PHYSICAL REVIEW RESEARCH 6, 033162 (2024)

Resetting as a swift equilibration protocol in an anharmonic potential
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We present and characterize a method to accelerate the relaxation of a Brownian object between two distinct
equilibrium states. Instead of relying on a deterministic time-dependent control parameter, we use stochastic
resetting to guide and accelerate the transient evolution. The protocol is investigated theoretically, and its
thermodynamic cost is evaluated with the tools of stochastic thermodynamics. Remarkably, we show that
stochastic resetting significantly accelerates the relaxation to the final state. This stochastic protocol exhibits
energetic and temporal characteristics that align with the scales observed in previously investigated deterministic
protocols. Moreover, it expands the spectrum of stationary states that can be manipulated, incorporating new
potential profiles achievable through experimentally viable protocols.
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I. INTRODUCTION

Achieving thermal equilibrium is a crucial requirement
in diverse applications. These include, for example, estab-
lishing well-defined initial conditions for experiments [1,2],
accelerating the operation of heat engines [3], and ensuring
accurate and reliable measurements in DNA hybridization
microarrays for biological and biomedical applications [4,5].
Given its widespread importance, methods to expedite ther-
mal relaxation are highly sought after. In this context, swift
driving protocols in nonequilibrium statistical mechanics aim
to manage a system’s transition between thermal equilibrium
states efficiently, seeking quicker routes to equilibrium than
natural relaxation [1,6,7]. For instance, various techniques
were used to showcase a reduction in the relaxation time
(7,) of a Brownian particle coupled to a thermal bath after
a sudden change in a control parameter, e.g., potential stiff-
ness or temperature. Such swift state-to-state transformation
(SST) protocols usually rely on the full knowledge of the
time-dependent probability density and its relation to external
control parameters.

This allows the reverse engineering a well-chosen temporal
change of the control parameter ending at the new equilib-
rium state [1]. In the case of harmonic confinement, explicit
SST protocols were derived and experimentally implemented
to control the relaxation of Brownian particles [8—10] with
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promising applications such as directly increasing the effi-
ciency of microscopic heat engines [3,11-14].

Such acceleration beyond thermal relaxation comes at a
cost. The energetic expenses of these control protocols are
effectively analyzed through stochastic thermodynamics at
the level of individual stochastic trajectories [15,16]. There-
fore, general principles governing such protocols’ trade-offs
between time and energy are calculated, allowing for their
optimization [17-21].

The current focus of mesoscopic thermodynamics on
inherently nonequilibrium systems like active matter is
challenging the existing SST methods [22-24]. This led
recently to the derivation of SST between nonequilibrium
states [25,26] and for arbitrary potentials [27], which are
more complex and delicate to implement experimentally. This
is the motivation of our work, seeking experimentally ap-
plicable SST methods in nonequilibrium and nonharmonic
frameworks.

Stochastic resetting (SR) is a driving mechanism in which
a process is arrested randomly only to be reinitiated repeat-
edly, usually from the origin. The classic example of SR is
resetting the motion of a diffusing Brownian particle [28,29],
which has been realized experimentally employing optically
trapped Brownian colloidal particles [2,30,31], and thor-
oughly investigated theoretically [28,32-36], demonstrating
fluctuation-dissipation relations [37], enhanced sampling [38]
or SR-induced Mpemba effect [39]. The rising interest in SR
is prompted, among other features of SR, by the emergence
of a stationary state, making SR akin to confinement yet bear-
ing unique characteristics. Since each resetting event in SR
breaks detailed balance, the resulting steady state is, of course,
out of thermal equilibrium, with nonvanishing probability
currents and constant dissipation of heat to the surrounding
fluid [31,36,40,41].
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Here, we propose an innovative method to accelerate the
relaxation between two states based on SR rather than on
a controlled variation of the underlying potential. In our
method, the potential is switched off during the transition,
and the system undergoes stochastic resetting until its position
distribution reaches that of the target state. Subsequently, the
target potential is turned on, and the stochastic resetting is
terminated. This method shares similarities with a previous
proposal [42] where an energy-dependent SR rate, contin-
gent upon knowledge of particle positions in time, expedites
transitions between two Gaussian equilibrium states. In sharp
contrast, the method developed here does not require such
knowledge (relying on feedback). The acceleration is rooted
in the detailed-balance breaking jumps intrinsic to SR, explic-
itly using the nonequilibrium nature of the process to expedite
the relaxation.

First, in Sec. II, we detail the similarity between a SR pro-
cess and a simple diffusive trajectory at thermal equilibrium
in a V-shaped potential. Both processes can be tuned to share
the same position distribution, while keeping very distinct
dynamics. In Sec. III, we demonstrate that stochastic resetting
accelerates the transition of a Brownian particle between two
equilibrium states in such V-shaped potential. Moreover, it
naturally connects two nonequilibrium steady states where
standard SSTs are difficult to derive. The acceleration is fully
quantified numerically and analytically. In Sec. IV, we char-
acterize the entropic cost of accelerated relaxation protocols
via stochastic thermodynamics. We further discuss an exten-
sion to finite-time resetting, offering experimentally feasible
acceleration. Finally, perspectives of generalization are given
in Sec. V.

II. EQUILIBRIUM AND NESS DISTRIBUTIONS

We start by considering a Brownian particle diffusing in a
confining linear V-shaped potential V (x) = b|x| with b > 0,
obeying the Langevin equation,

x(t) = %bsgna(r)) + V2Dk (1), (1)

where y is the viscous drag coefficient, sgn(x(z)) is the
sign function, D = kgT'/y is the diffusion coefficient with
kg is Boltzmann’s constant and 7 the temperature. £(¢) is a
Gaussian random variable with (£(¢)) = 0 and (£(¢)&(s)) =
8(t — ). The position probability density function (PDF) of
the particle, according to Boltzmann statistics, is given by,

¢ T, ()

Fa) = 57
An exemplary Langevin simulation of such a particle is
depicted in Fig. 1(a), together with its stationary position dis-
tribution. Throughout the paper, we consider a micron-sized
colloidal particle at room temperature 7 = 300 K with y =
8 x 1072 kgs~!. All simulations are initialized with random
positions in the steady state, eliminating an initial thermal-
ization time. The PDFs (here and below) are measured on a
single trajectory of 107 time steps of duration dt = 1076

In the absence of an underlying potential, SR of a Brownian
particle to the origin x = 0 with resetting times drawn from
an exponential distribution, P(t.) = Ae M results in the
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FIG. 1. (a) Time series of position x(¢) obeying the Langevin
process Eq. (1) at thermal equilibrium in a V-shaped potential with
slope b = 0.18 pN; the Maxwell-Boltzmann equilibrium distribution
is plotted on the right. (b) Time series of positions x(#) Brownian
particle undergoing stochastic resetting with A = b*/y kT = 1 kHz
(red line). Resetting events are shown with vertical arrows, and the
Laplace PDF is plotted on the right.

following nonequilibrium steady-state (NESS) PDF of
positions,

Py(x) = %e—“‘*‘ 3)

where o = \/A/D. A typical trajectory of such a process
alongside its PDF is shown in Fig. 1(b).

