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Magnonic Otto thermal machine
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We propose a quasistatic magnon-based Otto thermal machine in two-dimensional (2D) magnetic insulators.
The thermodynamical cycles are engineered by exposing a magnon spin system to thermal baths at different
temperatures and tuning the Dzyaloshinskii-Moriya (DM) interaction. We find that a thermal gas of magnons
converts a fraction of heat into energy in the form of work, where the efficiency is maximized for specific values
of DM, reaching the corresponding Carnot efficiency. We witness a positive to negative net work transition
during the cycle that marks the onset of a refrigeratorlike behavior. The work produced by the magnonic Otto
engine enhances the magnon chemical potential. The last enables a spin accumulation that might result in the
pumping of spin currents at the interfaces of metal-magnet heterostructures. Our work opens possibilities for the
efficient leverage of conventional two-dimensional magnets.
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I. INTRODUCTION

Heat engines have been at the core of science and engi-
neering developments since the 19th century [1–3]. At a small
scale, thermal machines perform thermodynamic cycles, em-
ploying quantum systems as the working medium [4–9]. A
remarkable example is the quantum Otto cycle composed of
two isochoric and two quantum-adiabatic trajectories [10–12].
At each stage, the system only exchanges one form of energy,
heat, or work, making it an ideal platform for theoretical and
practical studies [13–21]. The Otto cycle has been examined
in a wide range of working mediums such as three-level [11]
and graphene-based systems [22–25], harmonic oscillators
[10], quantum dots [26,27], and spin systems [12,28], among
others [29–32], with a broad theoretical and experimental
scope in spin systems [13,33–37].

In spintronics, a discipline that exploits the spin of elec-
trons and magnets, the role of thermal properties has been
limited to setting the ground for spin-angular momentum
transport [38]. In magnetic insulators, the transport of spin
is carried by magnons, the quanta of spin fluctuations of
the order parameter, and is coupled to heat flows due to the
inherent spin-lattice coupling [39–44]. Thus, when the local
thermodynamical equilibrium of a magnon gas, defined by
temperature or chemical potential, is subjected to external
driving, it provides routes to detect magnonic effects through
the thermal and spin conductivity in linear response theory
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[40,45–49]. For instance, under temperature gradients, ther-
mal transport measurements yield signatures of topological
magnon states [50–52], entanglement [53,54], long-distance
transport [40,43], and thermal diffusion in the form of spin
Seebeck effect [55–57]. Despite this, fundamental thermo-
dynamical behaviors, such as entropy production, adiabatic
processes, caloric phenomena, or thermal cycles based on
slowly varying external fields, lack deeper comprehension in
magnonic systems compared to their electronic counterparts
[58–60]. Specifically, magnon-based thermodynamic cycles
are an unexplored issue so far that constitute a promising arena
that will boost slow magnonics.

In this paper, we propose a magnonic Otto thermal machine
controlled by varying the temperature and the DM parameter
adiabatically (see Fig. 1 for a schematic of the proposal).
The latter can be achieved by means of the application of
electric fields [61–64] or strain [65,66]. This thermal machine
operates at a scale where thermal and spin fluctuations are
relevant. We show that the efficiency is maximized for specific
DM coupling and, interestingly, the heat flow is inverted for
a certain combination of temperature differences and DM
parameters, allowing the system to become a refrigerator. The
work produced by the engine can be interpreted as a spin
accumulation that, in turn, might be traduced in the generation
of spin currents. Unlike previous works in which magnonic
heat and entropy transport have been explored by exerting
external drives, here we propose producing useful work by
maintaining the system in quasiequilibrium through the de-
manded adiabaticity when controlling the DM parameter.

II. MODEL

We start by considering a two-dimensional ferromagnetic
insulator. The spin system is defined on a hexagonal
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FIG. 1. Schematic of the magnonic Otto cycle based on a mag-
netic honeycomb lattice with fluctuating spins. The cycle operates
between hot (TH ) and cold (TC) temperatures. In the horizontal pro-
cesses, the entropy S (S′) holds fixed, while the DM parameter D
(D0) holds unchanged in the vertical processes.

