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Geometric frustration and pairing-order transition in confined bacterial vortices
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Dense systems of active matter exhibit highly dynamic collective motion characterized by intermingled
vortices, referred to as active turbulence. The interaction between these vortices is key to controlling turbulent
dynamics, and a promising approach for revealing the rules governing their interaction is geometric confinement.
In this study, we investigate the vortex-pairing patterns in confined bacterial suspensions as a model frustrated
system in which a perfect antiferromagnetic state is prohibited. We find that three-body vortex interactions
exhibit anomalous pairing-order transition from corotational vortex pairing to counterrotating patterns with
frustration. Although an active matter system is in nonequilibrium, our theory based on bending energy accounts
for significant features, including pattern transition and a shift of the transition point in frustrated systems.
Moreover, the interplay between the chirality in collective motion and frustration in vortex pairing creates
a collective rotational flow under the broad geometric conditions of a confined space. Our results show that
frustrated vortex patterning promotes a geometric approach for arranging active turbulence in microfluidic
systems.
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I. INTRODUCTION

Autonomous biological systems such as molecular motor
proteins [1] convert chemical energy into mechanical action.
The exploration of such autonomous motion, stemming from
out-of-equilibrium dynamics, poses a significant challenge
in science, particularly in physics and biology. A particular
system termed active matter [2,3] is a class of materials such
as motor proteins, swimming bacteria, eukaryotic cells, and
even animals that can move spontaneously. The emergent
dynamics of active matter are collectively aligned motions
at high densities, fostering self-organized collective motion.
Such collective motions are not limited to biological systems,
and similar cluster and lane formations are also found in non-
biological matter, such as active colloids [4–6] and swimming
droplets [7,8]. The concept of active matter has recently ad-
vanced into microrobotics engineering; therefore, controlling
the collective motion could provide a deeper understanding of
the mass and energy transport found in nature and technology.

Active turbulence, which is characterized by the emer-
gence of disordered structures akin to turbulence, represents
the foundational collective motion within dense active matter
[9,10]. Active turbulence occurs at a microscopic scale (i.e.,
at low Reynolds numbers), and the spontaneous stirring of
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viscous fluids offers practical utility in their manipulation
within microfluidic systems. Among the microscopic systems
employed to investigate active turbulence, swimming bacteria
are a widely used model [11–15]. When a suspension of
bacteria is confined within a water-in-oil droplet whose size
matches the velocity-correlation length, a single vortexlike
rotation stabilizes within the droplet [16,17]. Furthermore,
the geometrical boundaries that make vortices interact with
neighbors, such as lattice cavities connected via channels [18],
multiplet lattice-free microwells [19], and pillar spacing [20],
enable control of the pairing order of vortices in the same or
opposite directions, depending on geometric parameters such
as channel width and spacing distance. These different pat-
terns of rotating interacting vortices are called ferromagnetic
vortex (FMV) patterns and antiferromagnetic vortex (AFMV)
patterns, analogous to the Ising model system in magnetism.
This concept was introduced by Wioland et al. [18] and al-
lowed us to explore the connection between equilibrium spin
systems and active matter systems. Furthermore, a numerical
study of active turbulence with periodic obstacles revealed
a continuous second-order phase transition behavior from a
static vortex lattice to active turbulence by varying the ad-
vection strength as an effective temperature in the argument
of the Ising model system [21]. The study of self-organized
patterns under geometrical constraints has been applied not
only to bacterial active turbulence but also to various systems
such as nematic cell populations [22–26], active cytoskeletons
driven by motor proteins [27–32], and active colloidal par-
ticles [33–35], thus advancing an understanding of common
rules in active matter systems.

Despite intense research efforts on active turbulence
under geometric constraints, the effect of frustration on
vortex rotations, observed when three vortices interact
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antiferromagnetically, remains unclear. Dense bacterial sus-
pensions confined in microwells with triangular lattices
reportedly exhibit highly ordered ferromagnetic states [18]. In
active nematics, a dynamic change in the collective flow in the
direction of rotation was found in a mixture of microtubules
and kinesins confined in a triplet annular channel owing to the
accumulation of frustration [36]. Recent theoretical studies
also demonstrated that polar active fluids exhibit topologically
protected sound modes in the presence of periodic structures
with kagome lattice geometry [37] and that the symmetry
breaking of turbulent vortices in active turbulence occurs to
avoid frustration [20,38]. Moreover, frustrated interactions
among self-propelled particles can result in clogging and
jamming [39–41]. As such, geometric frustration plays an
important role in pattern formation. Therefore, elucidating
the relationship between geometric frustration and emergent
order is essential for understanding the physical mechanism
controlling active turbulence.

