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Bulk-edge correspondence recovered in incompressible geophysical flows
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Bulk-edge correspondence is a cornerstone in topological physics, establishing a connection between the
number of unidirectional edge modes in physical space and a Chern number, an integer that counts phase
singularities of the eigenmodes in parameter space. In continuous media, violation of this correspondence has
been reported when some of the frequency wave bands are unbounded, resulting in weak topological protection of
chiral edge states. Here, we propose a strategy to reestablish strong bulk-edge correspondence in incompressible
rotating stratified flows, taking advantage of a natural cutoff frequency provided by density stratification.
The key idea involves the introduction of an auxiliary field to handle the divergence-free constraint. This
approach highlights the resilience of internal coastal Kelvin waves near vertical walls under varying boundary

conditions.
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I. INTRODUCTION

Inspired by pioneering work in the context of the quantum
Hall effect [1,2], recent years have witnessed tremendous
utility of topology to elucidate the emergence of unidirec-
tional trapped modes in continuous media. This approach led
to significant advances in understanding geophysical flows
[3-5], stellar dynamics [6,7], active matter [8,9], and plasma
physics [10-15], and its application range is further expand-
ing [16—-19]. The basic concept is to compute a topological
invariant named the Chern number for each wave band of
a simple bulk problem admitting plane wave solutions. This
number counts phase singularities of the eigenmodes in wave
number space and can then be used to predict the wave spec-
trum in more complicated situations involving, for instance,
boundaries or spatially varying parameters. Because waves of
topological origin are robust to continuous changes in the sys-
tem’s properties, they are thought to play exceptional roles in
energetics and transport phenomena. In the case of continuous
media with spatially varying parameters, the existence of uni-
directional modes is guaranteed by index theorems [20-22].
By contrast, topological protection of the edge states along
boundaries of a continuous system remains an open question,
owing to the lack of compactness in reciprocal space unlike
lattice systems holding Brillouin zones [23,24]. Moreover,
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even when one somehow regularizes eigenmodes to compact-
ify wave number space, the resulting Chern numbers do not
correctly predict the number of edge modes [25-27]. Up to
now, this violation of bulk-edge correspondence has been a
major limitation of the topological approach to continuous
media.

In these prior studies, the main obstacle to establishing a
bulk-edge correspondence arose from the presence of wave
bands with unbounded frequencies, akin to sound waves. It
is then natural to expect this issue to be solved in a model
equipped with a high-frequency cutoff. Indeed, the present
study demonstrates that a bulk-edge correspondence is re-
covered in the low-frequency part of the geophysical flow
system, i.e., rotating stratified fluid with the incompressible
condition imposed to effectively filter out acoustic waves.
This achievement is reached with the help of a noticeable
theoretical tool: we introduce an additional degree of freedom
referred to as an auxiliary field that replaces a divergence-free
constraint with the existence of a stationary divergent flow.
Thanks to this spurious mode, the original wave problem
transforms into a Schrodinger-like formulation featuring a
Hermitian wave operator, with each wave band exhibiting an
eigenmode bundle in compact wave number space. In con-
trast to earlier work, a series of procedures now eliminates
the need to introduce regularization terms [26] or replace
boundaries with an interface problem when defining a Chern
number for each wave band [5]. We establish the correspon-
dence between those bulk Chern numbers and the existence
of unidirectional edge modes trapped along the system’s
lateral boundaries. We identify these edge modes as inter-
nal coastal Kelvin waves and, based on Levinson’s theorem
[27,28], verify their robustness against changes in boundary
conditions.
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FIG. 1. Schematic illustration of the auxiliary field. We combine
an original velocity vector u with the gradient of an additional vari-
able ¢ to compose an extended velocity vector & (the combination
of the yellow dotted and gray solid arrows produces the red solid
arrow). Conversely, we can recover u from # at any instance by pro-
jection onto the subspace specified by the incompressible constraint
V -u = 0 (the thick arrow visualizes this projection). Trajectories
of &t and u in phase space, denoted by the solid and dotted curves,
respectively, are parallel as the condition 9,% = 9,u identically holds.

II. MODEL EQUATIONS

We consider a linear inviscid model of rotating and strati-
fied fluid under the Boussinesq and traditional approximations
(291,

ou=—fZxu+ NOZ— Vp, (1a)
9,0 = —Nw. (1b)

The variables u = (u, v, w) and 6 represent the 3d velocity
vector and the scaled buoyancy perturbation, respectively,
which are functions of space x = (x,y,z) and time 7. We
let Z denote a unit vector pointing upward, fix the buoyancy
frequency N > 0, and allow the Coriolis parameter f to be
a function of x. Pressure p is a Lagrange multiplier that
associates the divergence-free constraint, V - u = 0, thus sat-
isfying V2p = —V - (f2 x u) + Nd.0. The derivation of (1)
from a more fundamental model is presented in Appendix A.
The present system conserves energy, (1/2) f (|u)? + 6%)dx,
under a suitable boundary condition. Accordingly, any so-
lution should be decomposed into a set of stationary and
oscillatory modes, whose frequency property is the scope of
our interest.

Even though (1) holds four variables, u, v, w, and 0, the
static constraint for the velocity field, V - u = 0, reduces the
genuine degrees of freedom to three, which forbids the direct
use of well-established topological machinery. To circumvent
this difficulty, we shall introduce a new variable ¢(x), an
arbitrary function that does not depend on time, and define
an extended velocity vector as &t = (&1, 0, W) = u + V¢. Im-
portantly, identifying & is equivalent to identifying the set
of variables (u, ¢); for a given @1, its compressible part is
determined by solving V2¢ = V - it with a suitable boundary
condition, and the incompressible part is the residual u =
it — V¢. This relationship is shown schematically in Fig. 1.

The extended state vector, ¥ = (&, ), now recovers the
four degrees of freedom thanks to the auxiliary field. Be-
cause du = 0,ii always holds, the left-hand sides of (1)
are identified as d,¢¥, and the right-hand sides are at any
instance computable from . Accordingly, the governing
equations transform into a set of prognostic and diagnostic

equations,

it = —f2 x (L —V¢)+ NO3 — Vp,

30 = —N(D — 9;9),
Vip=—V . [fix @@—Ve)+Ni.b,
V=V -i.

