6 [equivalently, Re(ω/�) � 0.15]
is within the validity of EMT. This permits replacing the
STM with an effective bianisotropic medium as component b,
and now the PhC is constituted by two homogeneous media,
referred to as an effective photonic crystal (EPhC). The cor-
responding EPhC results are shown in Fig. 3(b) by the solid
lines, and good agreement is seen compared with the PWE
method. The color of the stars and lines denotes Im(ωP ) (the
superscript P stands for the PBC case), and the correspon-
dence from the DDS perspective indicates the NHSE for both
bands propagating toward the left-hand side (−x direction)
[38].

To validate the NHSE, we investigate a finite-sized STM-
PhC by applying PEC BCs at both ends. The PEC here is
equivalent to the Dirichlet BCs used in condensed matter. The
OBC spectra generally relate to the scattering matrix, so we
first formulate the TMM for the STMPhC [72,83], and the
scattering matrix is then obtained recursively from the transfer
matrix (see the Supplemental Material [68] for the method
details). Since the TMM is numerically unstable when the
wave number becomes complex, or the system size increases,
we adopt TMM for the unit-cell level calculations but use the
scattering matrix method (SMM) for finite-sized calculations.

033167-4



NON-BLOCH THEORY FOR SPATIOTEMPORAL PHOTONIC … PHYSICAL REVIEW RESEARCH 6, 033167 (2024)

FIG. 2. (a), (c) The PBC BS in the long-wavelength limit when (a) αε = αμ = 0.2i and (c) αε = 0.2i, αμ = 0.2. The black dashed lines
in (a) are the bands without modulations (αε = αμ = 0). The solid lines and open markers in (a), (c) represent the EMT and STM results,
respectively. (b), (d) The OBC spectra (top) and fields (bottom) when (b) αε = αμ = 0.2i and (d) αε = 0.2i, αμ = 0.2. The gray dashed lines
are the PBC spectra reproduced from (a), (c). The dots and lines in green and red represent the EMT and STM results, respectively. The bottom
panels display the field distribution of states indicated by the black arrow. Other system parameters are εr = 6, μr = 1, φε = φμ = 0, and
�/g = 0.2c.

The established TMM and SMM can be generalized to the
STMPhCs composed of STMs with the same time-modulated
frequency but possessing different spatial modulations (see
Ref. [68] for details). Before obtaining the scattering matrix,
we first apply the PBCs in the TMM to acquire the PBC BS
[circles in Fig. 3(b)], which agrees well with both PWE and
EPhC, validating the transfer matrix. By imposing the PEC
BCs in the scattering matrix, we obtain the mode condition
function g(ω) (see Ref. [68] for explicit expressions), which
is plotted by the color contours in Fig. 3(c). The zeros of g(ω),
which correspond to the OBC spectra, are highlighted by the
red diamond markers, and two bands and one in-gap state are
seen. The Re(ωO) range of both bands is almost the same
as the PBC one, but the Im(ωO) is one order of magnitude
smaller than Im(ωP ). Such disparateness hints at the NHSE, as
demonstrated by the electric field distribution (the red dashed
line) in Fig. 3(d) for the bulk state marked with the black pen-
tagram in Fig. 3(c). The skin modes apparently localize at the
left-hand side boundary, confirming the previous statements.
For comparison, the electric field distribution for the in-gap
state is depicted in Fig. 3(e) by the red dashed line, which is
localized at the right-hand side boundary. The occurrence of

NHSE and the in-gap state begs for the non-Bloch band theory
because the GBZ informs the skin mode localization behavior
and identifies the parametric loop on which the integral of the
topological invariant performs.

As stated previously, the vanishing of the characteristic
polynomial f (β, ω) = 0, where β = eiq, is inadequate to de-
termine the GBZ, whatever f (β, ω) is from the tight-binding
model (TBM) or the TMM in the STMPhC. Specifically in the
1D lattice model, another constraint derived from Dirichlet
BCs is known as |βM (ω)| = |βM+1(ω)|. This states that for
the ω in the OBC spectra, the norm of the two middle roots
of β shall be equal when the 2M roots of β are sorted by
their moduli incrementally. Although the BCs in Fig. 3(a) are
essentially Dirichlet BCs, we formally prove from the transfer
matrix that the criterion for discriminating the OBC spectra in
the STMPhC is still (see Ref. [68] for proof)∣∣β2lc+1(ω)

∣∣ = ∣∣β2lc+2(ω)
∣∣. (12)