lattice and described by the spin Hamiltonian HS =
−J

∑
〈i j〉 si · s j + ∑

〈〈i j〉〉 Di j · (si × s j ) − ∑
i[K0(sz

i )2 + Bsz
i ],

with J the coupling of the nearest-neighbor exchange
interaction. The Dzyaloshinskii-Moriya interaction couples
next-nearest-neighbor spin with strength Di j = Dνi jez, being
νi j = ±1, K0 the easy-axis magnetic anisotropy [67–69],
and the external magnetic field B along the z direction. We
focus on small spin deviations about the ground state within
a linear spin-wave theory. Using the Holstein-Primakoff
mapping [70], spin fluctuations are represented by bosonic
excitations via s+

i = (2s − a†
i ai )1/2ai, s−

i = a†
i (2s − a†

i ai )1/2

and sz
i = s − a†

i ai, where ai(a
†
i ) is an operator that annihilates

(creates) a magnon state at site i. In momentum space, the
Hamiltonian for noninteracting magnons is Hm =∑

k �
†
kHk�k, where the field operator is �k = (αk, βk)T ,

with α and β acting in sublattices A and B, respectively. In
addition, Hk = [�I + hk · τ] where � = 3Js + 2Ks + B,
τ is the vector of Pauli matrices, and the vector field
hk = sJ

∑
i(− cos[k · δi], sin[k · δi], 2D sin[k · δn

i ]/J )T ,
with δη and δn

η the nearest and next-nearest neighbors,
respectively. The two-band bulk magnon spectrum are given
by ε±(k) = � ± √

hk · hk, shown in Fig. 2(a) along high
symmetry points shows. The gap at the Dirac points is
topological [52] and proportional to the DM strength, while
� determines the gap at the 	 point. We use parameters for
the 2D van der Waals magnet CrI3 [71,72], J = 0.2 meV,
s = 3/2, lattice constant a0 = 6.95 Å, and we set the external
magnetic field B = 0.

The magnon gas is considered a thermodynamical system
under the assumption that the equilibration length for interac-
tions between magnons is much shorter than the system size
[73,74]. Thus, the system is parametrized by a temperature
T and a chemical potential μ. In addition, it is assumed that
strong inelastic spin-conserving processes fix the tempera-
ture of magnons to the temperature of phonons. The rate
of equilibration for the temperature of magnons with the
phonon system is mainly dominated by magnon-conserving
and magnon-nonconserving scattering processes [44] and,
therefore, the magnon temperature equilibrates faster with
respect to the magnon chemical potential. The internal energy

FIG. 2. (a) Magnon dispersion relation for D = 0.1 J and K0 =
0.5 J along high symmetry points: 	 = (0, 0), K = π

a0
( 4

3
√

3
, 0), M =

π

a0
( 1√

3
, 1

3 ). (b) Density of states for different values of DM coupling
for K0 = 0.5 J. (c) Constant entropy contours S(T, D) and (d) internal
energy as a function of the DM parameter for different temperatures.

for the magnon system is U = ∫
dερ(ε)n(ε, T ), with n(ε, T ),

the Bose-Einstein distribution, and ρ(ε) the magnon density
of states (DOS), while the entropy is

S = −kB

∫
dερ(ε)

[
ln

[
2 sinh

[
ε − μ

2kBT

]]

+
(

ε − μ

2kBT

)
coth

[
ε − μ

2kBT

]]
, (1)

with kB the Boltzmann constant. The magnonic DOS is de-
termined from the band structure and displayed in Fig. 2(b);
see Appendices for details. Since anisotropies and magnetic
fields displace the whole band structure towards higher ener-
gies, one would expect the same shift for the DOS. At finite
DM strength, the DOS becomes null along the gapped region
existing at Dirac points and reaches larger values as the gap
widens. The entropy and internal energy as a function of
temperature and DM coupling are shown in Figs. 2(c) and
2(d), respectively. At zero DM strength, both quantities are
symmetric. However, while the internal energy is minimum,
the entropy acquires its maximum (constant) value for higher
temperatures and such a value can be observed for distinct
DM parameters.