This study reveals the effect of frustration on the vortex
pairings of confined bacterial suspensions using lattice-free
geometric confinement, thus enabling the intrinsic nature of
interacting vortices intertwined with geometrical boundaries
to be elucidated. These suspensions exhibit two distinctive
patterns for three vortex pairings. One pattern entails all three
vortices rotating uniformly in a singular direction, and the
other pattern represents a frustrated state, characterized by one
vortex rotating in the direction opposite to the others. A simple
theoretical model based on bending elasticity in orientation
can elucidate the shift in the transition point due to the cost of
the bending distortion of the polar orientation field, suggesting
that not only the distance between vortices but also their
geometrical location is important for understanding the rule
of vortex pairing. Moreover, the interplay between the chiral
vortex and geometric frustration allows us to control active
turbulence to a larger rotational flow than either effect alone.
Our findings advance the understanding of geometry-based
design principles for controlling active fluids.

II. MATERIALS AND METHODS

A. Bacterial culture

Escherichia coli (strain RP4979) were cultured overnight
by inoculating a single bacterial colony into 1 mL of lysogeny
broth medium (1% tryptone, 1% NaCl, 0.5% yeast extract)
and incubating it on a rotary shaker inside an incubator
(150 rpm) at 37 ◦C. The saturated culture was diluted 200-fold
in a tryptone broth medium (1% tryptone, 1% NaCl) and
further incubated on a rotary shaker in an incubator at 30 ◦C
at 150 rpm for 5 h until the optical density at 600 nm of the
culture reached approximately 0.4. To obtain dense bacterial
suspensions that formed active turbulence, we centrifuged the
cultured suspension at 3000 rpm at 25 ◦C for 10 min. The
final body volume fraction of bacteria was approximately
20% vol/vol.

B. Microfabrication and sample preparation

Dense bacterial suspensions undergoing bacterial tur-
bulence were enclosed in polydimethylsiloxane (PDMS)
microwells with a height of 20 µm [Fig. 1(a)], which were

fabricated using standard soft lithography, following a previ-
ously described protocol [19,42]. In this study, two different
surface conditions were used to confine bacteria. The first is
for an achiral bacterial vortex, in which the entire surface is
composed of PDMS coated with a nonionic surfactant solu-
tion (Triton X-100, Sigma-Aldrich; symmetric chamber) [19].
The surface treatment was done by immersing the PDMS
microwells in a 10% Triton X-100 solution for 3 h and then
rinsing them with water to prevent the substrate from ab-
sorbing bacteria. Then, the dense bacterial suspensions were
encapsulated by gently sandwiching them between a PDMS-
coated glass slide and the fabricated PDMS microwells. The
second surface condition is for a chiral bacterial vortex, in
which only the top surface is replaced with a water-in-oil
interface (asymmetric chamber) to induce vortex rotation via
the surface chiral swimming of bacteria [42]. The sample with
the asymmetric chamber was created as follows. A PDMS
thin film with patterned microwells was adhered to a glass
slide and treated by immersion in a solution of polyethylene
glycol-poly-L-lysine (Nanocs, PG2k-PLY) immediately after
exposure to air plasma for 1 min (plasma cleaner, Harrick
Plasma). After a flow cell was assembled with two paral-
lel double-sided tapes 100 µm thick and a coverslip, dense
bacterial suspensions were gently loaded into the flow cell,
and the microwells were sealed by injecting oil (light mineral
oil, Sigma-Aldrich) with a surfactant (SPAN80, Nacalai) at
2.0 wt%, and the excess suspensions over the microwells
were flushed out and absorbed with filter paper from the other
side of the flow cell. Both ends were sealed with epoxy glue
(Huntsman Ltd.) to prevent residual flow.

C. Microscopy and data processing

Bright-field microscopy was used to image bacterial sus-
pensions using an inverted microscope (IX73, Olympus) with
a 20× objective lens. Videos were recorded using a charge-
coupled device camera (DMK23G445, Imaging Source) at
30 frames/s. The velocity field of the bacterial collective
motion was measured via conventional particle image ve-
locimetry (PIV) using the PIVLab toolbox in MATLAB. Images
were preprocessed using the Wiener2 denoise filter, and
the interrogation window size was set to 16×16 pixels2

(2.98×2.98 µm2), which is comparable to the typical body
length of bacteria. The subsequent velocity fields were
smoothed for each time frame by averaging over 1 s, which
corresponded to the typical lifetime of the turbulent vortices.