Here, βi is the ith eigenvalue of the transfer matrix. These
eigenvalues are sorted in ascending order of their magni-
tudes as |β1 | � |β2 |� . . . �|β(4lc+1) | � |β(4lc+2)|, where lc
is the cutoff defined in the PWE (see Ref. [68] for details).
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FIG. 3. (a) Schematic of a spatial PhC composed of homogeneous materials (component a) and STMs (component b). The unit cell is
labeled herein with its lattice constant  = 2πN/g. (b) The PBC BS of an STMPhC with its unit cell shown in (a). The color of all these plots
represents Im(ωP ). Solid lines, open circles, and open stars correspond to numerical results of the EPhC, TMM, and PWE, respectively. The
frequency Re(ω/2πc) = 0.6 here corresponds to Re(ω/�) = 0.15 in Fig. 2. (c) The spectrum of a finite-sized STMPhC under PEC BCs.
The color plot shows |g(ω)| with its zeros marked by the red diamonds. The green dots and blue lines represent the results from EPhC and
GBZ, respectively. The gray dashed lines are the PBC spectra reproduced from (b). The field distributions of a bulk state (black pentagram)
and the TES (purple pentagram) are shown in (d,e), respectively. The green (red) lines are from the EPhC (STMPhC). The parameters of the
component a are εr = μr = 1 and da/ = 0.5 (N = 20), while those of the component b are the same as Fig. 2(c). The number of unit cells
is Nt = 15. The numerical cutoff is set to lc = 2, nc = 60, and oc = 100.

Figures 4(a) and 4(b) show the GBZ calculated by Eq. (12)
for the lower two bands (blue circles). The radii of both
GBZs are smaller than 1, indicating the skin modes localized
at the left boundary, which is qualitatively the same as the
continuum medium. We further obtain the corresponding ωO

on the GBZs, which is depicted in Fig. 3(c) by the blue lines.
The consistency between the SMM and GBZ seen in Fig. 3(c)
validates Eq. (12).

To validate the EPhC description for STMPhC in the OBC,
we recall the EPhC setup. The OBC spectra and field dis-
tributions calculated by the SMM are represented by green
dots and lines in Figs. 3(c)–3(e), and the acquired GBZs by
Eq. (12) with lc = 0 are shown by the green dashed lines in
Fig. 4. Again, excellent agreement between the EPhC and
STMPhC further manifests that the EMT is a faithful de-
scription and connotes the possibility of EMT-based GBZ
being accessible analytically. The electromagnetic fields for
Ez polarization of the EPhC satisfy

L̂ψ(x) = ω

c
KE (x)ψ(x), (13)

L̂ =
(

0 i d
dx

i d
dx 0

)
,

KE (x) =
(

εE ,z(x) −ξE (x)
−ξE (x) μE ,y(x)

)
, (14)

ψ(x) =
( √

ε0Ez(x)√
μ0Hy(x)

)
,

where the subscript E in KE signifies that it is the material pa-
rameter matrix describing the EPhC. The matrix components
of KE are piecewise continuous functions. By considering the
following transformation [66,67],

ψ(x) = r(x)D(x)Q(x), (15)

where r(x) = exp[i
∫ x

0
ω
c ξE (υ )dυ], D(x) = Diag

[[εE ,z(x)]−1/2, �μE ,y(x)−1/2], and Q(x) = [QE (x) QH(x)]T

is an auxiliary field quantity defined by Eq. (15), we
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FIG. 4. The GBZs for band 1 and band 2 in Fig. 3(b) are depicted in (a), (b), respectively. The blue markers, green dashed lines, and red
solid lines represent the GBZs calculated using the STMPhC, the EPhC, and analytical methods. The solid gray line represents the adjoint
GBZ, and the gray dashed line depicts the BZ.

reformulate Eq. (13) as

r(x)L̂D(x)Q(x) =
[
ω

c
KE(x)r(x) − [L̂r(x)]

]
D(x)Q(x)

= ω

c
r(x)D(x)−1Q(x). (16)

Subsequently, by introducing the operator L̂S =
D(x)L̂D(x), we reorganize Eq. (16) into a more concise
form as

L̂SQ(x) = ω

c
Q(x). (17)

The absence of ξE in the operator L̂S indicates that the
EPhC spectra are disconnected from ξE , and either QE (x)
or QH(x) can then be used to determine the EPhC spectra.
The PEC (Ez = 0) and PMC (Hy = 0) BCs become QE = 0
and QH = 0 at the boundary, which are essentially Dirichlet
or Neumann BCs, depending on the QE or QH being em-
ployed. All these conclude that the OBC spectra of the EPhC
[Eq. (13)] can be investigated by the operator L̂S [Eq. (17)].