Central to our proposed acceleration protocol of an SST
is the fact that this probability distribution [Eq. (3)] can be
tuned to be identical to the equilibrium distribution of Eq. (2)
by taking b = akpT , namely, by fixing the resetting rate to be

= b*/ykpT.

In Fig. 2(a), we show quantitatively that by installing the
appropriate resetting rate A, we obtain the expected identical
Laplace PDFs for the two cases: equilibrium with a V-
shaped potential [Eq. (2)] and Poissonian stochastic resetting
[Eq. (3)]. Importantly, having identical PDFs does not imply
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FIG. 2. (a) Probability distribution of an equilibrium process
(blue circles) and a resetting process (red triangles), along with
the analytical result Py (x) = Ps(x) (black dashed line) for a single
trajectory. (b) Probability density current through space for the equi-
librium state (blue circles) and for SR (red triangles) together with
the analytical result for SR (black dashed line).
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similar dynamics. Under SR, a particle experiences significant
jumps at each resetting event, leading to a nonzero stationary
current j,(x) = %%Ps(x) - D% = ‘%"zsgn(x)e‘“‘xl, as
illustrated in Fig. 2(b). This stands in stark contrast to the
behavior of a particle at equilibrium. The distinct dynamics
under SR enable accelerating a transition between stationary
states.

III. STATE-TO-STATE TRANSITION

A thermodynamic state-to-state transition is triggered by
the modification of an external parameter governing the sys-
tem. Here, if the potential’s slope b is modified in time, then
the system will evolve towards a new equilibrium state. Both
initial and final states follow the Bolzmann equilibium dis-
tribution, but for a transient time, the system evolves out of
equilibrium. Similarly, if the resetting rate A is modified in
time, then the system will evolve to a new steady state. In that
case, it is never in equilibrium but transients between NESSes.

A. State-to-state evolution of the PDF

The simplest unassisted transition between two equilib-
rium states involves an abrupt change of the potential slope
from b(#;) to b(ty) followed by spontaneous relaxation. Simi-
larly, a freely diffusing particle in steady state under resetting
can be subjected to a sudden change of the resetting rate from
Ap(t:) = b(1;)? [y kT to Ap(ty) = b(t)?/yksT followed by a
relaxation to the new steady state.

In Figs. 3(a) and 3(b) simulation results of both protocols
are compared by depicting the evolution of the PDF for a
potential quench (a) and for a SR-assisted transition (b). The
position distribution is obtained from an ensemble average of
10° independent trajectories of 2800 time steps with dt = 10
us. While the initial and final states of both protocols have the
same PDF, the rate of its evolution is different.

The detailed evolution of the PDF after a quench of reset-
ting rate A is shown on Fig. 4(c) with histograms spanning
across the relaxation from blue to red. Clearly, the PDF splits
into two regions, sharply separated by a front that propagates
from the center to the tails. A similar observation was made in
Ref. [43], for a §(x)-distributed initial condition. To obtain the
time-dependent PDF after a resetting quench, and as detailed
in Appendix A, we integrated the SR Green’s function [29]
over the initial steady state P;(x) = a(t;)e"*"! /2. This inte-
gral can be solved in Laplace-domain, yielding the solution,

AX/s + A(ty) = %Irl

25v/D(AL — 5)

_ D)
2VD(AN — 5)

where s is the Laplace-space variable and AA = A(t7) — A(t;).
The exact time-dependent PDF, py(x,?) obtained by nu-
merical inversion is shown in Fig. 3(c), agrees well with
the numerical PDF measured on independent stochastic
processes.

A time-dependent front xo(¢) splits an inner core region
where p(|x| < xo,1) = Pr(x) = a(tr)e M /2, from an the
outer region where p(|x| > xo,1) = Pi(x) = a(t;)e *@Wl /2,

Pn(x, s) =

ekl

)

1.5 2 2.5 3
t [ms]

FIG. 3. (a) Steplike change of the potential slope b(¢) in the
absence of resetting (A = 0) and corresponding contour plot of the
time-dependent probability density. (b) Steplike change in stochastic
resetting rate A(¢) in the absence of potential (b = 0) and correspond-
ing time-dependent probability density. (c) Five distinct PDF (from
blue to red) during the transient evolution of the same ensemble un-
der SR-assisted SST, the analytical solution py, (x, t), computed from
the Laplace-space solution (black lines) and the empirical profile
f(x,1) (green dashed lines) using the values x((#) extracted from a
fitting procedure. (d) Time-dependent boundary x((¢) (red line) up to
the limit defined by numerical precision together with the theoretical
evolution (black dashed line) from § initial conditions derived in

Ref. [43] using a slope 2[,/DA(tf) — /DA (%)].

This is similar to the result obtained in Ref. [43], where the
front was interpreted as a dynamical phase transition sepa-
rating stochastic trajectories that have undergone resetting to
those that have not yet.

This very simple form of the distribution motivates us to
propose an empirical expression for the PDF

FOra 1) = wir, P () + Wﬂ“w)w), @)

with w a window-function obeying w(x, t) = 1 for |x| < xo(t)
and O for |x| > xo(¢), while w =1 —w and Aa = a(ty) —
a(t;). This result is shown on Fig. 4(c) and agrees well with
the numerically measured p(x,t) as well as the exact solu-
tion pw(x,t). The time-dependent value of the front x((z)
[see Fig. 3(d)] is obtained by fitting the measured PDF to
f(x, t) during the transient (as detailed in Appendix A). After
a transient time due to the initial condition [P;(x) # 6(x)],
xo(t) evolves linearly in time (long-time errors are detailed
in Appendix A).
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FIG. 4. (a) Relative Kullback-Leibler divergence as a measure
in natural bits of the distance to stationary state, normalized by the
stationary value. The response to a potential quench is shown with a
blue line and the SR-assisted transition as a red line. Relaxation times
are underlined with blue and red vertical lines. (b) Time-dependent
variance Ac?(t) = (x*(1)) — % decay in both cases. Together with
Eq. (6) (black dashed line). For the potential quench, we show both a
simple exponential fit (gray dashed line) and the long-time approxi-
mation of the exact result derived in Appendix B (green dashed line).
(c) Measured relaxation times 7, (blue circles) and tsg (red triangles)
as a function of the ratio of compression/expansion A(t;)/A(t;). Here
the initial state is defined by A(#;) = 200 Hz. The superimposed lines
correspond to theoretical characteristic times as detailed in the main
text. The characteristic exponential relaxation times 7., measured
by fitting the variance relaxations with a simple exponential, are
shown in the inset, spanning over the same range of A(f)/A(t;). For
the quench in resetting rate (red line), we observe Tex, o< A(f;)/A(tr)
(black dashed line).