III. RESULTS

The designed boundary of the microwells consists of
overlapping circles. When the boundary is a symmetrical
arrangement of two (three) overlapping circles of radius R
equally spaced by a distance � between the centers of the
circles, this is referred to as a doublet (triplet) circle pattern
[Figs. 1(b) and 1(c)]. Confined bacterial vortices can mutually
interact within a microwell.

For a doublet circular boundary with R = 19 µm [Fig. 1(b)],
a corotational pairing pattern of FMV (two vortices rotate
in the same direction) appears at small �/R, but an an-
tirotational pairing pattern of AFMV (two vortices rotate in
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FIG. 1. Frustrated bacterial vortices confined in the designed microwells. (a) Schematic of a polydimethylsiloxane (PDMS) microdevice
enclosing dense bacterial suspensions. (b) and (c) Design of an overlapping circular boundary. The doublet or triplet circular boundary is
defined by the circle radius R and the distance between the center of the circle �. The angle � is defined as cos � = �

2R . (d) and (e) Bacterial
vortices under triplet circular confinement. The bacterial suspension is enclosed in a PDMS microwell with a PDMS top surface. The presented
vorticity map of collective motion is obtained by averaging the velocity fields for 10 s for microwells with a radius of R = 19 µm. Scale bars:
20 µm.

opposite directions) emerges at �/R � 1.33 (Fig. 1(d) and
Movie 1 in the Supplemental Material [43]). This is consis-
tent with previous findings that the transition between FMV
and AFMV occurs at �c/R = √

2 [19,42]. This rule is de-
rived from the geometry-dependent effective energy of the
polar interactions of the particles at the tip where two circles
intersect.

For three vortices [Fig. 1(c)], an FMV pattern in which all
vortices have the same orientation can be one of the stable
states. However, if one vortex has the opposite orientation,
geometric frustration occurs such that the AFMV and FMV
patterns coexist. As the shift in the transition point from the
FMV to AFMV pattern in frustrated vortices has not been
elucidated, we experimentally investigated the geometric con-
ditions under which the frustrated AFMV pattern appeared.
The bacteria inside the triplet circular boundary formed an
FMV pattern of three interacting vortices with small geomet-
ric parameters �/R � 1.58. When �/R was further increased
to �/R � 1.75, one of the three vortices showed counter-
rotation, and the AFMV pattern coexisted with the FMV
pattern [Fig. 1(e) and Movie 1]. In some cases, the three
vortices were split into several small vortices such that the
pattern would not be frustrated (Fig. S1 in the Supplemental
Material [43]). This suggests that geometric frustration can
yield nontrivial patterns that are not observed in frustration-
free systems.

We analyzed a spin variable si defined by the velocity
component within the ith region of interest (ROI) to quantify

the order of the emergent patterns [Fig. 2(a)]:

si = v(r, t ) · t
|v(r, t )| , (1)

where v(r, t ) is the velocity field obtained from PIV analysis
as a function of position r and time t and t denotes the
tangential unit vector along the boundary. The ROI was set to
be within 15 µm of the boundary of each circle. Its ensemble
average within the ROI, Si = 〈si〉r∈ROIi , indicates whether the
vortices rotate clockwise (negative sign) or counterclockwise
(positive sign) in the two or three circles. The spatiotemporal
pattern is quantified as “spin” in terms of the vortex-pairing
pattern [Fig. 2(b)]. When the values of si are mapped near
the doublet or triplet circular boundaries, si values with the
same signs are occupied in the FMV pattern, whereas si values
with opposite signs coexist in the frustrated AFMV pattern
[Fig. 2(b)].