Concerning Fig. 3, it is crucial that εE ,z(x) and μE ,y(x) are
both real, thus ensuring the Hermiticity of the operator L̂S un-
der the inner product 〈Q1|Q2〉 = ∫ x2

x1
(Q1)†Q2dx [84], where

the integration interval spans a unit cell (entire system) under
the PBC (OBC). This explains why the OBC spectra of the
EPhC lie entirely on the real axis. What is more profound is
that the GBZs of the EPhC [Eq. (13)] can then be determined
by Eqs. (15) and (17) analytically as

βni (q) = exp

[
i
∫

uc

ωS
ni

(q)

c
ξE (υ )dυ + iq

]
, (18)

where ωS
ni

(q) stands for the PBC spectra of L̂S with its sub-
script ni (superscript S) denoting the band index (the L̂S case).
Considering ξE (x) is a piecewise function, we can then see
that ln|βni (q)| = −c−1ωS

ni
(q)ξ ′′

E fb, where fb = db/ is the
filling ratio of the STM. When fb = 0 ( fb = 1), ln|βni (q)| = 0
[ln|βni (q)| = −τ] recovers the BZ [the continuum GBZ in

Eq. (10)]. This indicates that the GBZ radius of the EPhC
is determined by the filling ratio and dispersion relations to-
gether as shown by the solid red lines in Fig. 4. The excellent
agreement herein reveals that Eq. (18) offers a straightforward
approach to accessing the GBZ of the STMPhC, and Eq. (15)
plays exactly the same role of similarity transformation used
in some intriguing TBMs [26]. Compared with Refs. [75,85],
which also have utilized TMM to explore the non-Bloch prop-
erties of electromagnetic coupling materials, our method, see
Eq. (15), not only provides analytical formulas for the GBZ
but also eliminates the requirement of left eigenvectors when
calculating topological invariants due to the Hermiticity of L̂S .
With such a powerful tool, we are now ready to investigate the
topological properties of the STMPhC.

IV. TOPOLOGICAL PROPERTIES OF SPATIOTEMPORAL
PHOTONIC CRYSTALS

To examine the edge states of the STMPhC system, we
construct a domain wall formed by two STMPhCs, as depicted
in Fig. 5(a). The unit cells of both STMPhCs are chosen to
be symmetric, which will simplify the following analysis. To
better leverage the analytical theory developed in the previ-
ous sections, we aim to reveal the topological properties of
STMPhCs from the EPhC approach. We set the parameters
of STMPhC2 to be the same as those that have already been
investigated in Fig. 3, and Fig. 5(b) shows its non-Bloch BS,
which contrasts the Bloch BS; see Fig. 3(b). With the vertical
axis still showing Re(ω/2πc), the horizontal axis uses the
argument of β instead of q, while the line color reflects |β|.
Such non-Bloch BS with the GBZs and the OBC spectra
information contained shall be utilized when investigating
the topological properties of a finite-sized system. We focus
on the second non-Bloch band gap, and the non-Bloch Zak
phases of the two bands below the gap are indicated therein.
The non-Bloch Zak phase is calculated on the GBZ by using
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FIG. 5. (a) Schematics of a domain wall formed by two STMPhCs. (b) The non-Bloch BS Re(ω/2πc) − arg(β )/2π of the STMPhC2
with the line color representing |β|. The non-Bloch Zak phase of each non-Bloch band is indicated nearby. The parameters herein are the same
as in Fig. 3, except for the symmetric unit cell adopted here. (c) The non-Bloch Zak phase (left y axis) and the OBC spectra (right y axis) of
the STMPhC1 as a function of εa1

E ,z. (d) The PBC spectra of the STMPhC1 as a function of εa1
E ,z. The parameters of the STMPhC1 fixed in

(c), (d) are μa1
E ,y = μb1

E ,y = 1, da1/ = 0.7, αε = 0.15i, and αμ = 0.15. We adjust the values of εb1
E ,z accordingly with εa1

E ,z to align the second
non-Bloch band gap. The numerical calculations in (b–d) are performed based on the EPhC corresponding to the STMPhC. (e), (f) The OBC
spectra of the composite PhCs. The PhC in (e) [(f)] is composed of the one defined in (b) and (M) [(B)] marked in (c). The green (black)
markers represent the results obtained using the EPhC (STMPhC) setup, in which the circles (pentagrams) denote the bulk states (TESs). The
purple and blue shaded regions highlight common non-Bloch band gaps of the two PhCs. The number of unit cells for both PhCs in the OBC
calculations is chosen to be ten.
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the following biorthogonal Berry connection,

θZak
ni

=
∮

GBZni

dϕβ

[
i
〈
uL

ni,ϕβ

∣∣∂ϕβ
uR

ni,ϕβ

〉]
, (19)

where ϕβ = arg(β ), ni is the band index, and uR (uL) rep-
resents the periodic wave function of the non-Bloch right
(left) wave function. uR is located on the GBZ, while uL is
located on the adjoint GBZ (see the Supplemental Material
[68] for the details regarding uR and uL). The transformation
of Eq. (15) implies that the conclusions drawn from the Her-
mitian PhC defined by Eq. (17) can be applied to the EPhCs,
which guarantees the quantization of the non-Bloch Zak phase
shown in Fig. 5(b) [79,86,87].