B. Observables of relaxation time

Importantly, the algebraic growth of the dynamical phase
transition xo(¢) prevents the definition of an unambiguous re-
laxation time; this motivates us to define relaxation as the time
needed for p(x, t) to be indistinguishable of P;(x) within a fi-
nite precision. We therefore quantify the acceleration induced
by SR [Figs. 3(a) and 3(b)], via the Kullback-Leibler (KL)
divergence between the measured p(x, t), and the stationary
solution P(x) = Peq(x) with the control-parameter b(¢) or
Ap(t),

&)

Dkr(p(x, 1) || Ps(x))z/p(x,t)ln[p(x’t)}dx

Py(x)
When the control parameter is abruptly modified, Py(x)

immediately adapts, while the system responds gradually,
characterized by p(x, t). The delay in the system’s response is

well captured by Dx. = DxL(?) /DkL.s, a normalized measure
with respect to the stationary-state value Dgy s [Fig. 4(a)].
The latter is only related to the numerical precision of the
histogram.

To measure numerically the relaxation times [Fig. 4(a),
blue and red vertical lines], tsg and 7, we probe the first
value of the time-dependent Dy below a the average final
steady-state value. As seen on Fig. 4(a) with a reasonable
numerical precision, this corresponds effectively to the full
relaxation of the distribution.

Remarkably, we observe a significantly faster relaxation to
the new steady state for the SR-assisted SST, with tsg = 4.49
ms, compared to its equilibrium counterpart, 7, = 15.8 ms
[Fig. 4(a)]. In other words, the NESS-to-NESS evolution in-
duced by stochastic resetting is more than three times faster
than the relaxation from equilibrium to equilibrium under the
selected parameters.

The evolution of the KL divergence fully characterizes the
decay of the PDF, namely it includes all moments. However,
useful information can be obtained by looking at the evolution
of the second moment o2(t) = (x*(¢)) (here (x) = 0). From
the expression of the PDF in Laplace space Eq. (5) we can ob-
tain a simple analytical form for the time-dependent variance
under a change of resetting rate (see Appendix B),

02(t) — 2D<L _ L)e—k(ff)t + Z_D (6)
A)  Ay) Aty)
This exponential decay [black dashed line in Fig. 4(b)], fully
characterized by the final resetting rate, shows perfect agree-
ment with the numerically measured variance relaxation (red
line).

Similarly, for a transition between equilibrium states in
V-shaped potential, () can be fitted with an exponential
decay [Fig. 4(b), blue line and gray dashed line]. The long-
time limit of the variance can also be obtained from the exact
propagator (Appendixes C and D) and is shown on Fig. 4(b)
as a green dotted line. We note that for many practical ap-
plications, the relaxation of the variance can be a sufficient
criterion. However, here, we treat the most general case and
base our quantitative description of the relaxation on the KL
divergence.

The SR-based acceleration method remains valid across
the entire spectrum of potential changes, which we demon-
strate by measuring the KL divergence relaxation time while
varying the final value of A(¢;) [respectively, b(z7)] with fixed
A(t;) = 200 Hz [b(t;) = 0.08 pN]. The measured relaxation
times are shown in Fig. 4(c). The NESS-to-NESS transition
(red) is always faster than the equivalent potential quench
(blue) for both compression and expansion.

C. Compression and expansion

As detailed in Appendix E, Eq. (6) allows us to derive the
time needed for the variance to converge arbitrarily close (up
to some tolerance parameter) to its final steady-state value.
This time takes a simple form oca + In(1 — A(t;)/A(%;))
where o depends both on the tolerance parameter and the
precision of the simulation. We show in Appendix E that this
form captures perfectly the behavior of the variance as well
as provides a good approximation for the relaxation of the
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KL divergence. This result stems from the fact that all even
higher-order moments share the same exponential decay as the
variance, with different power-law prefactors (Appendix B).
The measured relaxation times of the KL divergence are
shown on Fig. 4(c) where we use the aforementioned expres-
sion to fit the measured relaxation time (red solid line).

The nature of the relaxation is different for compression
and expansion (Appendix E). When the potential is expanded
[left half of Fig. 4(c)], the relaxation is dominated by dif-
fusive forces. This is manifested in the hybrid shape of the
PDF, which is a combination of Laplace and Gaussian shapes
(Fig. 9). We attribute the Laplace shape to conservative forces
and the Gaussian shape to diffusion. The shape of this PDF is
fully captured by the exact result Eq. (C2).

Being dominated by diffusion, we expect the transient time
for expansion to increase monotonically with the difference
between the two states. This difference is captured by, o
AT = |T¢ — Ti|, where the typical timescale arises naturally

as T = k‘?h# = A;l. The relaxation times for an expansion of
a V-shaped potential shown in Fig. 4(c) are fitted with a simple
proportionality factor to AT

In contrast, for compression [right half of Fig. 4(c)], the
evolution is dominated by the applied conservative force,
yielding a bi-Laplace shaped PDF (Figs. 3 and 9) without any
diffusive Gaussian shape. There is, therefore, a competition
between the acceleration due to the increasing conservative
force applied o b(t) and the growing difference between
initial and final states. These effects are combined in a phe-
nomenological fit 7, « %AT with a single proportionality
factor [Fig. 4(c)]. Naturally, in the limit of A(zy) — A(t;) the
transition becomes infinitely fast for any protocol [seen as
a cusp in Fig. 4(b)]. We stress again that the relaxation is
defined via an arbitrary threshold. Therefore, the value of the
proportionality factors in the fits should not be considered
as physically meaningful. Nonetheless, it gives an estimate
of the time needed to approach a state that is practically
indistinguishable from the fully relaxed state. Overall, these
results clearly demonstrate the ability of SR to accelerate
the relaxation of a thermal system via SR NESS-to-NESS
transformation.