This study primarily investigates the occurrence of pairing-
order transition in the interactions of bacterial spins repre-
senting vortices. This investigation requires an evaluation of
whether adjacent spins are oriented in the same direction. To
this end, we define the spin correlation function χ as

χ = sgn(〈Si · S j〉i, j )〈|Si · S j |〉i, j, (2)

where 〈·〉i, j is the ensemble average for all combinations of
spin variables and sgn(·) is the sign function, which gives
a positive or negative sign for the multiplication of the spin
variable. If one of the two or three vortices has opposite spin
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FIG. 2. Vortex-pairing patterns in a confined bacterial suspension. (a) Microscopic images and region of interest (ROI) settings. The doublet
circular boundary (left) and triplet circular boundary (right) have two and three ROIs, respectively. The velocity maps are analyzed in these
ROIs. (b) Maps of local spin variables si calculated within 15 µm from the boundary. The instantaneous velocity fields and corresponding spin
variables are displayed in (a) and (b). Scale bars: 20 µm. The spin variable Si averaged within each ROI (i = 1, 2, 3) is shown with its number.
(c) Geometry-induced transition of bacterial vortex pairings. The spin correlation function χ is obtained from the correlation of Si and plotted
as a time average for 10 s. For a doublet case, if χ is positive and close to +1, it is an FMV pattern, and if it is negative and close to −0.8, it is
an AFMV pattern. The doublet case shows an abrupt change at �/R = 1.4. (d) Geometry-induced transition of the frustrated AFMV pattern. If
bacterial vortices show a frustrated AFMV pattern, χ is negative and close to −0.8. The triplet case shows an abrupt change at approximately
�/R = 1.7. The dashed line is fitted with a sigmoidal function. The black dots represent the individual experimental data, and the blue circles
represent their mean values. The error bar is the standard deviation.

directions, the sign function is negative. This results in χ = 1
for the FMV pattern and χ � −0.8 for the AFMV pattern
[Fig. 2(c)]. Using this change in parameter as an order pa-
rameter, we examine the geometric dependence of the pattern
transition.

For a doublet circular boundary with a confinement size
of R = 19 µm, which is comparable to the typical vortex
size in bacterial active turbulence, the χ parameter is close
to +0.8 at �/R � 1.33 but becomes negative and close to

−0.7 at �/R � 1.58 [Fig. 2(c)]. However, in the triplet cir-
cular boundary, the χ parameter takes positive values even
at 1.33 � �/R < 1.75 and becomes negative at �/R � 1.75
[Fig. 2(d)]. In the triplet circular boundary, the FMV pattern
is favored compared with the doublet pattern, probably to
avoid frustration. Moreover, we examine the temporal changes
in both the spin correlation χ and spin variable Si in each
ROI (Fig. S2 in the Supplemental Material [43]). At the dou-
blet circular boundary, both FMV and AFMV patterns are
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highly stable [Fig. S2(a)], with vortices in each ROI persisting
throughout the observation [30 s; Fig. S2(c)]. By contrast, the
order of the frustrated AFMV patterns at the triplet circular
boundary tends to vary relatively widely [Fig. S2(b)]. This
stems from the large fluctuations in the spin variable of one
of three interacting vortices, which are also characterized
by wide probability distributions [Fig. S2(d)]. Particularly,
vortices with large spin fluctuations tend to belong to the
frustrated vortex pair, i.e., the FMV pair, of the three vortex
pair combinations in the frustrated AFMV pattern, implying
that the accumulation of frustration of interacting vortices
causes the large fluctuations of the frustrated AFMV pattern.

Further, we sought a theoretical explanation of the shift
in the transition point from FMV to AFMV in frustrated
bacterial vortices. Polar active turbulence has been exten-
sively investigated both experimentally and theoretically. A
commonly used model termed the Toner-Tu-Swift-Hohenberg
(TTSH) equation [11,12,44–47] captures the statistical prop-
erties, such as energy cascades, of active polar suspensions
in the bulk and the effect of the geometrical constraints of
pillar spacing on turbulent behavior [20,38]. Therefore, the
TTSH equation is the basis for the quantitative description of
active polar turbulence. However, the realization of vortex-
pairing patterns in confined active turbulence remains under
discussion [48]. Past studies [19,42] demonstrated that polar
interactions around the tip of a doublet circular boundary
determine emergent patterns, implying that orientation distor-
tions are essential in pattern transition. This notion motivated
us to consider the bending free energies of patterns that imitate
FMV and AFMV patterns by focusing on the topological
defects with ±1 charges. A topological defect is a singularity
that cannot be defined by the director and has a charge deter-
mined by the degree of rotation of the director field relative to
the rotation axis as it circles the defect along the closed loop.
The ±1 charges correspond to ±2π rotations, respectively.
From the experimental observations in Fig. 3(a), the FMV
pattern in the doublet circular boundary includes two +1 topo-
logical defects at the centers of the circles, i.e., two vortices
rotating in the same direction, and one −1 topological defect
between them (an antivortex), whereas the AFMV pattern has
two +1 topological defects with opposite rotational directions
[Fig. 3(b)]. For the triplet circular boundary, the FMV typi-
cally consists of three vortices rotating in the same direction
in each circle and two antivortices between two of them,
whereas the frustrated AFMV includes three vortices, one of
which has opposite rotation, and one antivortex [Fig. 3(b)].
In the argument of the free energy of active polar materials
[3], the presence of topological defects is most penalized
by the diffusion of alignment among active units. Here, we
simulate the continuum model of the polarization field P(r) =
(cos θ, sin θ ), where θ (r) denotes the angle at position r within
a confined space (see the Supplemental Material for calcu-
lation details [43]). In this model, the polarization field is
evolved by the diffusion of the alignment while undergoing
perturbations in the presence of fixed topological defects,
allowing us to reproduce both FMV and AFMV patterns at
varying �/R [Figs. 3(b) and S3].