To make TESs occur in the second gap, we introduce the
STMPhC1 by varying εa1

E ,z and adjusting εb1
E ,z accordingly

to pin its non-Bloch band gap center at 2πc
(na2

E da2+nb2
E db2 )

, where

{a1, a2, b1, b2} denotes the regions claimed in Fig. 5(a) and
nE = √

εE ,zμE ,y. All other parameters of the STMPhC1 are
fixed and claimed in the caption of Fig. 5. Figure 5(c) depicts
the OBC spectra of the STMPhC1 by the gray shaded area,
and the non-Bloch Zak phase of the second non-Bloch band
is depicted by the solid green line. It is evident that the non-
Bloch Zak phase successfully coincides with the non-Bloch
band gap closure at εa1

E ,z ≈ 1.51. Its PBC spectra depicted by
the light yellow shaded area are shown in Fig. 5(d) for compar-
ison, where the second Bloch band gap is closed within εa1

E ,z =
1.39–1.65. Such inconsistency between the PBC and OBC re-
sults underscores the importance of the GBZ in non-Hermitian
topology. To further illustrate, we then focus on εa1

E ,z = 1.2
(case M) and εa1

E ,z = 1.9 (case B). The non-Bloch Zak phase of
the first band is π and will always be π within the chosen εa1

E ,z
range. Therefore, the TESs do not appear in the second non-
Bloch band gap when εa1

E ,z = 1.2 but will emerge when εa1
E ,z =

1.9, as demonstrated by the OBC spectra in Figs. 5(e) and 5(f).
The TESs are indeed observed when εa1

E ,z = 1.9, confirming
that the non-Bloch theory based on EPhC can reflect the
topological properties of STMPhCs. In addition to discussing
the existence of TESs, their delocalization, a phenomenon
unique to non-Hermitian systems [75–78,88], has also been
demonstrated by our theory (see Ref. [68] for details). The
successful employment of the GBZ established in Sec. III
validates the non-Bloch BS for the STMPhC, thus providing
a recipe for analyzing the fundamental Floquet bands when

they experience non-Hermiticity. From the application point
of view, Im(ω) in Fig. 5(f) is positive, and then the localization
and delocalization competition unique in the non-Hermitian
TES, skin modes, and their interplay potentially will give rise
to various lasing scenarios [89–95].

V. DISCUSSIONS AND CONCLUSIONS

In summary, we have established the non-Bloch band the-
ory for the (1 + 1)-dimensional PhCs with the aid of the
effective medium description for the STM. Due to the fact that
the STM in the long-wavelength limit is able to be modeled by
the effective medium, and also thanks to the DDS viewpoint
and continuum GBZ condition, we have, firstly, analytically
made clear the occurrence condition and mode profile of
NHSE in the STMs. Based on such an EMT recipe, the
non-Bloch band theory for the STMPhCs is then successfully
formulated and verified by the TMM with multiple Floquet
sidebands. As a consequence, the GBZ obtained from the
non-Bloch band theory has demonstrated that it can predict the
topological transition of bulk bands, restore the bulk-boundary
correspondence, and realize the delocalization of TESs. The
validity of our non-Bloch band theory only relies on the accu-
racy of effective parameters for the STM so that it can handle
multiple bands and find its role in the non-Abelian Floquet
system [96–98]. Regarding the generalization to d � 2 se-
tups, if the EMT still works, so does our prescription, which
paves an alternative way to higher-dimensional spatiotempo-
ral crystals. All powerful theoretical methods and fancy wave
phenomena previously investigated at the EMT level can then
be utilized to digest the non-Hermitian physics in higher-
dimensional Floquet systems [96,98,99]. The holistic view
of the (d + 1)-dimensional problem requires further investi-
gation because the space-time symmetry and spatiotemporal
boundaries shall be considered together [63,64], but the nu-
merical method established here provides one scheme to cope
with both the spectra and wave functions.
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[23] W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Exceptional points enhance sensing in an optical microcavity,
Nature (London) 548, 192 (2017).

[24] K. Ding, G. Ma, Z. Q. Zhang, and C. T. Chan, Experimental
demonstration of an anisotropic exceptional point, Phys. Rev.
Lett. 121, 085702 (2018).