We can write these equations symbolically as 9, ¢ = Ly,
where L is a linear integral operator. The precise form of
L is specified by the boundary conditions of p and ¢ and
generally not easy to write down. In this study, we assume that
this boundary condition does not violate energy conservation,
so that d(¢, ¥)/dt = 0 holds for a certain inner product in
real vector space. If the system is unbounded, we readily
verify that (¥, ) = (1/2) [ (&> + 6*)dx = (1/2) [ (jul® +
|[V|? 4 6%)dx fulfills this requirement. When there exists a
boundary, we may extend the definition of inner product to
include energy stored in the surface (Sec. IV). In any case,
energy conservation ensures the skew symmetry of £, which,
in turn, defines a Hermitian operator in complex space as
‘H = iL. Consequently, we obtain a Schrodinger-like equation

19 =Hy. @)

The extended model for ¢ differs from the original sys-
tem (1) in that the new solution includes a spurious mode,
¥ = (V¢, 0). However, the two models are identical in their
dynamic parts, since the auxiliary field is stationary in time.
In other words, the finite part of the spectrum of H coincides
with the set of natural frequencies in the oscillatory solutions
of the original equation (1). Therefore, the investigation of H
is enough in the present discussion.

III. BULK PROBLEM

Fixing f and ignoring the boundary condition allow a so-
lution in the form of ¥ = Ye!®*—")_ Here, ¥ is a normalized
eigenvector satisfying ¥ = Hy 12;, with the Hermitian matrix
‘Hy. represented by

0 k2 f —kyk.f —kk:N
i | -k 0 k. f —kyk,N
1kl | keef =kt 0 (kZ + KN |
kk:N  kkN  —(kZ + k2N 0

where  k = (k., ky, k;). The four

with @, = i\/(kf + K2)N? + K22/ |K|
and wy = 0. The finite parts, w., represent the dispersion
relations of inertia-gravity waves. The zero-frequency parts
involve the geostrophic flow, which is a genuine solution
of the original model, and the auxiliary field, namely, a
spurious mode. In this problem, an eigenvector represents the
polarization relations for each mode, as illustrated in Fig. 2.
Since the eigenvectors are now parametrized by k and
f, they compose fiber bundles over a certain manifold. As
reported in [20-22], a mathematically accomplished way to
define such a bundle exhibiting nontrivial topology is consid-
ering a closed surface in 3d space spanned by two components
in the wave vector and one spatial parameter. Chern numbers

eigenvalues read

{CU_, o, Wo, 0)+}
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(a) Bulk spectrum

(b) Inertia-gravity wave

(d) Auxiliary field
m :
"

FIG. 2. (a) Frequency spectrum of the bulk states against the
horizontal wave numbers. The middle band, w = wy, is twofold
degenerate. (b)—(d) Polarization relations of the bulk eigenstates are
illustrated by drawing flow trajectories associated with the extended
velocity vector i@. (b) Inertia-gravity wave. (c¢) Geostrophic flow.
(d) Auxiliary field.

P

on this surface predict the number of interface-trapped modes
whose dispersion curves connect separate frequency bands. In
the present case, on the other hand, we obtain a more powerful
result by investigating fiber bundles in pure wave number
space. We shall fix k, and f and focus on a plane spanned
by the horizontal wave numbers, k, and k,. Eigenvectors are
originally defined in an open domain, (k,, k,) € R?Z, but now
we regard it as a complex plane composed of k = k, + ik,
and identify the infinity, k = oo, to define a Riemann sphere,
S2. Thus, we derive a set of fiber bundles over a compactified
surface. Note that this procedure makes sense only when the
linear space spanned by eigenvectors in each frequency band
is identical at k = oo [25,30]. Fortunately, the present system
satisfies this requirement as the inertia-gravity wave converges
to a vertical buoyancy oscillation in the large horizontal wave
number limit. Although the eigenvector of the geostrophic
mode alone does not converge in this limit, since it degen-
erates with the auxiliary field, the combined eigenspace is
consistently defined throughout S?. See Appendix B for the
detailed structure of these bundles.

Now, we have three fiber bundles over S2, with structure
groups U (1), U(2), and U (1), corresponding to the frequency
bands, w_, wp, and w., respectively. The Chern number for
each band is computed via the formula

C, = i trB,dk.dk, with ne{-,0,4+}, ()
21 2
where B, is the Berry curvature, whose precise definition is
found, e.g., in [31]. Generally, B, is a matrix, but for the
simplest cases of U (1) bundles, it becomes a scalar and is con-
veniently computed by B, = i((8erzf, E)kyfh) — (8;(‘,1}, kafﬁ)),
where brackets denote the inner product of complex vectors.
The direct evaluation of (3) then yields C_ = —f/|f| and
C+ = f/|f| for inertia-gravity wave bands (Appendix B). For

the zero-frequency band, the computation of B, is involved.
We here employ a shortcut; since the Chern numbers summed
up over all the frequency bands always become 0, Cp =0
derives without analytical computation. The summarized
results are

_J{=1,0,1} for
{C’CO’C+}_{{1,0,—1} for

The changes in the Chern numbers dependent on the sign of
f imply the existence of topologically protected states along
the equator. This point was discussed in [25] and the consis-
tency of the present result with the earlier work is checked in
Appendix C.

Pl @

IV. WALL STATES
A. General criteria of Hermiticity

An advantage in the Chern numbers defined purely in wave
number space is that it predicts the number of edge states
not only around an interface within the system but also along
an external boundary. We shall inspect this nature in a par-
ticular situation: f is again fixed, but a lateral wall restricts
the fluid motion in the meridional direction. Let V = {x =
(x,y,2) € R3|y > 0} be the domain of the fluid. On the do-
main wall 9V, we impose ¢ = 0, which acts as the boundary
condition of the Poisson equation determining the auxiliary
field, V2¢ = V -ii. The energy equation of the fluid motion is
derived as

d i + |02 ¥ .C.
_/ de—l—/ _pv tcc dxdz = 0.