We calculated the bending energy densities of the FMV
and AFMV patterns using Fb = 〈[P × (∇ × P)]2〉r, where 〈·〉r

denotes the ensemble average over the confined space, by

referring to the bending free energy for polarization fields
in active polar fluid systems [3], inspired by the classical
Frank free energy of nematic liquid crystals. Note that the
other free energies (i.e., splay and twist) are neglected. Twist
deformations can simply be ignored because the system is
quasi-two-dimensional, while splay deformations are known
to be important even in quasi-two-dimensional systems, e.g.,
for the dynamic patterns observed in a dense bacterial system
[49]. However, due to the high concentration in our exper-
imental system, it is reasonable to consider the polarization
field to be divergence-free, given that the confined bacteria
are uniformly distributed in a steady state, which is supported
by flow patterns such as the FMV and AFMV observed in the
experiment. The difference in Fb between the two patterns in-
dicates whether a transition point exists where a stable pattern
with low energy can be switched.

The bending orientation energies of the FMV and AFMV
patterns in the doublet circular boundary are compared under
different geometric conditions. When �/R is small and the
overlap between the two circular boundary shapes is consid-
erable, the FMV pattern has a lower bending energy than the
AFMV pattern [Fig. 3(c)]. This implies that more energy is
required to form an AFMV pattern at small �/R and induce
orientation bending. A reversal of the relationship between
the FMV and AFMV patterns in terms of bending energy is
observed at �/R > 1.3.

Similarly, given the boundary condition of a triplet circular
boundary, we calculated the bending elastic energy required
to form the FMV and frustrated AFMV pattern orientations
[Fig. 3(d)]. The bending energy of the FMV pattern is large at
small �/R compared to that of the doublet circular boundary
and decreases with increasing �/R. This is because, at small
�/R, the three +1 topological defects and two −1 defects in
between are close to each other, causing large bending energy
due to large distortion of the polarization field, whereas, as
�/R increases, the distortion of the polarization field is miti-
gated to some extent. By contrast, the bending energy of the
frustrated AFMV shows the same decreasing trend as that of
the AFMV at the doublet circular boundary but is increased
by frustration. The bending energy relationship between FMV
and frustrated AFMV patterns is reversed at �/R = 1.7–1.8,
which is in good agreement with the experimental observa-
tion. This result suggests that the FMV pattern at the triplet
circular boundary is more favorable than at the doublet circu-
lar boundary in terms of the bending energy of the polarization
field. To compare the spin correlations in experiment and
simulation, the spin correlations χ associated with small
bending energies are plotted as a function of �/R in Fig. 3(e),
showing consistency with the experimental observations
[Figs. 2(c) and 2(d)].