D. Equilibrium states

The ability of SR to induce fast transitions between two
NESS can be adapted to expedite transitions between two
equilibrium states as well. SR is then used only during the
transient between the two equilibrium states. The proposed
protocol is composed of the following steps [Fig. 5(a)]: (i)
a thermal equilibrium state in prepared in V (x) = b(t;)|x|;
(ii) the potential is switched off and SR is applied with a
rate A = b(tf)2 /(kgT y) corresponding to the target state, (iii)
immediately after the system has relaxed (within the finite nu-
merical precision) with time 7sg < 7, resetting is stopped and
the potential is switched on in its final state V (x) = b(ts)|x|.
Following this protocol fastens the particle’s transition to the
final equilibrium state compared to a potential quench proto-
col [Fig. 5(b)] and relies on the a priori knowledge of tsg.

However, this approach relies on the transition from equi-
librium to NESS [beginning of stage (ii)] and back [beginning
of stage (iii)] to be instantaneous or with negligible time

(a) ,
= 0.4 =
e 1 E
0.2 =B
= ~<

0 0
0 5 25
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b 10
100 [ e e ey s
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FIG. 5. (a) Schematic representation of the proposed protocol:
Initially the system is at thermal equilibrium in V(x) = b(t;)|x|,
then (first black vertical line) the potential is replaced by SR with
A= b(tf)2 /(kgTy) for a time tsg and finally (second black ver-
tical line) resetting is turned off and the system is at equilibrium
in V(x) = b(t;)|x|. (b) ADx for standard potential quench (deep
blue line), SR-induced NESS-to-NESS (red line) and following our
protocol (light blue dashed line).

expenditure. In other words, the PDFs dynamics following
this protocol should be identical for transitions between NESS
and equilibrium states, which is verified in Fig. 5(b), where
the dynamics of Dgr of both SR-based transitions overlap
and decay faster than that of the potential quench transition
between equilibrium states. This is due to the Markovian and
overdamped nature of the process. Only the present state of
the system determines its future evolution.

IV. THERMODYNAMIC COST

Operating through markedly different mechanisms, both
protocols entail distinct thermodynamic costs (see details in
Appendix F), which we assess by comparing the total entropy
produced by resetting during the transition time tsg, to the
total entropy produced by the standard yet irreversible poten-
tial quench. We analyze here in details the various entropic
contributions in both cases.

A. Entropic cost

The change of steady-state distribution is accompanied by
a change of ensemble-averaged system entropy [16,44]

Ssys(t) = —kg(In[p(x, 1)]),, (N

where (...), = fj;o ... p(x, t)dx The total contribution of the
state function ASgys along the protocol only depends on initial
and final PDFs. It is the same whether we use a potential
quench or resetting. The system entropy is shown in Fig. 6(a)
both for a potential quench (deep blue line) and for a resetting-
based protocol (red line). As expected, they converge to the
same value which is —1 kg for this choice of parameter [i.e.,
A(tr) = 8A(t;) as above]. For the potential quench, the heat
dissipated in the bath yields a medium entropy S, = Q/T
which is calculated by identifying the heat exchanged from
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FIG. 6. (a) Dissipated entropy during the transient for the V-
shaped potential (vp) quench (system entropy as deep blue line,
medium entropy as light blue line) as well as for the SR-based accel-
erated protocol (system entropy as red solid line and resetting entropy
as brown-red line). In both case the system entropy is the same,
as expected since initial and final distributions are equal, only the
time-evolution differs. (b) Time-dependent total entropy difference
AS(t) = S() — S(0) for SR (dashed red line) for potential quench
(dashed blue line). (c) Total entropy as a function of the ratio of states
as in Fig. 4 both for potential quench (blue circles) and SR-based
protocol (red triangles).

the Langevin equation

1 t
Sm(t) = % = —;</0 b(t’)Sgn[X(t')]x(t’)dt’> )
P

using Stratonovich’s convention for integration [16]. The
derivation of the stochastic heat, together with the other en-
tropic contributions, are detailed in Appendix F. The heat
production for the same potential quench is Q ~ 2.4 [kgT'] as
shown in Fig. 6(a) (turquoise line). Here Q > 0 showing that
during a potential quench, heat is dissipated in the bath. Since
Q vanishes in the absence of an external potential, it does not
contribute to the SR-based protocol.

Conversely, for the SR-based protocol, the erasure of infor-
mation during each resetting event yields a resetting entropy,
which can be understood by focusing on a single resetting

event. Just before resetting the system, the trajectory has
diffused until stochastic position x(¢) under the action of
the thermal bath. Doing so, it acquired a finite quantity of
stochastic system entropy s(t) = —kg In(p(x(¢), t)) where the
probability distribution of the system at time ¢ is evaluated
at the stochastic position x(z) [44]. Immediately after the
position is reset to x(r*) = 0 the stochastic system entropy
reads s(t7) = —kgIn(p(0, ¢)), where we consider that under
instantaneous resetting, p(x,t") = p(x,t). The net differ-
ence in system entropy therefore reads §s(z) = s(t™) — s(t) =
kg In(p(x(t),1)/p(0,t)). Resetting events are occurring at a
rate A and, hence, the average production of resetting entropy
is computed as [40,41,45-47]

& _ p(-xv t)
St = kgk<p(x, t)In |:,0((), f):|>p. C)

The total entropy contribution AS,y over the duration g
of our protocol is given by the integral AS,y = OtSR St (1)dt.
This is shown on Fig. 6(a) (dark red line), yielding a net
entropy ASi & —6.2 [kg]. ASie < 0 shows the reduction
of uncertainty induced by resetting with respect to free
diffusion [40].

We can therefore compare the total entropic cost of the
SR protocol ASSR — ASsys + ASis & 5.2 [kp] to the total

tot
entropy produced by the potential quench AS:(/)EP = ASgys +
AS,, = 1.4 [kg]. As seen in Fig. 6(b), the acceleration ob-
tained by SR comes at the cost of larger entropy production.

B. Towards control on the cost

For the potential quench, the system transients between
two equilibrium states due to the modification of a con-
trol parameter [15,16]. The exchanged work W and heat
Q obey the first law of thermodynamics and are bounded
from below by the free-energy difference between both states
AF = —kplog[b(ty)/b(1;)]. The total entropy production cor-
responds to the irreversible work (W — AF)/kgT > 0, where
equality holds for reversible transformations, here, a qua-
sistatic variation of the control parameter b(t). In contrast,
an instantaneous quench, as studied here, is inherently ir-
reversible, and this irreversibility is well-captured by the
measure of AS.