III. MAGNONIC THERMAL CYCLE

Now we focus on the performance of the magnon-based
thermal machine. As proof of concept, we consider the Otto
cycle for a working medium of 2D magnons, illustrated
in Fig. 1, using an entropy-DM (S − D) diagram. The cy-
cle comprises four stages. Initially (1 → 2), the magnon
gas is prepared in a thermal state at T = TC , TC being
the temperature of the cold reservoir. Later, via an isen-
tropic expansion, the system is disconnected from the thermal
reservoir and experiences an adiabatic change of the DM
coupling from D0 to D. This stage finalizes with tempera-
ture T2 that satisfies S(TC, D0) = S(T2, D), and thus the work
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FIG. 3. Heat flow Qin and Qout, in panels (a) and (b), respectively,
as a function of DM and temperature TC for a fixed temperature of
the hot reservoir TH = 15 K. In (c), the total work WT is calculated
for different TH and TC . The thicker dots indicate the critical DM cou-
pling, at which the transition between the engine and the refrigerator
(where W < 0) behavior occurs. (d) Critical DM coupling Dcr as a
function of �T = TH − TC for different values of TC .

is determined by W1→2 = U2(T2, D) − U1(TC, D0). In the
second stage (2 → 3), an isochoric heating takes place. The
magnon system is connected to a hot reservoir and thermal-
izes at temperature TH. As a result, only the heat flux Qin =
U3(TH, D) − U2(T2, D) is involved. Third (3 → 4), through
an isentropic compression, the system is decoupled from
the hot reservoir and the DM strength varies isentropically
from D to D0. The process ends with a temperature T4 sat-
isfying S′(TH , D) = S′(T4, D0) and a work given by W3→4 =
U4(T4, D0) − U3(TH, D). Finally (4 → 1), via an isochoric
cooling, the magnon gas is again put in contact with a cold
thermal reservoir at constant DM D0, with the heat flow
given by Qout = U1(TC, D0) − U4(T4, D0). In terms of the total
work, WT = W1→2 + W3→4 and the heat flows between the
reservoirs and working substance. We will next analyze the
characteristic of the proposed thermal cycle.

The magnonic Otto cycle exhibits two facets: an engine
and a refrigerator regime, displayed in Fig. 3. The engine
is characterized by positive work output (WT > 0), where
the heat flows from the hot bath into the working medium
(Qin > 0) and from the working medium into the cold bath
(Qout < 0). The refrigerator corresponds to negative work out-
put (WT < 0), along with heat flowing from the cold bath
into the working medium (Qout > 0) and from the working
medium into the hot bath (Qin < 0). The heat flows, Qin and
Qout, are shown in Figs. 3(a) and 3(b), respectively, while in
Fig. 3(c) the total work WT is plotted for various reservoirs
temperatures. The engine and refrigerator regimes, marked by
a sign change of Qin and Qout, occur for a delicate combination
of temperatures and DM coupling. The onset of the engine-
refrigerator transition can be determined by the total work
satisfying WT (D = Dcr, TH , TC ) = 0, from which a relation

FIG. 4. (a) Efficiency of the magnon-based engine as a function
of D parameter and cold temperature of reservoir TC for a fixed
TH = 4 K. The region where the efficiency overcomes the Carnot
efficiency is called the refrigerator region, where the total work is
negative. (b) Coefficient of performance ζ for the magnon-based
refrigerator machine as a function of D parameter and TC for a fixed
TH = 15 K. The region blanked corresponds to the region where the
total work is positive, so it is an engine region.

between the critical values, Dcr, and temperature difference,
�T = TH − TC , is displayed at Fig. 3(d). Dcr is the critical
DM parameter for which the work is zero, except for the
trivial case D = ±0.1 meV. At low working temperatures, the
transition occurs for a small difference �T , as evidenced by
the green line in Fig. 3(c), where TH = 3 K and TC = 2.4 K,
with Dcr = ±0.058 meV. In general, a greater temperature dif-
ference is needed for larger temperatures of the cold reservoir
to fulfill the transition condition [see the black line in Fig. 3(c)
as an example]. Thus, it allows us to identify quantitatively,
in terms of the variables TC and �T , the regime where the
thermal cycle behaves as an engine or refrigerator.