The system is Hermitian regarding the energy norm if either
(1) the surface integration term identically vanishes or (ii) the
surface integration term turns into the temporal integration of
a positive-definite functional that corresponds to the energy
stored in the boundary.

B. Elastic boundary condition

To construct a physically relevant model, we shall assume
that elements of the boundary wall are made from elastic ma-
terial [continuously aligned infinitesimal springs as illustrated
in Fig. 3(a)]. We write the displacement of the surface element
as £, and write the equation of motion as

O’é + A& = —p. ()

Here, o > 0 is the spring mass density per unit area, and
X > 0 is the spring constant. Surface displacement motion is
related to the fluid velocity by & = v. The Hermitian condition
(i1) raised above is then fulfilled with the modified energy
norm,

~12 2 2 2
. ,/,):/ la” + 167 dx+/ oWEHMEY s (6
|4 2 vV 2

where we regard & as part of the state vector, ¥. In the fol-
lowing, for simplicity, we mainly consider massless springs,
o =0, in which the elastic force is always equilibrated with
the pressure force. As a result, by setting a = 1/A and taking
the temporal derivative of (5), we derive a reduced form of the
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FIG. 3. Edge states on a lateral boundary; as illustrated in (a), a plane elastic wall is placed at y = 0. (b)—(e) Plots of edge-mode dispersion
curves (orange) for several a with the positive inertia-gravity wave band (cyan). The scale of the horizontal axes is arctan(k,/k;), which
contracts —0o < k, < 0o to a finite range. (f) Closed paths Cs in the wave number plane are defined as (k,, k,) = (\/1/4 — 82sinp, §)/(1/2 +
V174 — 8% cos ) with 0 < pu < 27, and a particular case of § = 0.2 and its projection onto the Riemann sphere are depicted. The inertia-
gravity wave frequency on this path is represented by a red curve in (b). (g)—(i) Plots of phases in the scattering coefficient S for positive
inertia-gravity waves, computed along C; for different a as corresponding to (b)—(d). Throughout the analysis, (k,, f, N) = (2,2, 5) is chosen,
and the gauge of the bulk eigenvector is fixed such that a singular point is at k = i, as denoted by crosses in (f). See Appendixes D and E for

more details.

boundary condition as
v=—adp and ¢p=0 at y=0. ©)
In this particular limit, the energy norm (6) is replaced by

~ 12 2 2
2 ¢)=/—|u| +10] dx+/ apl az @)
% 2 v 2

This approximation is reasonable when considering an os-
cillatory solution whose frequency is much lower than the
natural frequency of the spring, w; = /A/o. However, the
effect from the inertia term in (5) neglected in the present
model should be taken into account for the special case of
the very high-frequency modes. We inspect this limit in Ap-
pendix D 3. Now, the boundary condition is specified by a
single parameter a > 0. From a geophysical viewpoint, the
rigid wall condition, a = 0, is typical, but here we vary a
to assess the resilience of the edge states, as expected from
topological protection.

C. Bulk-edge correspondence

We shall seek an eigenstate in the form of ¥ =
W (y)eikexthkz=on with @ # 0. For this oscillatory solution,
the auxiliary field strictly vanishes. We then derive a single
equation for pressure,

(N? — 0®)pyy — [(N? — 0Pk} — (0> — fHK]p =0, (9)

whose solution is generally represented by p =A_e V4
A e™ with

TR (10)

B \/ (@2 — f2)2 — (N? — o?)R2

The meridional wave number « is real if and only if w
belongs to the bulk spectrum. Otherwise, « is a pure imaginary

number satisfying Im « > 0. Then, for the solution to be finite
for y — 00, A_ = 0 must be satisfied, which, combined with
the boundary condition, determines the dispersion relations
of wall-trapped modes. The explicit form of the dispersion
relations is derived in Appendix D.

Several results from algebraic computations are demon-
strated in Fig. 3. There exists a single trapped mode in the
rigid wall case, a = 0. Its dispersion curve coincides with that
of nonrotating internal gravity waves, the salient feature of
the coastal Kelvin wave. As a increases, this Kelvin-wave
structure is modified, and new trapped modes appear. We
first find a high-frequency mode whose dispersion curve goes
downward approaching N. This mode originates from the
elastic force from the wall. When a is small, its dispersion re-
lation coincides with the natural frequency of massless springs
dressed in fluid with finite mass. This property is elucidated
in Appendix D 3. In the large-a limit, it converges to the
buoyancy oscillation while maintaining asymptotically high
frequencies around k, = £o0o0. When a surpasses a certain
threshold, another mode emerges from the low-frequency side
of the inertia-gravity wave band, and it approaches f, still
possessing two connection points to the bulk spectrum. This
mode partly resembles an edge wave identified in a shallow-
water system with an abrupt change in water depth [32]. In
the present model, however, this edge mode does not play
any role in filling bulk gaps, in contrast to the shallow-water
case in which its dispersion curve connects the topographic
Rossby and inertia-gravity wave bands [5]. The Kelvin-wave
dispersion curve also goes downward as a increases, but it
keeps connecting the separate bulk bands at (k,, w) = (0, 0)
and (k,, ) = (00, N). Therefore, there always exists a unique
wall state in the bulk gap between w = 0 and w = f. More-
over, it is a chiral mode because it always propagates in one
direction with the wall on its right-hand side when f > 0.
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Following [26], we assign indices to the wall-trapped
modes by counting their connection points to the bulk bands
in the spectrum. Specifically, let us count —1 when the
edge-mode dispersion curve goes rightward from a connec-
tion point and +1 when it goes leftward. We then write N,
with n € {—,0,+} as the number of points counted over
each frequency band. Because the spectrum is now point-
symmetric with respect to the origin, we always hold Ay = 0
and M, = —N_. Then, direct inspection of Fig. 3 tells us
(N_, Mo, N} = {—1,0, 1} for any a. If we flip the sign of
f, the overall spectrum is reflected around the w axis, and N,
change their signs. We have thus confirmed the coincidence of
the two sets of indices, C, = N,,.