For the SR-based protocol, presented in Fig. 5, the tran-
sition still connects the same equilibrium states, and the
free-energy difference AF' is not modified. However, during
the transition, the system is driven by resetting, accompanied
by constant entropy production when A # 0. Therefore, in
contrast to the potential sequence, a quasistatic increase of A
would incur a high entropic cost (infinite for true quasistatic
protocol) and thus cannot constitute a reversible transition
anymore. Hence, the protocol minimizing total entropy pro-
duction under SR should have a finite duration. The derivation
of such optimal protocol goes beyond the scope of this paper
and constitutes an example of the nontrivial extensions of
control theory to nonequilibrium states like active matter [48]
and resetting [49].

While we do not know the optimal protocol to transition
between V-shaped potentials and its cost, we can compare the
entropic cost of our protocols to known optimized procedures
for harmonic traps with the same eightfold increase of control
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parameter [19]. In a harmonic potential the total entropy pro-
duction for a steplike change of stiffness is computed from
the dissipated work as ASPOYP = Was — 2 2 k. Using an
optimal protocol to decrease the relaxation time by the same
factor 3.5 as obtained here, would require AS} ™" = 10.6 k.
Both numbers are of the same order of magnitude as the
entropic cost of the protocol proposed here, showing that
the SR-induced dissipation does not exceed useful known
protocols.

C. Finite-time experimental applications

Experimental implementations of SR of colloidal particles
in optical traps [2,30,31] necessarily consist of finite-time
resetting events [50-53]. One example of such a resetting pro-
cedure is constant-time resetting [30,31], where an external
stiff potential is applied for a finite time to ensure the particle
returns to the origin. For our proposed method to be advan-
tageous, the total sum of individual resetting times should
not surpass the difference between 7, and rsg. This condition
establishes a maximum temporal cost for each resetting event
(see Appendix G for specifics) well within experimental ca-
pabilities. Taking into account the range of relaxation times
shown in Fig. 4, the maximal temporal costs range is ~1-100
ms. This is notably larger than the fraction-of-millisecond
duration realized in previous experiments [31].

V. CONCLUSIONS

Our results show that SR can be used to accelerate transi-
tions between two equilibrium states under different V-shaped
potentials. This method uses a nondeterministic driving
scheme, unlike standard SST deterministic protocols [1].
Moreover, it naturally applies to transitions between nonequi-
librium steady states and provides a simple acceleration
scheme between nonharmonic potentials. The thermodynamic
cost of SR-induced acceleration is equivalent to that of the
previously suggested deterministic SSTs for similar accelera-
tions, even when considering the addition of the finite duration
of the resetting process.

The general mechanism to accelerate transitions between
states is manipulating the probability currents’ evolution. This
drives the system far from equilibrium and enables circum-
venting the limitations imposed by equilibrium conditions.
Microscopically, this was previously achieved by dynamic
modification of the potential landscape. Our approach induces
these currents by modifying the microscopic dynamics. This
alternative method for state control enriches the currently
available tools, connecting SST to microscopic nonequi-
librium processes. Furthermore, other ways to control the
probability current, such as transiently inducing activity (e.g.,
self-propulsion), may prove beneficial and extend the avail-
able tools for SST. External modification of activity has been
demonstrated in bacterial swarms [54]. Controlling transition
when activity is involved has been addressed recently [24,48],
conversely, activity could be use to control transitions.

Our method extends beyond the specific transitions ob-
served between V-shaped potentials studied in this context. It
has the potential for generalization across diverse potentials
by utilizing more sophisticated SR protocols. For instance,

the application of partial resetting [55], involving resetting
to a fraction of the distance to the origin, allows for the
fine-tuning of the steady-state probability distribution of a
diffusing particle. This adjustment spans the entire spec-
trum between Gaussian and Laplace distributions, facilitating
transitions among families of potentials. Additionally, imple-
menting state-dependent resetting [42] broadens the repertoire
of manipulable states. We propose that further refinement of
resetting protocols, specifically aimed at tailoring the steady-
state PDF, represents a promising avenue for future research.
Our work, along with the potential generalizations mentioned,
suggests that manipulating microscopic dynamics-whether
through resetting or other mechanisms-could establish a novel
and versatile approach to state control.

The acceleration mechanism revealed in this study likely
underlies the modification of efficiency induced by SR when
implemented in a stochastic heat engine [56]. Thus, gaining a
deeper understanding of the interaction between acceleration
and the thermodynamic cost of SR, specifically in SST, is cru-
cial for leveraging its potential in pioneering micromachine
applications [3,11,12].
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APPENDIX A: TRANSIENT PROBABILITY
DENSITY FOR SR

In this Appendix we derive analytically the time-dependent
PDF for an SR process undergoing a sudden change of reset-
ting rate A.

We consider a particle diffusing under stochastic resetting
with resetting rate A; and diffusion coefficient D which al-
ready reached a steady state, given by a Laplace distribution

Py(x) = \/%e_mm [28]. At time ¢ = 0, the resetting rate
is changed to A ;. We look for the probability pg, of finding the
particle at position x, given time . We will define a Green’s
function g,(x, #|y), which is the probability of finding the
particle at position x, given time ¢, and given that the particle
was at position y at t = 0. py, is given by

P (x, 1) =/ &s(x, tY)Ps(y)dy = pu(x, 5),

o0

o0
=/ &s(x, sIy)Ps(y) dy, (A1)
—00
where pn(x, s) and g,(x, s|y) are the Laplace transforms of
the propagator py (x, t) and of the Green’s function g(x, t]y)
evaluated at Laplace variable s, respectively. The Laplace
transform of the Green’s function for stochastic resetting
was calculated before using renewal theory and is given

by g.(x,sly) = Go(x, Ap+sly) + %Go(x, A +5|0), where
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FIG. 7. Evaluation of the limit on the precision of a numerical
evaluation of xy(¢). A thousand consecutive measured PDF on an
ensemble on 10° trajectories in final steady state (blue to green),
average and standard deviation of the measured position at a given
value Ps(x) (black triangle) and transient f(x,?) defined by xo(t) =
1.3x 107 m.