The bending energy of the experimentally obtained pat-
terns is worth investigating. The bending energy linked to
the spin correlation shows that the higher the order is, the
smaller the bending energy is for both doublet and triplet
circular boundaries [Figs. S4(a) and S4(b)]. At the triplet cir-
cular boundary, unlike the bending energy of the FMV pattern
in simulation [Fig. 3(d)], the energy tends to increase with
increasing �/R. In the experiment, when topological defects
with different charges are located very close to each other at
the boundary of a small �/R, they can annihilate each other,
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FIG. 3. Theoretical analysis of the transition of bacterial vortex pairings. (a) Representative snapshots of the velocity orientation fields
in the doublet (left) and triplet (right) circular boundaries. Scale bars: 20 µm. (b) Representatives of numerical simulations corresponding to
(a). The top and bottom panels denote the orientation field and the local bending energy [P × (∇ × P)]2, respectively. The black circles and
squares indicate the locations of topological defects with ±1 charges, respectively. (c) and (d) Geometry-dependent bending energy density
for numerically obtained FMV and AFMV patterns in the doublet (left) and triplet (right) circular boundaries. The spatially averaged bending
energy Fb is further scaled by R2 for comparison with experiments. The colored areas represent the standard deviations of the final states
for 20 simulations evolved from different random initial states. The standard deviation is large, particularly for the FMV patterns at the
triplet circular boundary of large �/R because the location of the emerging two antivortices tends to vary from simulation to simulation.
(e) Geometry-dependent adjacent spin correlation for numerically obtained FMV and AFMV patterns in the doublet and triple circular
boundaries. The spin correlation was calculated using Eq. (2), where the ROI was set to be within 0.8R of the boundary. The final states
of the 20 simulations of FMV and AFMV were considered together, and the spin correlations associated with the bending energies from the
smallest to the 20th smallest energies were averaged. The lines indicate fitting curves with sigmoidal functions.

making it easier for a single vortex to form rather than three
corotating vortices, thus reducing the bending energy.

Macroscopic flows cannot easily be controlled in ac-
tive turbulence because of intrinsic hydrodynamic instability
[2,3,10]; however, in microscopic individual bacterial bases,
chirality exists in the swimming direction. When bacteria
swim near the solid surface, they exhibit chiral swim-
ming because the direction of flagellar rotation causes their

swimming to follow a unidirectional circular trajectory
[50–52]. We previously found that chiral vortices reflecting
swimming chirality appear when confined in microwells with
asymmetric interfaces [the top and bottom surfaces were
the oil-water interface and PDMS substrate, respectively;
Fig. 4(a)] [42]. The mechanism is explained as follows. The
interaction between the chiral motion of the bacteria and the
lateral boundary walls results in biased movement at the edge
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FIG. 4. Altering the transition point of frustrated vortex pairing by chiral collective motion. (a) Schematic of a PDMS microdevice with
a water-in-oil interface under the top of a microwell. (b) Schematic illustration of the mechanism of chiral vortex formation. The microwell
with the asymmetric interfaces induces a higher density of bacteria at the top interface than the one at the bottom substrate (ntop > nbottom)
[42]. The interaction between the interface-induced chiral motion of bacteria and the lateral boundary results in biased motion in the clockwise
and counterclockwise directions above and below the bottom and top interfaces, respectively, as viewed from above. Their competition leads
to the CCW-predominant chiral vortex in the asymmetric system. Chiral bacterial vortices under confinement with (c) doublet and (d) triplet
circular boundaries. The bacterial suspension was enclosed in a PDMS microwell with an oil-water top surface. The presented vorticity map of
collective motion is for microwells with a radius size of R = 19 µm. Scale bars: 20 µm. Geometry-induced transition of the chiral FMV pattern
to the (frustrated) AFMV pattern in (e) doublet and (f) triplet circular boundaries. The blue circles represent mean values, and the error bar is
the standard deviation.
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towards the clockwise and counterclockwise (CCW) direction
above the bottom substrate and beneath the top interface,
respectively, when viewed from above [Fig. 4(b)]. Unlike mi-
crowells with symmetric interfaces, in the asymmetric system,
the density of bacteria at the top interface is approximately
10% higher than that at the bottom substrate. Hence, this
preponderance of the top interface in the competition between
opposite chiral motions at the lateral boundary wall leads to a
predominant CCW chiral vortex. In mesoscopic turbulent flow
patterns, frustrated vortices are responsible for controlling
large rotational flows, while, at the microscopic level, chirality
ensures the directional control of the flow, leading to larger
coherent flows [53,54]. Next, we investigate the relationship
between frustrated vortex pairs and the chirality of vortex
rotation.