A concrete theoretical foundation underlying the present
bulk-boundary correspondence is provided by Levinson’s the-
orem [26]. Its first step is to write down the eigenstates in the
form of W = Y(ky, —k)e ¥ + S(ky, k)P (ky, k)€™, where ¥
shares the functional dependence on k, and « with the eigen-
vector of the positive-frequency inertia-gravity wave solution,
while the range of « is now extended to the complex plane.
This expression represents wave reflection on the wall, in
which § acts as the scattering coefficient. Since we are dealing
with a dissipationless process, if « is real, S must belong
to U(1), representing the wave’s phase shift upon reflection.
More generally, S is a complex function, and its pole corre-
sponds to the edge-mode solution. Due to this singularity in S
on the edge-mode dispersion curves, in the bulk band region
where § € U(1), it exhibits phase jumps at the connection
points to the edge modes. We confirm this character by com-
puting S along a series of closed paths, Cs, on the Riemann
sphere (see Appendix E for the detailed procedure to com-
pute S). As the path approaches the great circle representing
the k, axis, it gets close to the margin of the inertia-gravity
wave band [Figs. 3(b) and 3(f)]. In this limit, the phase in S
exhibits a sharp staircase structure with jumps by 27 or —27
[Figs. 3(g)-3(1)]. Indeed, the locations of these jumps always
coincide with the connection points from the bulk band to the
edge-mode dispersion curves. Finally, the net increment in the
phase over a path coincides with the winding number of a
section of the inertia-gravity wave bundle, which is equivalent
to the Chern number [33]. Consequently, we relate the two
indices via the formula

Ni=—¢ dinS=C,, (1)
2 Cs
a form of Levinson’s theorem [28]. The validity of this rela-
tionship is also checked with a series of boundary conditions
other than the present elastic wall (Appendix F).

In fact, the perfect coincidence of C, and N, is in con-
trast to recent reports on the violation of (11) occurring in a
wide range of continuous media. For a shallow water model
equipped with odd viscosity, Tauber et al. [26] verified the
second equality in (11) but identified an anomaly in the first.
Specifically, they pointed out that phase jumps in S at asymp-
totically high frequencies cannot connect to edge modes in
the gap. The present stratified model escapes this trouble
because its bulk spectrum is bounded. Later, Graf ef al. [33]
clarified that an evanescent mode entering a refection process
impedes the correspondence between phase jumps in S and
the connection points. In general, an evanescent wave arises

during a free-wave reflection if an equation involves differen-
tiation higher than the second order. As seen here, an inviscid
flow model does not involve an evanescent wave. Employing
a physically realizable model that does not demand artifi-
cial regularization enables recovering the normal bulk-edge
correspondence.

V. CONCLUSIONS

The anomalous bulk-edge correspondence commonly aris-
ing in continuous media challenges the increasing use of
topology in, for instance, fluid and electromagnetic problems.
The major cause of this anomaly is the unbounded parts of the
bulk spectrum, which produce the ghost states that contribute
to the topological indices but with no footprint on the edge-
mode dispersion curves [26]. In contrast, a three-dimensional
fluid system with stable stratification in a rotating frame, as
investigated in this study, exhibits the perfect correspondence
of the bulk and edge states. Through explicit computations of
the bulk and edge solutions with various boundary conditions,
we have concluded that this correspondence is guaranteed by
Levinson’s theorem.

A key feature of the flow model examined in this study is
the absence of bulk waves above the frequency cutoff set by
stratification. To ensure this property, we have considered an
incompressible fluid, as otherwise sound waves could propa-
gate at higher frequencies. Technically, this incompressibility
constraint leads to a nonstandard wave problem, complicat-
ing the computation of a Chern number. To overcome this
challenge, we introduce a mathematical technique called the
auxiliary field. This approach involves adding an unphysical
variable to the original set of equations. The extended degree
of freedom effectively removes the divergence-free condition
from incompressible fluid flows, allowing the governing equa-
tions to be described in a Schrodinger-like form. Once the
auxiliary field is taken away from the output, the original
wave problem is recovered. These procedures enable the con-
struction of a complete set of fiber bundles in wave number
space, while keeping the system essentially unchanged. Con-
sequently, the Chern numbers can be computed, successfully
predicting the existence of edge modes for any boundary
condition.

Importantly, this machinery is not limited to fluids, but
holds value for any continuous medium with static con-
straints. For example, an electromagnetic field that involves
the solenoidal magnetic vector falls into the same class. There-
fore, photonics and plasma wave dynamics, both of which
are active areas in topological physics, may benefit from this
method.

The topologically protected edge mode identified in the
present study corresponds to the coastal Kelvin wave and its
relatives ubiquitous in the stably stratified ocean. Our for-
mulation establishes the theoretical foundation for the robust
propagation of such internal Kelvin waves along a complex
wall as experimentally confirmed by [34]. Interestingly, a sim-
ilar wall state is found even under the unstable stratification
[35], and its possible topological origin is discussed in a very
recent study [36]. Bulk-edge correspondence in such a non-
Hermitian continuous system remains to be explored.
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APPENDIX A: DERIVATION OF THE MODEL EQUATIONS

A basic equation system for rotating and stratified fluid
flows under the Boussinesq approximation is found in stan-
dard textbooks of geophysical fluid dynamics. For example,
Eq. (2.108) of [29] provides

Diu+2R xu=1>b—Vp,
V-u=0,
Db =0,

where symbols of velocity, pressure, and the unit vector point-
ing upward are changed from those in the original text to
u = (u, v, w), p, and Z, respectively. The material derivative
is denoted by D, = 0; + u - V. Now, we shall make the fol-
lowing three postulates.