Go(x, s|y) is the Laplace transform of the free diffusion prop-
agator given by G(x, s|y) = #e_“/%‘x_yl [29]. Plugging

sD

everything back to Eq. (A1) givés

)»f )\i
¢
2,/Os + 5D s+ Ay

o s+ "
X L/ eV %|X*,V|*\/;U’| dy. (A2)
ap |

Solving the integral gives the propagator for the relaxation in
Laplace space

Lets
A

Pn(x, s) =

Pn(x,s) =

1 |:()Li—)»f),/)nf+s
)

2\/5()\., - )\.f — S)
X exp (—,/ kf; s|x|) — \/)T,-exp (—\/%|x|)i|.
(A3)

We can see that taking the limit limg_, o spp(x, s) repro-
duces the nonequilibrium steady state with resetting rate Ay.
One can invert the Laplace transform numerically and obtain
the time-dependent PDF, py(x, ), using Eq. (A3). pm(x, 1)
agrees well with our empirical PDF f(x, t) defined in Eq. (4).
Both are plotted together with the numerical histograms in
Fig. 9. Here, like in the case studied in Ref. [43] a sin-
gle time-dependent front xo(¢) splits both domain. The time
dependence of xy(7) is the only parameter when fitting the
measured histograms to f(x, ¢) and the time-dependent result
is shown in Fig. 3 of the main text.

Importantly, the numerically measured values of xy(f)
only keeps a physical significance in a defined range. On
Fig. 7 we show the dispersion in numerical histogram’s tails.
This will lead to an upper bound on the measurable values
of xo As seen here with the red line, f(x,t) defined by

xo(t) = 1.3 x 1077 m falls into the error bars on the estima-
tion of x until the tail of the histogram. Any larger value of
xo(t) will also fall within the same standard deviation. We
therefore use this value of xo(t) = 1.3 x 10~7 m as an upper
bound set by numerical precision [it corresponds to the limit
of the x((¢) plot the main text] for this given statistics.

APPENDIX B: RELAXATION OF THE MOMENTS
IN STOCHASTIC RESETTING

The propagator in Eq. (A3) is symmetric around the
origin. Hence, all the odd moments are zero at any time.
We compute the even moments (X27(s)) using the fact
that [*_x*"e M dx = 2I'2n + 1)a~2""", where I'(y) is the
gamma function. The even moments are given by

(X*(s)) =

F(2n+1)D”|: A— Ay 1

- —. B1)
Ai—Ap—s [s(Ap+s)" A7

We can describe the relaxation by calculating the difference
between the time-dependent moment and its final value in
the steady state. The time-dependent moment is obtained by
inverting the aforementioned Laplace transform. The even
moments at the final steady state are given by, I'(2n +
1)(D/Af)", leading to

(in(t) _ X€2Yn>

_ I'Cn+1)D"| I'(n, )\it)e()\,fxf)t
- '(n)

T(n, Js1)
A VU

(B2)

where (X2") is the 2n moment at the steady state, and
I'(n,x)= fx “y*=le=dy is the upper incomplete gamma
function. In the limit of # > ){1, k;l we can approximate the
incomplete gamma function by I'(n, x) ~ x"~'e™ to obtain

(x>0 = X) ~ (xl B x_lf) ”?—’LX orele . (63)

At long times, the moments decay like a power law multiplied
by an exponential with a characteristic rate equal to the new
resetting rate. Importantly, because I'(1, x) = ¢™*, the vari-
ance decays exponentially for all times, i.e., not only at the
long-time limit, as

(x*)—Xx2) = 2D(% - %)g‘*f’. (B4)
i f

APPENDIX C: RELAXATION IN THE V-SHAPE
POTENTIAL

Here, we derive the transient relaxation of the PDF in a
V-shape potential after a potential quench. We use a similar
Green’s function approach to the one used in the case of SR.
We denote the spread of the distribution by o = b/kgT . For
the initial force constant, we will denote the spread of the dis-
tribution by «; and for the final one by o . Therefore, the ini-
tial distribution reads Peq(x) = %e"""'"‘. The Green’s function
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is given by [57]

O(xy) [_(IXI — Iyl +0tht)2]

o, tly) = ex
ng |y 2@ p

+ Oij exp (—af|x|)erfc<

4Dt

2+/Dt

O—xy) exp (—ar|x|) exp |:_(|x| nld “fo)2]
27D / 4Dt

(ChH

|x] + [yl —OlfDl>

where ®(x) is the Heaviside function and erfc(x) is the complementary error function. By integrating it over the initial condition,
one can find the relaxation of the distribution between two V-shaped potentials,

L R
pv.p(x,t)=3 e WVigy,(x,tly)dy
—0Q

A “f) er(o—o Dt (i—otp)]x] [ x| _O‘th] Of ol |:|x| _O‘thi|
= (% %), e erfe| av/Dr + 0| L Y pmapidgppe | LT 47T (€2)
( 4 4 2+/Dt 4 2Dt
i Dt
+ a—ea"(“"_af)Dte_mlxerfC[ai«/D_t _ x| + af :|
4 2+/Dt

This result is shown on Fig. 9 together with measured PDF
for both compression [Fig. 9(b)] and expansion [Fig. 9(c)].

APPENDIX D: RELAXATION OF THE VARIANCE
IN THE V-SHAPE POTENTIAL

By computing the second moment of the distribution in
Eq. (C2) and identifying the slowest decaying transient, we
obtain at long times for oy > 20

2 2 1 1
(Xz([» _ a n Olf (_ _ >eAaot,-Dt’ (Dl)
oy o, Aa \a; A«

where Aa = oy — «;. Therefore the relaxation of the variance
after a potential quench is slower than the relaxation after a re-
setting rate increase, which is characterized by an exponential
relaxation at a rate of aJ%D.

APPENDIX E: COMPRESSION AND EXPANSION

We detail here the differences between expansion (decrease
of A or b) and compression (increase of A or b).