[25] W. Tang, X. Jiang, K. Ding, Y.-X. Xiao, Z.-Q. Zhang, C. T.
Chan, and G. Ma, Exceptional nexus with a hybrid topological
invariant, Science 370, 1077 (2020).

[26] S. Yao and Z. Wang, Edge states and topological invariants of
non-Hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).

[27] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz,
Biorthogonal bulk-boundary correspondence in non-Hermitian
systems, Phys. Rev. Lett. 121, 026808 (2018).

[28] T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling,
L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter,
and R. Thomale, Generalized bulk–boundary correspondence
in non-Hermitian topolectrical circuits, Nat. Phys. 16, 747
(2020).

[29] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-Hermitian
boundary modes and topology, Phys. Rev. Lett. 124, 056802
(2020).

[30] K. Zhang, Z. Yang, and C. Fang, Correspondence between
winding numbers and skin modes in non-Hermitian systems,
Phys. Rev. Lett. 125, 126402 (2020).

[31] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Topologi-
cal origin of non-Hermitian skin effects, Phys. Rev. Lett. 124,
086801 (2020).

[32] K. Yokomizo and S. Murakami, Non-Bloch band theory of non-
Hermitian systems, Phys. Rev. Lett. 123, 066404 (2019).

[33] Z. Yang, K. Zhang, C. Fang, and J. Hu, Non-Hermitian bulk-
boundary correspondence and auxiliary generalized Brillouin
zone theory, Phys. Rev. Lett. 125, 226402 (2020).

[34] Y.-M. Hu, Y.-Q. Huang, W.-T. Xue, and Z. Wang, Non-
Bloch band theory for non-Hermitian continuum systems,
arXiv:2310.08572.

[35] K. Zhang, Z. Yang, and C. Fang, Universal non-Hermitian skin
effect in two and higher dimensions, Nat. Commun. 13, 2496
(2022).

[36] H.-Y. Wang, F. Song, and Z. Wang, Amoeba formulation of non-
Bloch band theory in arbitrary dimensions, Phys. Rev. X 14,
021011 (2024).

[37] K. Yokomizo and S. Murakami, Non-Bloch bands in two-
dimensional non-Hermitian systems, Phys. Rev. B 107, 195112
(2023).

[38] K. Zhang, C. Fang, and Z. Yang, Dynamical degeneracy split-
ting and directional invisibility in non-Hermitian systems, Phys.
Rev. Lett. 131, 036402 (2023).

[39] K. Zhang, Z. Yang, and K. Sun, Edge theory of non-Hermitian
skin modes in higher dimensions, Phys. Rev. B 109, 165127
(2024).

[40] Z. Xu, B. Pang, K. Zhang, and Z. Yang, Two-
dimensional asymptotic generalized Brillouin zone theory,
arXiv:2311.16868v2.

[41] W. Wang, M. Hu, X. Wang, G. Ma, and K. Ding, Experimental
realization of geometry-dependent skin effect in a reciprocal
two-dimensional lattice, Phys. Rev. Lett. 131, 207201 (2023).

[42] J. A. Kong, Electromagnetic Wave Theory (Wiley InterScience,
Hoboken, NJ, 1986).

[43] C. Caloz, A. Alù, S. Tretyakov, D. Sounas, K. Achouri, and
Z.-L. Deck-Léger, Electromagnetic nonreciprocity, Phys. Rev.
Appl. 10, 047001 (2018).

[44] R. Tirole, S. Vezzoli, E. Galiffi, I. Robertson, D. Maurice, B.
Tilmann, S. A. Maier, J. B. Pendry, and R. Sapienza, Double-
slit time diffraction at optical frequencies, Nat. Phys. 19, 999
(2023).

[45] P. A. Huidobro, E. Galiffi, S. Guenneau, R. V. Craster, and J. B.
Pendry, Fresnel drag in space–time-modulated metamaterials,
Proc. Natl. Acad. Sci. USA 116, 24943 (2019).

[46] F. R. Prudêncio and M. G. Silveirinha, Synthetic axion response
with space-time crystals, Phys. Rev. Appl. 19, 024031 (2023).

[47] E. Lustig, Y. Sharabi, and M. Segev, Topological aspects of
photonic time crystals, Optica 5, 1390 (2018).

[48] M. Lyubarov, Y. Lumer, A. Dikopoltsev, E. Lustig, Y. Sharabi,
and M. Segev, Amplified emission and lasing in photonic time
crystals, Science 377, 425 (2022).

[49] P. Kongkhambut, J. Skulte, L. Mathey, J. G. Cosme, A.
Hemmerich, and H. Keßler, Observation of a continuous time
crystal, Science 377, 670 (2022).