(i) Linear background stratification: There exists a mo-
tionless reference state where buoyancy b is a linear increasing
function on the vertical axis, z, and the pressure gradient is
balanced with the buoyancy force. We then consider motion
of disturbances superimposed on this reference state. The
solutions are accordingly represented as

N2Z2 ,

p=——+r.

u=u, b=N?*2+V,

(ii) Linearization of equations: Disturbance components
denoted with primes are sufficiently small, so that the material
derivatives are approximated as D,u ~ d,u’ and D,b ~ 9,0’ +
N2w'.

(iii) Traditional approximation: The angular velocity €2 in
the Coriolis acceleration term is approximated by its vertical
component, which is conventionally represented as (f/2)Z.

Finally, rescaling the buoyancy perturbation as

Y =No (A1)
and dropping the primes on unknown variables, we obtain

the model equations (1) with the divergence-free constraint
V.u=0.

APPENDIX B: EIGENBUNDLES OF THE BULK STATES
1. Inertia-gravity wave

The solutions of the Fourier-transformed eigenvalue prob-
lem w¥ = H ¥ are obtained by hand. For the genuine
solutions satisfying ¢ = 0, the eigenvectors are represented
using the Fourier coefficient of pressure, p, in a single

expression,

keotik, f
W —f?

kyo—ik, f
wZ_fZ

=

(B

S

—k.®
N2—?
ik, N
N2—?

>

It is convenient for the later consideration to write the com-
plex pressure variable as p = y|p| and assume that |p| is
determined from the normalization condition |17f| = 1. The
argument factor, y € U (1), represents the gauge freedom. To
make explicit the parameter dependence, let us redefine the
basic eigenvector, (B1), as 171 = \il(kx, ky, w, y). The eigen-
vectors for the inertia-gravity waves are then represented
by \il(kx, ky,wy,y) = 1711 Note that the solutions (B1) are
invalid when w = £ f, £N, and the eigenvectors of these sin-
gular cases are considered separately below.

In the following, we assume f # 0 so that the bulk spec-
trum has gaps at —|f| < w <0 and 0 < @ < |f|. We define
the Riemann sphere S? composed of k = k, + ik, € C U {oo},
and inspect the eigenvector of the positive-frequency branch
around points where ot = |f| (k =0) or ot =N (k = 00).
In the limit of kK — 0, we learn &/p, d/p ~ O(k~') while
w/p,0/p ~ O(1), and accordingly

1
. sy yesDie | —sen(f)i
llm ¢+ = — 3
k—0 V2 0

0

where « denotes the argument of k, and sgn(f) = f/|f]
is defined. This vector is single-valued at k = 0 by setting
Y = Yoo With

Yoo = eI, (B2)

in the same manner as the shallow-water system [25]. Next,
in the limit of k — oo, we derive i&/p,d/p ~ O(k) and
Ww/p,0/p ~ O(k?*), and accordingly

0
oy santoy [ o0
dm v =—="72"1-1

1

Notably, in this limit the eigenvector apparently does not de-
pend on the length or the angle of the horizontal wave vector,
differing from the standard shallow water case [3]. Physically,
this motion is called the buoyancy oscillation in which the hor-
izontal velocity vanishes. In this limit, the choice of y = y
defined in (B2) does not produce a unique convergence of the
eigenvector. Instead, fixing the gauge as y = yy with

v =1,

we may extend the range of the wave number to k = co.
Consequently, eigenvectors are definable on a compacti-

fied surface, S?, and may compose a topologically nontrivial

fiber bundle. For the visualization purpose, we shall specify
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(a')ﬂ + lﬁ7 Y ="

(b)a +10, 7 = Yoo

FIG. 4. Bundle structure of the positive inertia-gravity wave band
on the Riemann sphere composed of the horizontal wave number,
k = k. + ik,. Parameters are (k., f, N) = (2,2, 5). Absolute values
(shade) and phases (color) are shown for [(a), (b)] & + iv and [(c),
(d)] @ + i6. Depending on the choice of gauge y, the location of the
phase singularity changes. For # and 9, a singular point is located
at k = 0 when y = y,. For @ and 0, a singular point is located at
k = oo when y = yu.

the Riemann sphere by the standard stereographic projec-
tion: one-to-one mapping between k € C U {oo} to X =
(X1, X2, X3) € R3 with |[X — (0,0, 1/2)| = 1/2 via

k= M (B3)
1 —X;

which is a homeomorphism of S2. Figure 4 demonstrates the

bundle structure on S?, which exhibits singularity in the po-

larization relation for any choice of gauge y. This singularity

is characterized by a topological invariant, namely, the Chern

number.

To compute the Chern number, we first introduce the
Berry connection [37], Ai = i(lzli, VklAﬁi), where V; =
(Ok,, Ok, ), and the brackets denote the inner products between
complex vectors. The Berry connection defines the Berry cur-
vature through B, = V; x Ai, where a x b = a1b, — aby
for a = (a;, a;) and b = (by, by) is understood. The Berry
curvature is further related to the Chern number via C =
(1/271)fs2 B dkdk,, which is the U (1)-bundle form of (3).
To process further, let us write the two representations of

. . . ~ 00 ~0
polarization relations as ¥~ for y = ys and ¥ for y = yy,
which are defined in S? \ {oo} and S? \ {0}, respectively. We
also define the corresponding Berry connections as AY and
Aﬂ. From Stokes’ theorem, the Chern number is computed as

1 1
C.=— [ Bidkydky,=— AT —A")-d
+ 277 o +URxERy o %( + +) s

i T
=5 %(VJOVWOO — 4 Vi) - ds
i Yoo

= — ¢ dIn— = sgn(f),
2 Yo

in which the integration contour of the line integrals surrounds
k = 0 in the counterclockwise direction. We have used the
fact that y is unitary when deriving the second line. For the
negative frequency branch, o™, the Chern number flips its sign
so that we may write C+ = ®£sgn(f).