Different coefficients capture the performance of each
magnonic Otto cycle, the efficiency η = |WT /Qin| for the
engine, and the coefficient of performance ζ = |Qout/WT |
for the magnonic refrigerator. The efficiency, displayed in
Fig. 4(a) as a function of TC and DM coupling for a fixed
TH = 4 K, is symmetric and maximum at around D = 0, and
reaches values of about 24%. It is worth noting that there
is a broad range of parameters with maximum efficiency.
However, this is attributed to how the contour plot is gener-
ated. In this sense, around D = 0, there are distinct efficiency
values whose difference is too small to be captured as an-
other contour line. Importantly, there is a region where the
efficiency is no longer well-defined as the system overcomes
the corresponding Carnot efficiency. In such a region, the
work becomes negative, and the transition to a refrigerator
takes place. Note that when TC = 2 K, the magnonic engine
properly works in the full range of the DM parameter [see also
red line in Fig. 3(c)]. Similarly, Fig. 4(b) shows the coefficient
of performance as a function of TC and the DM parameter
for a fixed TH = 15 K. Note that ζ can be computed only in
the region where the system operates as a refrigerator. In this
case, ζ is minimum at D = 0 and maximizes for D = ±Dcr.
Note that the same behavior as the efficiency case is observed
around D = 0. In addition, if we focus on TC = 14.5 K, we
can see that the refrigerator regime operates at the full range
of the allowed DM parameter [for comparison, see the blue
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line in Fig. 3(c)]. However, analogously for efficiency, there is
a marked region where the system becomes an engine.

IV. DISCUSSION

The Otto magnon-based thermal machine exhibits a con-
trolled change from an engine to a refrigerator. As discussed in
the Appendices, this transition is dominated by the difference
in population of thermal magnons at the stages with con-
stant DM, i.e., 2 → 3 (heating) and 4 → 1 (cooling), where
a linear dependence of the magnon energy with the DM has
been assumed. Thus, positive work corresponds to a larger
population in the thermalization process (2 → 3) toward TH .
This excess of magnon states represents a spin accumulation,
which in turn can be pumped in the form of spin currents at
the interfaces of metal-magnet heterostructures. On the other
hand, the refrigerator phase is related to a decrease in the
thermal population when cooling the system towards TC in the
stage (4 → 1). In other words, the system temperature tends
to decrease as long as magnons are annihilated. Interestingly,
this reversion is parametrized by a critical DM parameter, thus
establishing a tunable magnonic thermal machine. For the
proposed cycle, variations on the DM parameter correspond
to the exerted work over (by) the magnonic system, i.e., we
recognize that δW ∝ δD. As discussed above, the total work
depends essentially on the difference in magnon population.
Therefore, we parametrize δW = μnδn, with μn being a con-
stant with units of energy, and δn stands for variations of the
magnon population. Thus, the first law of thermodynamics is
written as δU = T δS + μnδn (at a constant volume). Note the
similarity with an ideal gas, μn playing the role of a magnon
chemical potential. In other words, the notion of work in our
system is related to magnon population changes in the heating
and cooling processes, corresponding to a manifestation of a
finite magnon chemical potential. Therefore, an enhancement
of magnon chemical potential is predicted where a positive
work is produced in the magnonic Otto cycle. For comparison,
we consider a two-dimensional Dirac-type electronic system
controlled by external magnetic fields where the extracted
work and efficiency are comparable to those presented here
[11,22–26]. However, interpreting useful work in electronic
systems is still under discussion [4]. Here, we presented an
explicit way to functionalize the work extracted from the
magnon-based Otto cycle through the possibility of pumping
magnon spin currents.

V. EXPERIMENTAL PROPOSAL

One possible experimental realization of our proposal con-
sists of attaching a single normal metal (NM) electrode to
a two-dimensional magnet in a similar way as realized in
Refs. [75,76]. Magnon spin currents are pumped from the
magnet to the NM and converted into an electrical signal
through the inverse spin Hall effect. In our case, every time
the cycle is completed, operating as an engine, an unbalanced
magnon spin accumulation might be pumped when attached
to a NM. The microscopic mechanism behind it corresponds
to the thermalization between magnons and electrons in the
NM (assumed to have the same phonon temperature since
they thermalize much faster than the corresponding process

with magnon). Importantly, since the proposed Otto cycle also
involves thermalization processes when adiabatically varying
the DM parameter, every time one cycle is completed, the
NM necessarily needs to be thermally insulated to prevent
equal magnon and electron temperatures. Thus, an additional
thermal reservoir must be implemented in the NM to discon-
nect it from the magnetic system once the cycle is completed.
Accordingly, the magnetic system must be connected to the
NM to restart the cycle and accumulate spin again.