The relaxation time measured on the KL divergence is
the time corresponding to the first point in the KL diver-
gence to reach its final average value, i.e., 1. We refer to this
time as the full relaxation time. The full relaxation time can be
evaluated for variance as well, and the result is shown Fig 8.
It should not be confused with the exponential characteristic
time of the second moment 7, shown in the inset of Fig. 4.
The analytical expression Eq. (6) of the variance under SR
allows us to obtain an exact expression for the time needed
for the variance to reach a value arbitrarily close to the final
steady-state value. More precisely, we search for the time
TsR.var SUch that GZ(ISR,W) =2D/A(t;) + € where € can be
arbitrarily small. First, the variance equation is expressed in

dimensionless units of space X = ,/ %x and time = At as

G0 = (F(T)) =6 — De" +1, (E1)

where 6 = A(t;)/A(tf). The full relaxation condition becomes
&2(f) = 1 + € and we obtain,

Tsr,var = — In(€) + In(|1 - 0]), (E2)

(

where the absolute values apply to both compression and
expansion. The tolerance parameter € is arbitrary and the
relation between the relaxation time and € depends on the
simulation statistics. We therefore fit the variance relaxation
time shown in Fig. 8 (black dashed line) with Tsg var = (B8 +
In(|1 —@|)) with & and B as fitting parameters. The same
function Eq. (E2) is used to fit the full relaxation of the
KL divergence in Fig. 4, showing that both variance and KL
divergence relax following similar time-scales.

Interestingly, the response to compression and to expan-
sion are very different. For compression, both for SR-based
transformation [Fig. 9(a)] and potential quench [Fig. 9(b)], the
distribution takes a bi-Laplace shape, well captured by both
the exact result py, (x, t) and our empirical model f(x,t). The
front separating both regions travels from the center towards
the tails.

w0
%‘ 102 A Kt—divergence
E 10 N ’/AA- — Variance
e i

C%\ ‘ !

= 107! 10°

—KL-divergence |
© Variance

10 ¢ °oo° 000 7T W

1 -Expansion Compression :
107! 10° 10"
Aty)/A(t:)

FIG. 8. Relaxation times measured for the KL divergence (sym-
bols) and on the variance (solid lines). In both case, it corresponds to
the time of the first point of the respective quantity to reach the mean
final value. On the top graph for a SR-based protocol [with result
Eq. (E2) as black dashed line] and on the lower panel for a potential
quench.
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FIG. 9. Numerically measured histogram and associated exact
result (black solid lines). (a) SR-based compression from A(#;) =
200 to A(ty) = 1600 Hz, we represent both the initial state (blue)
and a transient state after + = 2.2 ms (red). (b) V-shaped potential
compression between similar states, both initial state (turquoise)
and transient (yellow) (c) SR-based expansion from A(z;) = 1600
to A(t;) = 200 Hz, both initial state and transient after t = 3 ms.
(d) V-shaped potential expansion between similar states.

For expansion, both for SR-based transformation
[Fig. 9(c)] and potential expansion [Fig. 9(d)], the distribution
possesses a Laplace core, but its tails have a Gaussian
character. Again, the front separating both regions travels
from the center towards the tails. For the SR-based expansion,
the system is prepared during ¢ < 0 in a state corresponding to
a high resetting rate and is evolving during ¢t > 0 with a lower
resetting rate. Namely, the resetting events become abruptly
less frequent. We, therefore, interpret both regions as follows:
(1) the core of the distribution corresponds to trajectories
that already have undergone resetting with the new, lower
rate, and (2) the Gaussian tails correspond to trajectories that
are still freely diffusing. The tails are not purely Gaussian
because these transiently freely diffusing trajectories are
initially distributed along a Laplace profile. For the potential
expansion, the sudden decrease of the potential slope
corresponds effectively to an increase of available volume.
Here again, trajectories will transiently experience a free
expansion in the new volume, bearing a Gaussian profile.

On the different panels of Fig. 9, we show measured his-
tograms in the initial state and during the transient, illustrating
these different cases. The exact time-dependent distribution
(black solid line) always matches the measured histograms.

APPENDIX F: STOCHASTIC ENERGETICS

1. Potential quench
For the transition between two equilibrium states in V-
shaped potential V(x,t) = b(¢)|x|, the system obeys the
following Langevin equation:
0

Xt

sgn(x;) + v2DE,, (F1)

where D = kgT /y with T the bath temperature, kg Boltz-
mann’s constant, and y Stokes viscous drag. sgn(x;) is the
sign function applied to the stochastic variable x; and & a
Gaussian white noise. Following the approach developed by
Ken Sekimoto [15], the Langevin force balance equation can
be turned into an energy balance by multiplying each side by
the spatial increment dx, undergone by the system within a
time dt,

(yx; — /2kgTy&) o dx; = —b(t)sgn(x;) o dx;, (F2)

where o denotes Stratonovich convention [16]. The left-hand
side corresponds to the energy exchanged through the action
of the solvent molecules, it is associated with the heat dissi-
pated as

8q = (yXi — /2kgTy§) o dx;. (F3)

The right-hand side corresponds to the derivative of the po-
tential with respect to the variable x. Since here the coefficient
b(t) can vary in time, the total derivative of the potential,
which is the change of internal energy of the system, reads

du = dV[x, b(t)] = W ax + 8—de(t). (F4)
ax ab(t)

The second term in the internal energy difference, %—Zdb cor-
responds to the energy exchanged due to the modification of
an externally controlled parameter. It is associated with work
aV db .
dw = — —dt = |x|b(t)dt. F5
b dr [x:1b(2) (F5)
The first law of thermodynamics then reads du = §w — 8gq
at the level of each trajectory, where each energetic quantity
is a stochastic variable. By the first law, heat can also be
evaluated as

8q = dw — du = —b(t)sgn(x;) o dx;, (F6)

which can be easily measured numerically or experimentally
on stochastic trajectories x,. When an ensemble of trajectories
undergo the same quench of potential b(¢) as studied in the
main text of the paper, the stochastic heat §q can be evaluated
on each trajectory and the ensemble-averaged heat at a time
t is the accumulation of ensemble-averaged increments as
o"(t) = f(; (8q,), where “vp” denotes the V-shaped potential
quench thermodynamics. This quantity is plotted on Fig. 6(a)
in the main text as a blue line for the same eightfold quench
of A, resulting in a total Q"P(¢;) = 2.4 kgT of dissipated heat.
It is also plotted on Fig. 10(b) for various ratio of A(z7)/A(%;).