2. Zero-frequency mode

For degenerate zero eigenvalues, the corresponding
eigenspace is spanned by the following two eigenvectors:

Nk,
1 —Nk .
o =9 B4
N+ ) + 202
_sz
ky
1 1.
|5z, B
[k + k2 + 2 | k.
0

which correspond to the geostrophic flow and the auxiliary
field, respectively. Because any linear combination of (B4) is
also an eigenvector, the set of normalized eigenvectors can be
generally represented by

where I' is an arbitrary 2 x 2 matrix that belongs to U (2).
Note that the two vectors in (B4) cannot be separately defined
at k = o0o. However, if we set

po | (k ik )

VIR KT i)
the transformed eigenvectors converge as
+i

o 1 |-
lim = —= |

k— 00 E 0
0

Therefore, this eigenspace composes a fiber bundle with a
structure group of U(2) over a closed surface S2. Also in
this case, the Berry connection and the Berry curvature derive

from 17/5 ., but now comprise 2 x 2 elements. We refer to
Chapter 3.6.4 of [31] for detailed expressions. Anyway, due
to the universal formula, Zn C, = 0, we learn that the Chern
number of the middle band, Cy, vanishes.

APPENDIX C: SPECTRUM OF H AROUND AN EQUATOR

The present estimates of the Chern numbers (4) differ from
previous reports for a rotating shallow-water model. Because
the standard shallow water equation does not admit unique
eigenvectors in the large wave number limit, it is necessary
to add the odd-viscosity terms parametrized by a coefficient
€ for a regularization purpose [25,30]. The resulting Chern
numbers were either {£2,0, F2} or {0, 0, 0} dependent on
the signs of f and €. Although the two models apparently
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exhibit inconsistency, they have a common property. In any
case, Chern numbers vary when f changes signs, and the
differences are represented by

{AC_, ACy, ACy) = {—2,0,2). (C1)

This result predicts the two kinds of unidirectional modes
trapped around the equator that fill the frequency gaps be-
tween the geostrophic flow and the inertia-gravity wave bands,
which surely correspond to the equatorial Kelvin and Yanai
waves. The dispersion relations for these two waves in an
elementary stratified fluid model on the equatorial B plane
under the hydrostatic approximation were analytically derived
by Matsuno [38]. In the following, we extend it to a nonhydro-
static problem. As a side note, similar expressions including
compressibility are derived in [39].

We shall set f = By in (1) and impose the boundary condi-
tion such that the variables vanish at y — fo0o0. Making an
ansatz, (u, 0, p) = (@, 6, p)e®* k=@ e obtain a set of
ordinary differential equations,

—iwit = Byd — ikp, (C2a)
—iwd = —Byit — py, (C2b)
—iw® = NO — ik.p, (C2c)
—iwb = —N, (C2d)

0 = kel + Dy + ik, (C2e)

which determine the eigenvalue @ and the corresponding
meridional structure functions. Here, we have used a subscript

J

to represent a differentiation. It is convenient to solve (C2c)
and (C2d) to write W as a function of p, and insert it into (C2e),
to derive an equation system holding three variables,
—iwit — Byd + ik, p = 0,
—iw?d + Byit + p, =0,

212 A
ikZwp
N2 — o2
These expressions are almost the same as those resulting from
the hydrostatic model. Therefore, the analytical solutions are

obtained in a similar fashion. The crucial step is to write down
a single equation with respect to D as

o KB 2B
Doy + L—kﬁ— B _ KBy b =0.
” N? — w? o N?—o?

iyt + D, — =0.

Notably, when w? > N2, solutions are oscillatory in the limit
of y — o0, so that w does not have discrete eigenvalues
in this range. Because we are interested in equator-trapped
eigenmodes, w®> < N? is assumed in the following. Let
us introduce a characteristic length scale as L = [(N? —
w?)/(k2p*)]'* and define the dimensionless coordinate by
Y = y/L. The equation becomes dyy + (F — Y?)d = 0 with

1/2
e (Vo \P (B, kP

k2 B2 N2—w? % o)

From the analogy with a quantum harmonic oscillator,

the eigenvalues are determined by F =2n+ 1 with n =
0, 1,2, .... We shall write this equation in polynomial form,

(k2 + I2)° 0 + 2k, (k2 + K2) B® + { =202 (K2 + K2)N? + [I2 + K220 + 1]}t

— 2k (2k; + K2)N? B’ + {kiN* — [2k; + k2 (2n + 1))]N?B*}0® + 2k]N*Bw + kiN*B* = 0,

for which roots satisfying ' > 0 are meaningful.
In the special case of n = 0, (C3) is factorized to

[(kf + K)o = EN?][(k] + K)o + 2k B0 + (—k;N* + B*) 0 — 2k N Bw — N*B*] = 0.

The second factor yields the Yanai-wave solution. The first
factor as well as F = 1 yields

Nk,
Nz
which is not a proper solution. If we adopt this dispersion
relation, the structure function of p determined by

(=B + &M + itk By + 03,)p = 0
cannot satisfy the boundary conditions, limy_, 4+, p = 0. The
Kelvin-wave solution is obtained by setting v = 0 to assume

the geostrophic balance between it and p in (C2b). The re-
maining equations in (C2) are algebraically solved to yield

Nk,
W= —— (C5)

We note that another solution, @ = —Nk,/,/k? + k2, is pro-
hibited because it yields exponential divergence of & and p in

(C3)

(C4

(

the limit of y — Z£o0. In summary, the whole set of dispersion
relations of equator-trapped modes is specified by (C3), (C4),
and (C5). The algebraic equations are solved numerically to
create Fig. 5. In the same way as reported for shallow-water
cases [3,25], the dispersion curves of the Kelvin and Yanai
waves connect the separated frequency bands in agreement
with (C1).

APPENDIX D: EDGE-MODE DISPERSION RELATIONS

1. Derivation of the edge mode on an elastic wall

Edge-mode solutions trapped around the wall at y = 0 are
generally represented as

'/, — ‘IA’(kx, K, w, y)ei(k,x+l(y+k127wt)’ (Dl)

where « is an imaginary number satisfying Im« > 0 and
related to w via (10). The reduced form of the elastic boundary
condition (7) turns into ¥ = iawp. Making use of (B1), we

033161-8



BULK-EDGE CORRESPONDENCE RECOVERED IN ...