In summary, we have proposed a feasible magnon-based
Otto thermal machine whose working principle relies on con-
trol over the DM coupling and reservoir temperatures. We
found that maximum efficiency, which corresponds to the
Carnot efficiency, is obtained for specific values of DM cou-
pling, which in turn is an experimentally tunable parameter.
Remarkably, the presented cycle behaves as a magnonic en-
gine or refrigerator according to the temperature difference
at which the machine operates. Thermodynamical calcula-
tions show that a larger (smaller) magnon population tends
to increase (decrease) the system temperature. Under the
proper choice of parameters, the magnonic Otto engine allows
a magnon accumulation that enhances the magnon chem-
ical potential, which in turn could translate into magnon
spin pumping at metal-magnet heterostructures. Notably, we
then proposed the generation of magnon spin current from a
quasi-equilibrium system. Also, we proposed an experimen-
tal setup to conduct potential experiments based on current
experimental techniques. We claim that the adiabatic condi-
tion of varying the DM parameter without directly affecting
the electronic temperature must be considered. Although we
have focused on a minimal two-dimensional model for a
specific bidimensional magnet, the presented framework is
general and might be extended to other spin models ac-
counting for antiferromagnets or spin-textured systems. The
increasing interest in theoretical prediction and synthesis of
2D magnetic materials [77] and the experimental realization
of various quantum Otto cycles [34,78,79] might establish the
experimental feasibility of our work. Finally, we emphasize
that estimating the effects of phonons within our operating
temperature range is essential to get more accurate results.
Nevertheless, we predict a small phonon dependence of the
main results at low temperatures.
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APPENDIX A: CALCULATION OF MAGNON
DENSITY OF STATES

To calculate the DOS of the system, we use a fine mesh of
about 6 × 106 k-points in the area enclosed by the yellow tri-
angle of Fig. 5(b), and for every k state we evaluate the energy
levels coming from each band. Then, we obtain the density of

033164-4



MAGNONIC OTTO THERMAL MACHINE PHYSICAL REVIEW RESEARCH 6, 033164 (2024)

FIG. 5. (a) Schematic of the honeycomb lattice composed of sublattices A and B with the corresponding nearest- and next-nearest-neighbor
vector links. (b) Magnon energy ε+

k in the Brillouin zone for D = K0 = 0.5 J at T = 0 K. The highlighted triangle depicts the 1BZ where the
DOS is calculated. The lattice vectors are δ1 = a0(

√
3/2, −1/2), δ2 = a0(0, 1), δ3 = −a0(

√
3/2, 1/2).

states by making the energy histogram with a resolution of
15 µeV. This will give us a non-normalized density of states
that we must normalize for thermodynamic calculations. The
criterion we use for this goes hand in hand with the case of
phonons, where the integral density of states must be equal
to the number of normal modes. Since there are two magnon
modes per unit cell, every normalization factor is calculated
as 2/〈N〉, where 〈N〉 = ∫ max ρ(ε)

min ρ(ε) dε ρ(ε).

APPENDIX B: THERMODYNAMIC QUANTITIES

Once the DOS of the system is calculated, we can use
the continuum approximation to calculate the entropy of the
proposed system. The general expression for the entropy of a
bosonic system is given by

S = −kB

∫
dε ρ(ε)(n(ε) ln n(ε) − (1 + n(ε)) ln (1 + n(ε))),

(B1)
where

n(ε, μ, T ) = 1

e
(ε−μ)
kBT − 1

(B2)

represents the occupation number for energy ε at a given
temperature T and chemical potential μ, and ρ(ε) is the
density of states. For this case, the magnon energy is given
by ε±(k) = � ± √

hk · hk, with

hk = s

⎛
⎜⎝

−J
∑

η cos[k · δη]

J
∑

η sin[k · δη]

2D
∑

η sin
(
k · δnnn

η

)
⎞
⎟⎠, (B3)

and � = 3Js + 2Ks + B. Since its number is nonconserved,
we treat the magnonic system as a gas of noninteracting
bosons with the chemical potential fixed at the lowest en-
ergy value in the band structure. This means we work in a
formulation with constant magnon chemical potential. Next,
the expression inside the integral accompanying the density
of states in Eq. (B1) can be compacted, and the entropy takes

the form

S = −kB

∫
dερ(ε)

(
ln

[
2 sinh

[
ε − μ

2kBT

]]

+
(

ε − μ

2kBT

)
coth

[
ε − μ

2kBT

])
. (B4)