033167-10

https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1461427
https://doi.org/10.1063/1.1489072
https://doi.org/10.1103/PhysRevB.92.235310
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevB.100.115412
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1038/s41567-023-02048-w
https://doi.org/10.1038/s41467-023-42414-z
https://doi.org/10.1038/s41586-021-03848-x
https://doi.org/10.1038/s41586-022-04796-w
https://doi.org/10.1103/PhysRevLett.130.157201
https://doi.org/10.1103/PhysRevX.6.021007
https://doi.org/10.1038/nature23281
https://doi.org/10.1103/PhysRevLett.121.085702
https://doi.org/10.1126/science.abd8872
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.125.226402
https://arxiv.org/abs/2310.08572
https://doi.org/10.1038/s41467-022-30161-6
https://doi.org/10.1103/PhysRevX.14.021011
https://doi.org/10.1103/PhysRevB.107.195112
https://doi.org/10.1103/PhysRevLett.131.036402
https://doi.org/10.1103/PhysRevB.109.165127
https://arxiv.org/abs/2311.16868v2
https://doi.org/10.1103/PhysRevLett.131.207201
https://doi.org/10.1103/PhysRevApplied.10.047001
https://doi.org/10.1038/s41567-023-01993-w
https://doi.org/10.1073/pnas.1915027116
https://doi.org/10.1103/PhysRevApplied.19.024031
https://doi.org/10.1364/OPTICA.5.001390
https://doi.org/10.1126/science.abo3324
https://doi.org/10.1126/science.abo3382


NON-BLOCH THEORY FOR SPATIOTEMPORAL PHOTONIC … PHYSICAL REVIEW RESEARCH 6, 033167 (2024)

[50] C. Caloz and Z. L. Deck-Léger, Spacetime metamaterials—Part
I: General concepts, IEEE Trans. Antennas Propag. 68, 1569
(2020).

[51] V. Pacheco-Peña and N. Engheta, Antireflection temporal coat-
ings, Optica 7, 323 (2020).

[52] V. Pacheco-Peña and N. Engheta, Temporal equivalent of the
Brewster angle, Phys. Rev. B 104, 214308 (2021).

[53] C. Guo, M. Xiao, M. Orenstein, and S. Fan, Structured 3D linear
space-time light bullets by nonlocal nanophotonics, Light Sci.
Appl. 10, 160 (2021).

[54] G.-B. Wu, J. Y. Dai, Q. Cheng, T. J. Cui, and C. H. Chan,
Sideband-free space–time-coding metasurface antennas, Nat.
Electron. 5, 808 (2022).

[55] J. Park, H. Cho, S. Lee, K. Lee, K. Lee, H. C. Park, J.-W. Ryu,
N. Park, S. Jeon, and B. Min, Revealing non-Hermitian band
structure of photonic Floquet media, Sci. Adv. 8, eabo6220
(2022).

[56] F. R. Prudêncio and M. G. Silveirinha, Replicating physi-
cal motion with Minkowskian isorefractive spacetime crystals,
Nanophotonics 12, 3007 (2023).

[57] L. Zhou and D.-J. Zhang, Non-Hermitian Floquet topological
matter—a review, Entropy 25, 1401 (2023).

[58] Z. Dong, X. Chen, and L. Yuan, Spatiotemporal coupled-mode
equations for arbitrary pulse transformation, Phys. Rev. Res. 5,
043150 (2023).

[59] N. Chamanara, Z.-L. Deck-Léger, C. Caloz, and D. Kalluri,
Unusual electromagnetic modes in space-time-modulated
dispersion-engineered media, Phys. Rev. A 97, 063829
(2018).

[60] N. Wang, Z.-Q. Zhang, and C. T. Chan, Photonic Floquet media
with a complex time-periodic permittivity, Phys. Rev. B 98,
085142 (2018).

[61] Y. Sharabi, A. Dikopoltsev, E. Lustig, Y. Lumer, and
M. Segev, Spatiotemporal photonic crystals, Optica 9, 585
(2022).

[62] M. Moghaddaszadeh, M. A. Attarzadeh, A. Aref, and M. Nouh,
Complex spatiotemporal modulations and non-Hermitian de-
generacies in PT -symmetric phononic materials, Phys. Rev.
Appl. 18, 044013 (2022).

[63] S. Xu and C. Wu, Space-time crystal and space-time group,
Phys. Rev. Lett. 120, 096401 (2018).

[64] Q. Gao and Q. Niu, Floquet-Bloch oscillations and intraband
Zener tunneling in an oblique spacetime crystal, Phys. Rev.
Lett. 127, 036401 (2021).

[65] H. Moussa, G. Xu, S. Yin, E. Galiffi, Y. Ra’di, and A. Alù,
Observation of temporal reflection and broadband frequency
translation at photonic time interfaces, Nat. Phys. 19, 863
(2023).