The dissipated heat can also be expressed as an entropy
dissipated in the medium S,} = QP/T. However, as the po-
tential is quenched the entropy associated to the available
configuration space also changes. This system entropy takes
here the form of Gibbs entropy

+00
Sis = —kB/ p(x, Hin[p(x, 1)ldx F7)
—0o0
which is the ensemble averaged trajectory dependent entropy
—kgln[p(x;, )] [44]. This stochastic entropy can be evaluated
through time on each trajectory undergoing a potential quench
and SSV§’S recovered through ensemble average. It is plotted as
a blue line on Fig. 6 and on Fig. 10(a) for more cases. Sy
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FIG. 10. Entropy produced during a transition with A(f;)/A(t;)
spanning from 1/1.25 to 1/8. For all cases, the entropy produced
increases as the difference between states increases. (a) System en-
tropy for both potential quench (blue line) and SR-induced transition
(red line). (b) Heat dissipation for the potential quench. (c) Integrated
resetting entropy production rate during the SR-induced transition.
The nonmonotonic evolution of the associated SR-induced relaxation
time g is visible as the second inflection point in the various curves.

is a state function which only depends on the initial and final
values of the probability densities p(x, #;) and p(x, ;). The
total entropy production during the potential quench is the
sum of both medium and system entropies as

vp

St = = + 55 > 0. (F8)
The thermodynamic cost associated with the potential quench
can be evaluated either through its energetic footprint via the
first law or through its entropic cost via the second law.

2. Resetting rate quench

In the case of the stochastic resetting work WSR and heat
production rates can also be evaluated as WSR = —A(V (x,, 1))
and QSR = [ F(x,1)j(x,t)dx where F(x,t) is the force at
time ¢ and j(x,t) the probability current, consequence of
the NESS nature of SR [40]. Under constant potential V (x),
the first law then simply reads WSR 4+ QSR = 0. Importantly,
both quantities vanish in the absence of an external confining
potential V (x, 7).

The entropy associated with SR breaks into three distinct
contributions

. O

Son = 7 + SN =S =20, (F9)
where the first and second term keeps the same interpretation
as above. The heat production being zero, the first term van-
ishes in the absence of potential. The system entropy being
a state function which only depends of the initial and final
densities, its total production along a A quench will be the

same as in the potential quench (the initial and final densities
being the same in both cases). This is verified on Fig. 6(a) in
the main text where in the long-time limit we see Sss;z(tf) =
Ssws(tr) = 1 kg (albeit in a shorter time for the SR-base proto-
col). It is also plotted on Fig. 10(c) for more cases. The third
term in the second law for SR is the so-called resetting entropy
production rate [40,41]. It is associated with the constant era-
sure of information at play during a SR process, each resetting
event erasing the information stored in the stochastic position
X, [31]. It is never zero, denoting the NESS nature of SR which
constantly produced entropy. In initial and final NESSes, the
production rate is constant, during the transient it becomes a
time-dependent function.

In the protocol proposed in the main text, SR is used only
during the transient time sg to bring the system in its new
equilibrium state in the final external potential. The entropic
cost of such protocol can therefore be evaluated as

(F10)

TSR SR
ASS = / SSR()dt = ASSK / SR,

0 0
where we recall that ASSSY‘E = ASg); has the same contribution
in the case of a potential quench. The cost, i.e., the cumu-
lative integral of this quantity is plotted on Fig. 6(a) in the
main text as well as on Fig. 10(c) for more cases. Finally,
the measure of the entropic cost of the proposed accelerated
protocol proceeds in comparing minus the integrated reset-

ting entropy production rate — [i SSRdr = 6.2 kg to the
heat dissipated by the standard potential quench AQY?/T =

(Q(ty) = Q" (1))/T = 2.4 kg.

3. Comparison with known optimal techniques
in harmonic potentials

In the case of harmonic external potentials V (x) = xx?/2,
SST methods exist [8] and the full characterization of the
energetics associated allowed the derivation of optimal pro-
tocols [19] where the dissipated work (and heat) is minimized
for a given acceleration with respect to thermal relaxation.
Here we propose to compare the entropic cost of the SR-
induced acceleration to the entropy generated by an optimal
protocol imposing the same eightfold increase of the control
parameter and leading to the same 3.25 acceleration. The
physical meaning of such comparison is of course limited
since the optimal protocol applies on a harmonic potential and
while we work with linear V-shaped potential. However, the
fact that we obtain a very similar cost is a promising result for
the generalization of SR-induced acceleration.

Two states defined respectively by «; and «; are char-
acterized by a free-energy difference AF = kgTIny/k;/k;.
For a steplike change of stiffness from «; to k, the work
reads AWhoster — kT (k5 — ki)/(2k;). For an optimal pro-
tocol imposing an n-fold acceleration At = 1, /n, the work
reads AWRP =y ((/kgT [k; — \/kgT [ks)*/(2A1) + AF as
detailed in [19]. The total entropic cost in both cases reads
AShe = (Wh° — AF)/T which corresponds to the dissipated
work divided by the temperature. Feeding in ky = 8 x k; and
At = 1,/3.5 to stick to the conditions of the protocol studied

here, on obtains AS™*P = 2.16 kg and AS™°P' = 10.64 k.

tot tot
Those numbers are close to the obtained results for the V-
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shaped steplike potential quench AS;} = 2.96 kg and for the

tot

SR-induced protocol ASSR = 6.3 k.

tot

APPENDIX G: FINITE-TIME RESETTING

If each resetting event takes a finite time, then it needs to
be compared to the acceleration gained with respect to the
potential quench protocol.

More precisely, finite-time SR stays beneficial only if the
accelerated relaxation time tsg plus the time needed for each
resetting events is still smaller than 7,. We therefore define a

critical time
1/ 1
.=—(——1]),
A TSR

which stems from the fact that the number of resetting events
during the time interval tgg is Poisson distributed with mean
N = Atsg. Having in mind the protocol presented in the paper,
this corresponds to the minimal (average) number of resetting
to accelerate a transition between equilibrium states. If each
resetting events takes a time ¢, then the finite-time SR stays
beneficial as long as tsg + Nt < 1, which allows us to define
a critical maximal time per resetting events

On Fig. 11 we plot the critical time 7. as a function of
the final resetting rate, with constant initial A; = 200 Hz. t,
ranges from hundreds of milliseconds for small A (i.e., for
large decompression with very long relaxation rates) down
to a millisecond for large Ay (i.e., strong compression with

(G1)

10%]
— 101 7\\\\ ’ El|:||:| 1
) R ;
Kl
10()? N . |:|::l-_u:ll:”:‘I:‘I:‘I:I ]
10-1 1 10
A(ty)/A(t:)

FIG. 11. Maximal time (in milliseconds) allowed per resetting
event to still obtain a net acceleration with respect to a potential
quench. It is plotted as a function of the final resetting rate A,
with constant A; = 200 Hz. The black dashed line corresponds to
A1)/ (1),

very short relaxation time). On all this range, the experimental
feasibility of such acceleration is clear. Indeed, by inducing
resetting via intermittent strong optical traps, the relaxation
times implied and hence the time needed for each resetting
event can be shorter than a millisecond [31].
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