The expression for the internal energy of the boson system
is given by

U =
∫

dε ρ(ε)n(ε, μ, T ). (B5)

In our thermodynamic analysis, it is important to recall that
the total entropy (S) for this model can be written as

S = Sm(T, D) + Sl (T ), (B6)

where Sm(T, D) is the pure magnonic entropy and Sl (T ) is the
entropy of the lattice related to the contribution of phonons
in the system. Equation (B6) assumes that the entropy of
phonons relies solely on temperature, thus neglecting the
influence of phonon coupling with external magnetic fields
or the DM interaction. Furthermore, for the comprehensive
assessment of entropy, we disregard magnon-phonon interac-
tions and assume that the temperature regime in our system is
low enough so the general results are not affected by phononic
entropy.

APPENDIX C: TRANSITION BETWEEN
ENGINE AND REFRIGERATOR

The transition between engine and refrigerator is equiva-
lent to exploring the change in the sign of the total work.
It can be analyzed through the system’s internal energy if
we explicitly analyze the work in the adiabatic stages. In the
isentropic expansion, we have

W1→2 = U2(T2, D) − U1(TC, D0), (C1)
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FIG. 6. Graphical solution of Eq. (C8) for the case ρ1(ε)
ρ2(ε) = 1 as a function of the DM parameter for (a) �T = 0.6 with TH = 3 K and

(b) �T = 5 with TH = 15 K.

that can be written explicitly as

W1→2 =
∫ εmax

εmin

dε ε[ρ2(ε) n2(ε, T2, μ)

− ρ1(ε)n1(ε, TC, μ)], (C2)

where we have used that the range of integration in the internal
energy is approximately the same at points 1 and 2. In the
same spirit, the work on adiabatic compression will have the
expressions

W3→4 = U4(T4, D0) − U3(TH, D) (C3)

or

W3→4 =
∫ εmax

εmin

dε ε[ρ4(ε) n4(ε, T4, μ)

− ρ3(ε)n3(ε, TH , μ)]. (C4)

If we consider the cycle in terms of the density of states,
we have, according to the isochoric trajectories, the next
condition:

ρ1(ε) = ρ4(ε) ; ρ3(ε) = ρ2(ε). (C5)

Equation (C5) can be used in combination with Eqs. (C2) and
(C4) to write the total work,

WT = −
[ ∫ εmax

εmin

dε ε {ρ2(ε)[n2(ε, T2, μ) − n3(ε, TH , μ)]

+ ρ1(ε)[n4(ε, T4, μ) − n1(ε, TC, μ)]}
]
, (C6)

where T2 and T4 are obtained from the isentropic trajectory
conditions:

S(TC, D0) = S(T2, D), S(TH , D) = S(T4, D0). (C7)

From Eq. (C6), we can find the critical relationship when a
point of zero work occurs, that is, a point where a reversal in
the behavior of the proposed engine will emerge. Therefore,
the expression of this critical point is given by

n2(ε, T2, μ) − n3(ε, TH , μ)

= −ρ1(ε)

ρ2(ε)
[n4(ε, T4, μ) − n1(ε, TC, μ)]. (C8)

Once T2 and T4 of the isentropic trajectories are correctly
parameterized via Eq. (C7), and under the assumption that
ρ1(ε)
ρ2(ε) ∼ const, we can numerically explore the population dif-
ferences n2 − n3 and n1 − n4 as a function of the parameter D
by considering that in real space the magnon energy follows
ε ∼ CD (with C an arbitrary constant). In Fig. 6(a), we graph-
ically solve Eq. (C8) as a function of the DM parameter for
the case ρ1(ε)

ρ2(ε) = 1. Valid solutions correspond to a crossing
between n2 − n3 and n1 − n4, excepting the trivial case at
D = ±0.1 meV, where the cycle starts (finishes). Such a cross-
ing occurs exactly at D = ±Dcr, where a transition from the
engine to the refrigerator behavior takes place for the parame-
ters TH = 3 K, TC = 2.4 K, i.e., �T = 0.6, which effectively
gives rise to a change in the behavior of the thermal machine,
as mentioned in the main text. In contrast, from Fig. 6(b),
we do not observe any cross on the difference of thermal
populations [so there is not a valid solution of Eq. (C8)] for
temperatures TH = 15 K and TC = 10 K, i.e., �T = 5. In this
case, since the enclosed area by n2 − n3 is always bigger than
the corresponding one by n1 − n4 (in absolute value), we have
that WT > 0 and the machine operates as an engine.