PHYSICAL REVIEW RESEARCH 6, 033161 (2024)

FIG. 5. The spectrum of H for an equatorial beta plane f = By.
Parameters are (k,, B, N) = (2, 1,5). The orange curves represent
the Kelvin and Yanai waves.

obtain
kw — ik, f
w? — f2
Eliminating « from (10) and (D2), we derive an algebraic
equation determining w as
a*w® — (& f* + a*NH)o* + 2ak, fo®
— (k; + k2 — a’N*f*)0* — 2aN’ky fo + Nk} = 0.
(D3)
Roots of this expression satisfying Im « > 0 with (D2) yield

the dispersion relations of the edge modes. Several numerical
results are demonstrated in Fig. 3.

= law.

(D2)

2. Asymptotic limits

The algebraic equation (D3) cannot generally be solved by
hand. Here, we instead inspect the asymptotic behavior of the
solutions in several special cases.

First, when a = 0 is set, (D3) reduces to a simple quadratic
form,

(k2 + k2)w* — N?k =0, (D4)

coinciding with the dispersion relation of a nonrotating in-
ternal gravity wave. Condition Imk > 0 allows a branch
satisfying w/k > 0. These are well-known features of a
coastal Kelvin wave trapped on a rigid wall.

Next, in the limit of @ — oo, (D3) turns into a fully factor-
ized form,

o*(w* — ) —N?) =0. (D5)

Therefore, we learn that an edge-mode frequency approaches
either w = 0, =f, or =N, among which only the inertial-
oscillation mode, w = %, is isolated from the bulk spectrum.
In this limit, the boundary condition becomes p = 0; i.e., fluid
elements on the boundary can move without any pressure
force from the wall. In a shallow-water system, the same
situation arises if water depth abruptly becomes infinity at a
boundary. Also in that case, the inertial oscillation mode is
identified as a trapped solution [32].

Finally, we consider the modification of the Kelvin-wave
dispersion relation for a finite a. It is verified from (D3)

that (k,, w) = (0, 0) is always a solution. Therefore, there
should exist a nondispersive mode in the long-wavelength
limit, namely, the long Kelvin wave influenced by the wall
elasticity. To derive its phase speed, we insert w = ck, into
(D3) and take the limit of k£, — 0 to have

(®N*f* — kZ)c* — 2aN*fc + N* = 0. (D6)

Because of the condition Imk > 0, when f > 0, a solution
with 1/(af) > ¢ > 0 is allowed. Besides, since the left-hand
side of (D6) changes signs between ¢ = 0 and ¢ = 1/(af),
there always exists a unique solution of c¢ in this range. We
thus learn that existence of the long Kelvin wave is robust,
and its propagation direction remains the same for any a.

3. Origin of the high-frequency edge modes

As demonstrated in Fig. 3, an edge mode with a frequency
greater than N exists when a > 0. Here, we analytically elu-
cidate how this mode emerges from wall elasticity. For this
purpose, we shall recover the finite mass of springs and rewrite
the boundary condition (5) as

v
o

+v=—adp at y=0.

Accordingly, in the derivation of the edge-mode dispersion
relations, we should replace (D2) with

2 .

w ko —ik.f .

——+1)|—— =iaw.
( " )=

To make the discussion simpler, we shall regard w and w; as

large and a as small, i.e., considering the asymptotic limit of

0 <a<|fl,N, ke, k, < oy ~ w. Then, (10) gives the esti-
mate of the meridional wave number as

. 1
K ~11/k§+k§+0(g>.

s

D7)

Bearing this in mind, we expand (D7) asymptotically to obtain

Lo Llilaiof! (D8)
0 @k 3 )

The positive root is

1
@ /1/0)3 +a/ K2 +K2

In the limit of a — 0, as expected, we obtain the free oscil-
lation mode of the elastic boundary, @ = w,. On the other
hand, in the limit of zero mass w, — 00, we obtain w ~
k2 +k?/y/a. This solution connects (k,,®) = (00, 00)
and is hence consistent with the numerical solutions in Fig. 3.

To give the physical interpretation to the present result, it
is important to notice that the mass of fluid influenced by this
edge mode is proportional to the e-folding scale in the merid-
ional direction, i/k. The restoring coefficient that pushes and
pulls this fluid mass is specified by A = 1/a. Therefore, from
basic knowledge of harmonic oscillation, one may define the
natural frequency of this oscillatory motion as wy = +/k /(ia).
We consequently understand that the squared inverse of the
edge-mode frequency, 1/w? in (D8), results as the sum of
those of two oscillators, 1 /] and 1/w?. Their restoring forces
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commonly originate from the elasticity of the wall and are not
dependent on f or N. Note that this simplification is valid in
the asymptotic limit; if the frequency is not large, effects from
the buoyancy and Coriolis force cannot be neglected.

APPENDIX E: SCATTERING COEFFICIENT

This section presents a detailed construction of the scatter-
ing coefficient S as well as a series of paths Cs on which S is
computed. First, it should be kept in mind that the expression
of S depends on the choice of gauge. We then have to choose
y such that Cs encloses the singular point of 1}1(1@, ky) in
the upper half plane of C composed of k = k, + ik,. When
f > 0, we can arbitrarily move the location of a singular point
to k = ¢ by choosing a gauge as

o 1—ck
NI =@t

This study sets ¢ =i, as denoted by crosses in
Fig. 3(f), throughout the analysis. Applying the boundary
condition (7) to ¥ =P (ky, —k)elkrTrtkaon 4
S(kx,K)l}i(kx,K)ei(k*‘”"y*kzz""“), we derive the explicit
form of S as

__g(kxa _K) .
Stk i) = =5 0 wih
PPN L2 Y N KIS
S= T oy N T=¢ /=)

where w is also a function k, and «.

To define a path C; in the k plane, let us recall the stereo-
graphic projection from the Riemann sphere, (B3). We assign
a set of coordinates, (6, i), to represent the sphere in the
Cartesian coordinates as

X, =+/1/4—8%sinp,

X, =4,
X;=1/2—/1/4 — 82cos .