[66] K. Yokomizo, T. Yoda, and S. Murakami, Non-Hermitian waves
in a continuous periodic model and application to photonic
crystals, Phys. Rev. Res. 4, 023089 (2022).

[67] T. Yoda, Y. Moritake, K. Takata, K. Yokomizo, S. Murakami,
and M. Notomi, Optical non-Hermitian skin effect in two-
dimensional uniform media, arXiv:2303.05185.

[68] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.033167 for detailed discussions
on plane wave expansion, effective medium theory, bound-
ary conditions, dynamical degeneracy splitting, transfer matrix,
non-Bloch band theory, and topological properties, which in-
clude Refs. [32,38,42,43,45,69–79].

[69] M. Davanco, Y. Urzhumov, and G. Shvets, The complex Bloch
bands of a 2D plasmonic crystal displaying isotropic negative
refraction, Opt. Express 15, 9681 (2007).

[70] C. Fietz, Y. Urzhumov, and G. Shvets, Complex k band dia-
grams of 3D metamaterial/photonic crystals, Opt. Express 19,
19027 (2011).

[71] J. H. D. Rivero, L. Feng, and L. Ge, Imaginary gauge transfor-
mation in momentum space and Dirac exceptional point, Phys.
Rev. Lett. 129, 243901 (2022).

[72] A. Yariv and P. A. Yeh, Optical Waves in Crystals: Propagation
and Control of Laser Radiation (Wiley, New York, 1983).

[73] L. Li, Formulation and comparison of two recursive matrix
algorithms for modeling layered diffraction gratings, J. Opt.
Soc. Am. A 13, 1024 (1996).

[74] G. B. Arfken, H. J. Weber, and F. E. Harris, in Mathemati-
cal Methods for Physicists (Seventh Edition), edited by G. B.
Arfken, H. J. Weber, and F. E. Harris (Academic Press, Boston,
2013), p. 381.

[75] Q. Yan, H. Chen, and Y. Yang, Non-Hermitian skin effect
and delocalized edge states in photonic crystals with anoma-
lous parity-time symmetry, Prog. Electromagn. Res. 172, 33
(2021).

[76] W. Zhu, W. X. Teo, L. Li, and J. Gong, Delocaliza-
tion of topological edge states, Phys. Rev. B 103, 195414
(2021).

[77] W. Wang, X. Wang, and G. Ma, Non-Hermitian morphing of
topological modes, Nature (London) 608, 50 (2022).

[78] W. Wang, X. Wang, and G. Ma, Extended state in a localized
continuum, Phys. Rev. Lett. 129, 264301 (2022).

[79] M. Xiao, Z. Q. Zhang, and C. T. Chan, Surface impedance and
bulk band geometric phases in one-dimensional systems, Phys.
Rev. X 4, 021017 (2014).

[80] P. A. Huidobro, M. G. Silveirinha, E. Galiffi, and J. B. Pendry,
Homogenization theory of space-time metamaterials, Phys.
Rev. Appl. 16, 014044 (2021).

[81] J. B. Pendry, E. Galiffi, and P. A. Huidobro, Gain in time-
dependent media—a new mechanism, J. Opt. Soc. Am. B 38,
3360 (2021).

[82] J. B. Pendry, E. Galiffi, and P. A. Huidobro, Photon conserva-
tion in trans-luminal metamaterials, Optica 9, 724 (2022).

[83] E. Galiffi, P. A. Huidobro, and J. B. Pendry, Broadband non-
reciprocal amplification in luminal metamaterials, Phys. Rev.
Lett. 123, 206101 (2019).

[84] K. Sakoda, Optical Properties of Photonic Crystals (Springer,
Berlin, 2004).

[85] K. Yokomizo, T. Yoda, and Y. Ashida, Non-Bloch band theory
of generalized eigenvalue problems, Phys. Rev. B 109, 115115
(2024).

[86] J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett.
62, 2747 (1989).

[87] D. Vanderbilt, Berry Phases in Electronic Structure Theory:
Electric Polarization, Orbital Magnetization and Topological
Insulators (Cambridge University Press, Cambridge, 2018).

[88] A. M. Jazayeri, Fixed points on band structures of non-
Hermitian models: Extended states in the bandgap and ideal
superluminal tunneling, Phys. Rev. B 107, 144302 (2023).

[89] P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le
Gratiet, I. Sagnes, J. Bloch, and A. Amo, Author Correction:
Lasing in topological edge states of a one-dimensional lattice,
Nat. Photon. 15, 862 (2021).