In a confined microwell with asymmetric interfaces
[Fig. 4(a)], for both the doublet and triplet boundaries, the
transition point from the FMV to AFMV pattern [Fig. 4(c) and
Movie 2] and to the frustrated AFMV pattern [Fig. 4(d) and
Movie 2] is �c/R ≈ 1.9. This implies that chirality is essential
in enhancing FMV with geometric frustration. Based on the
values of the spin correlation function under two geometric
constraints, compared with the chiral vortex with a doublet
circular boundary, the chiral-frustrated FMV maintained a
higher spin correlation and remained large up to a region of
slightly higher �/R [Figs. 4(e) and 4(f)]. Thus, the interplay
between chiral rotation and geometric frustration is effective
in directing the collective rotational flow in the broad geo-
metric conditions of a confined space. Since the chiral edge
currents are due to the interaction of the bacteria with the
lateral boundary, from the standpoint of energy, the chiral
effect should act as an effective energy that forces the bacteria
to align in one direction (CCW) at the boundary. Given that
this energy is increased by the formation of AFMV patterns,
it is reasonable that the FMV pattern becomes more favorable
and the transition point shifts to a larger �/R. A quantitative
energy-based study of the pairing order of chiral vortices
would be an interesting future direction.

IV. DISCUSSION

In this study, we conducted an experimental analysis of
confined active matter with frustration, using interacting bac-
terial vortices as a model system. Results showed that no
frustration occurred when two vortices interacted and that
the transition from the FMV pattern to the AFMV pat-
tern occurred with �c/R ≈ 1.3–1.4 [19,42]. By contrast, the
transition from the FMV to the frustrated AFMV pattern
with three interacting vortices occurred with �c/R ≈ 1.7–1.8,
greater than that in the case of two interacting vortices. The
theoretical model revealed a shift in the transition point, where
the bending energy of the FMV bacterial orientation field
was more stable in a triplet circular boundary with a greater
�c/R. Our findings indicate that frustration in vortex pairing
can alter the geometric dependence of pairing-order transition,
highlighting the importance of not only the spacing between
interacting vortices but also their geometrical locations.

Exploring the effects of interactions with boundary condi-
tions on the collective motion of active matter can be advanta-
geous for designing microdevices. Irregular patterns can occur

in bacterial suspensions with frustrated vortex configurations
[18,20]. However, conventional boundary shapes that impose
regular geometric confinement can be used to control the flow
direction in such configurations [38]. When addressing irreg-
ular boundary geometries, such as porous media, a frustrated
vortex pattern can interfere with the distribution of bacterial
density [55]. Employing a disordered spacing geometry is an
extended challenge for understanding the pattern formation
that occurs during interactions with boundaries.

We demonstrated that the shift in the transition point from
FMV to frustrated AFMV can be explained by considering
the orientation interaction within the triplet circular boundary.
This model discusses a stable pattern arising from the orienta-
tion bending energy in a scenario where two or three vortices
interact at constant spacing. This pertains to the orientation
interaction among active matter within the confined space as
opposed to the boundary vicinity. We observed that the value
of the transition point �c/R = 1.2–1.3 was slightly lower than
that of the experimental observation. In our previous studies
[19,31,42], a Vicsek-style model was used to investigate the
transition from FMV to AFMV, assuming that bacteria move
along a curved boundary and align their orientation with polar
interactions, resulting in �c/R = √

2. This model focuses on
the alignment of their orientation at the tipping point of the
overlapping circular boundary. Therefore, the region in which
the orientation interaction was considered is different in the
two models, resulting in a small deviation at the transition
point. A previous study [49] reported that a large-scale bacte-
rial vortex can be stabilized in viscoelastic solutions. It is also
important to verify with a triplet pair of such large vortices
whether the bending energy of the orientations presented in
this study makes a significant contribution to frustrated vortex
pairing.

Theoretical extensions using the TTSH equation can offer
a solution to the unresolved problem of active turbulence. As
mentioned previously, the TTSH equation is widely used to
investigate the active turbulence observed in bacterial suspen-
sions and to explain the AFMV pattern in periodic spacing
obstacles [38,56]. A recent study [48] extensively investigated
the effect of the geometrical confinement on active turbulence
using high-resolution computations of this equation and found
the geometry-dependent transition from a single-vortex-like
pattern to AFMV under the boundary condition of two over-
lapping circles. In addition, by considering the slip flow near
the boundary, an oscillatory flow reversal can be observed in
the edge flow dynamics [57]. However, questions still remain
regarding the theoretical model and experimental observa-
tions, such as the structural transition of the emerging flow
and the stability of the edge flow, which pose a tantalizing
challenge in confined active turbulence.
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