It is now clear that Cs; corresponds to a circle that is the
intersection of the sphere and a plane of X, = §. Location on
the path is specified by w, which denotes the angle around the
center of the circle measured from the bottom [Fig. 3(f)]. The
corresponding wave numbers are derived as

X, J1/4—8sinpu

k)(z - k)
1—-X5  1/24/1/4 —8%cosu

X 5

TUl=Xs 12+ /1/4—82cosp

which are in the same form as described in the Fig. 3 caption.
We insert these expressions into S(ky, k) to create Figs. 3(g)—
3(i). In the computation of the logarithmic function, the
Riemann surface is chosen such that iInS is continuous for
n e 0,2m).

APPENDIX F: BULK-EDGE CORRESPONDENCE UNDER
A DIFFERENT BOUNDARY CONDITION

This section tests the formula of the bulk-edge correspon-
dence, i.e., (11), under a boundary condition other than the
elastic wall. For this purpose, we consider a condition of

v=adyp at y=0. (FD)

For any real a, (F1) holds the criteria (i) of the Hermitian prop-
erty discussed in Sec. IV. Note that this boundary condition is
here introduced as a mathematical toy model.

1. Dispersion relations of edge modes

In the present case, in the derivation process of the
edge-mode dispersion relations elucidated in Appendix D,
condition (D2) should be replaced by

_.kx .
a2k el _ ok, (F2)
w? — f?

Combining this with (10), after some algebra, we derive a

quadratic equation in terms of w?,

akio* —[(af — D*k; + a*k;N* + k2 ]o” + (af — 1)*k;N?
= 0. (F3)

The left-hand side is not negative when @? = 0, and its deter-
minant is

D = [(af — I + PK2N> + k2] — 4d*(af — 12KN?
= [(af — 1K — PK2N*]
+2[(af — 1*k; + a*kIN?JkZ + Kk > 0.

Consequently, @® always has a pair of positive roots. It is

informative to write down the possible four roots of w as

i\/[(af — 122 + 2N + k2] + /D

- 2a%k?

In light of the condition Im ¥ > 0 and (F2), we always obtain
two meaningful solutions of w for any a # 0 and k.

2. Major properties in edge-mode dispersion curves

Also in this problem, it is informative to inspect the char-
acters of dispersion curves for some special choices of k, and
a. First, when k, — 0, o approaches either 0 or +00. In these
two limits, (F3) is approximated by

2 2 272772 202 4 12 2
—kio” +(af —1)k;N° =0 and akjo" —kio =0,
respectively. We therefore have four roots,

-1
o DNk
k. ak,

Z

for which the condition of Im ¥ > 0 permits only one sign in

each set of double signs. Notably, there always exists a unidi-

rectional nondispersive wave in the long-wavelength limit.
Next, when k, — o0, (F3) is approximated by

d20* — [(af — 1)* + a*N*|o* + (af — 1)°N* =0,
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(@) a=-1

(b)a=-0.5

(c) a=-0.3333

(d)a=-0.2

(e)a=0

0

0

0

FIG. 6. Dispersion curves of edge modes (orange) for cases of a new boundary condition, v = ad,p at y = 0, are superimposed on the bulk

spectrum (cyan). In (a), the red curve denotes a path Cs with § = 0.2 in the same way as Fig. 3(b). Parameters are (k., f, N) = (2,2, 5).

which is factorized to
[d*w® — (af — 1)*](w?® — N?) = 0.

Remarkably, for any choice of a, either o = N or v = —N
is always a solution. The other pair of roots are generally
apart from the bulk spectrum and discontinuous between k, =
oo and k, = —oo, which is not surprising as the boundary
condition (F1) is apparently singular at k, = 00. More in-
terestingly, these two roots dependent on a coincide with the
other fixed roots at w = N if

1 1
a=—-"——.
N+f N-—f
When a passes either of these two values, two edge modes

with |w| > N and |w| < N are reconnected.
When a =0, the boundary condition coincides with

approaches
o' = (f* + N’ + f2N? =0,
whose solutions are w = £ f, £N. This result is equivalent to
that from the elastic boundary condition.
Finally, when a = 1/f, two roots with the absolute values
smaller than N reduce to w = 0. As a passes this value, the
originally Kelvin-like mode changes its propagation direction,

and will approach the inertial oscillation. All of these proper-
ties of dispersion curves are visualized in Fig. 6.

3. Scattering coefficient

The scattering coefficient S is computed along a series of
paths C;s in the same manner as Appendix E by redefining a
function g such that

the simplest rigid condition, and there exists a unique o(ke. k) = |:KC!)+ —ikef ak :| 1 —¢/ (ke +ix) .
Kelvin-wave solution. In the limit of a — oo, (F3) v wl — f? W=tk — k)
(a)a=-1 (b)a=-0.5 (¢) a=-0.3333 (d)a=-02 () a=0
2 - - - |
0
(Da=012 (2) a—=0.1429 (h)a=02 () a=05 G)a=1

Ll R A R
™ 3w/2 2m O w/2 T 3w/2 2m O /2

A
0  =w/2

™

PR B PRI B PR B PRI B PR B
3r/2 20 0 m/2 @® 3x/2 2r O w/2 7w 3m/2 27

FIG. 7. Plots of phases in the scattering coefficient S for positive inertia-gravity waves with the boundary condition of v = ad,p aty =0,
computed along Cj for various a as corresponding to Fig. 6. Parameter 6 € (0.001, 0.01, 0.1, 0.2) is distinguished by colors in the same manner

as Fig. 3.
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The results are demonstrated in Fig. 7. As expected, in
every case, a phase jump in S corresponds to a con-
nection point of an edge-mode dispersion curve to the
bulk spectrum. Notably, reconnection at k = 00 occurs

keeping the net count of connection points. We thus verify
that the bulk-edge correspondence in a form of Levinson’s
theorem (11) is established even under a different boundary
condition.
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