APPENDIX D: CALCULATION OF CRITICAL TC

FOR THE TRANSITION BETWEEN ENGINE
AND REFRIGERATOR AT D = 0

Here we show the existence of a critical TL so, given a cer-
tain TH , the transition between an engine and refrigerator takes
place. We first find the minimum DM parameter at which the

FIG. 7. High temperature of the reservoir as a function of the
minimum cold temperature of the reservoir so the transition between
engine and refrigerator occurs.
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total work becomes zero. As shown in Fig. 3 in the main text,
the total work curves that admit the transition between an en-
gine and refrigerator always have a global minimum at D = 0.
Therefore, at D = 0, one can ensure that a transition can occur
for some set of parameters (see also Fig. 4 of the main text).
Next, we explore the temperatures needed to achieve such a

transition. To do that, we fix a given TH and calculate what
is the minimum TC to accomplish the condition Wtotal = 0. In
Fig. 7, we show the relationship between different values of
TH and its corresponding T cr

C , defined as the minimum value
of TC so the transition occurs. As can be seen, the behavior is
almost linear.
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M. Schüler, and J. Berakdar, Superadiabatic quantum heat en-
gine with a multiferroic working medium, Phys. Rev. E 94,
032116 (2016).

[33] O. Abah, J. Rossnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler,
K. Singer, and E. Lutz, Single-ion heat engine at maximum
power, Phys. Rev. Lett. 109, 203006 (2012).

[34] J.-W. Zhang, J.-Q. Zhang, G.-Y. Ding, J.-C. Li, J.-T. Bu, B.
Wang, L.-L. Yan, S.-L. Su, L. Chen, F. Nori et al., Dynamical

033164-7

https://doi.org/10.1063/1.4978611
https://doi.org/10.1063/1.2916405
https://doi.org/10.1016/j.enconman.2012.01.005
https://doi.org/10.1116/5.0083192
https://doi.org/10.3390/e15062100
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1007/978-3-319-99046-0_1
https://doi.org/10.1103/PhysRevA.88.013842
https://doi.org/10.1038/s41467-017-01991-6
https://doi.org/10.3390/e19040136
https://doi.org/10.3390/e22070755
https://doi.org/10.1103/PhysRevE.83.031135
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1007/s13538-019-00700-6
https://doi.org/10.1038/nphys3169
https://doi.org/10.1007/978-3-319-99046-0
https://doi.org/10.1038/ncomms3059
https://doi.org/10.1038/ncomms8689
https://doi.org/10.1103/PhysRevLett.122.200601
https://doi.org/10.1103/PhysRevLett.121.120602
https://doi.org/10.1126/science.1078955
https://doi.org/10.1103/PhysRevE.101.012116
https://doi.org/10.1103/PhysRevB.104.125445
https://doi.org/10.1103/PhysRevE.91.052152
https://doi.org/10.3390/nano13091548
https://doi.org/10.3390/e21050512
https://doi.org/10.1103/PhysRevE.104.014149
https://doi.org/10.1103/PhysRevE.92.022142
https://doi.org/10.1103/PhysRevA.96.052119
https://doi.org/10.1103/PhysRevA.91.023816
https://doi.org/10.1088/1367-2630/16/6/063018
https://doi.org/10.1103/PhysRevE.94.032116
https://doi.org/10.1103/PhysRevLett.109.203006


VIDAL-SILVA, PEÑA, TRONCOSO, AND VARGAS PHYSICAL REVIEW RESEARCH 6, 033164 (2024)

control of quantum heat engines using exceptional points, Nat.
Commun. 13, 6225 (2022).

[35] Q. Bouton, J. Nettersheim, S. Burgardt, D. Adam, E. Lutz, and
A. Widera, A quantum heat engine driven by atomic collisions,
Nat. Commun. 12, 2063 (2021).

[36] J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza,
R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental
characterization of a spin quantum heat engine, Phys. Rev. Lett.
123, 240601 (2019).

[37] K. Ono, S. N. Shevchenko, T. Mori, S. Moriyama, and F. Nori,
Analog of a quantum heat engine using a single-spin qubit,
Phys. Rev. Lett. 125, 166802 (2020).
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