033167-11

https://doi.org/10.1109/TAP.2019.2944225
https://doi.org/10.1364/OPTICA.381175
https://doi.org/10.1103/PhysRevB.104.214308
https://doi.org/10.1038/s41377-021-00595-6
https://doi.org/10.1038/s41928-022-00857-0
https://doi.org/10.1126/sciadv.abo6220
https://doi.org/10.1515/nanoph-2023-0144
https://doi.org/10.3390/e25101401
https://doi.org/10.1103/PhysRevResearch.5.043150
https://doi.org/10.1103/PhysRevA.97.063829
https://doi.org/10.1103/PhysRevB.98.085142
https://doi.org/10.1364/OPTICA.455672
https://doi.org/10.1103/PhysRevApplied.18.044013
https://doi.org/10.1103/PhysRevLett.120.096401
https://doi.org/10.1103/PhysRevLett.127.036401
https://doi.org/10.1038/s41567-023-01975-y
https://doi.org/10.1103/PhysRevResearch.4.023089
https://arxiv.org/abs/2303.05185
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.033167
https://doi.org/10.1364/OE.15.009681
https://doi.org/10.1364/OE.19.019027
https://doi.org/10.1103/PhysRevLett.129.243901
https://doi.org/10.1364/JOSAA.13.001024
https://doi.org/10.2528/PIER21111602
https://doi.org/10.1103/PhysRevB.103.195414
https://doi.org/10.1038/s41586-022-04929-1
https://doi.org/10.1103/PhysRevLett.129.264301
https://doi.org/10.1103/PhysRevX.4.021017
https://doi.org/10.1103/PhysRevApplied.16.014044
https://doi.org/10.1364/JOSAB.427682
https://doi.org/10.1364/OPTICA.462488
https://doi.org/10.1103/PhysRevLett.123.206101
https://doi.org/10.1103/PhysRevB.109.115115
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevB.107.144302
https://doi.org/10.1038/s41566-021-00846-3


HAOZHI DING AND KUN DING PHYSICAL REVIEW RESEARCH 6, 033167 (2024)

[90] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M.
Segev, D. N. Christodoulides, and M. Khajavikhan, Topological
insulator laser: Experiments, Science 359, eaar4005 (2018).

[91] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J.
Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides, and
M. Khajavikhan, Edge-mode lasing in 1D topological active
arrays, Phys. Rev. Lett. 120, 113901 (2018).

[92] C. Han, M. Lee, S. Callard, C. Seassal, and H. Jeon, Lasing
at topological edge states in a photonic crystal L3 nanocavity
dimer array, Light Sci. Appl. 8, 40 (2019).

[93] Z.-Q. Yang, Z.-K. Shao, H.-Z. Chen, X.-R. Mao, and R.-M.
Ma, Spin-momentum-locked edge mode for topological vortex
lasing, Phys. Rev. Lett. 125, 013903 (2020).

[94] H.-R. Kim, M.-S. Hwang, D. Smirnova, K.-Y. Jeong, Y.
Kivshar, and H.-G. Park, Multipolar lasing modes from topo-
logical corner states, Nat. Commun. 11, 5758 (2020).

[95] Y.-G. Sang, J.-Y. Lu, Y.-H. Ouyang, H.-Y. Luan, J.-H. Wu, J.-
Y. Li, and R.-M. Ma, Topological polarization singular lasing
with highly efficient radiation channel, Nat. Commun. 13, 6485
(2022).

[96] R.-J. Slager, A. Bouhon, and F. N. Ünal, Non-Abelian Flo-
quet braiding and anomalous Dirac string phase in periodically
driven systems, Nat. Commun. 15, 1144 (2024).

[97] T. Li and H. Hu, Floquet non-Abelian topological insulator and
multifold bulk-edge correspondence, Nat. Commun. 14, 6418
(2023).

[98] R.-J. Slager, A. Bouhon, and F. N. Ünal, Comment on “Floquet
non-Abelian topological insulator and multifold bulk-edge cor-
respondence, arXiv:2310.12782v2.

[99] K.-M. Kim and M. J. Park, Disorder-driven phase transition in
the second-order non-Hermitian skin effect, Phys. Rev. B 104,
L121101 (2021).

033167-12

https://doi.org/10.1126/science.aar4005
https://doi.org/10.1103/PhysRevLett.120.113901
https://doi.org/10.1038/s41377-019-0149-7
https://doi.org/10.1103/PhysRevLett.125.013903
https://doi.org/10.1038/s41467-020-19609-9
https://doi.org/10.1038/s41467-022-34307-4
https://doi.org/10.1038/s41467-024-45302-2
https://doi.org/10.1038/s41467-023-42139-z
https://arxiv.org/abs/2310.12782v2
https://doi.org/10.1103/PhysRevB.104.L121101

