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Preserving system activity while controlling epidemic spreading in adaptive temporal networks

Marco Mancastroppa ,1 Alessandro Vezzani ,2,3,4 Vittoria Colizza ,5,6 and Raffaella Burioni 3,4,*

1Aix Marseille Université, Université de Toulon, CNRS, CPT, 13009 Marseille, France
2IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy

3Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze,
7/A, 43124 Parma, Italy

4INFN - Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy
5INSERM - Institut national de la santé et de la recherche médicale, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé

Publique (IPLESP), 75012 Paris, France
6Department of Biology, Georgetown University, Washington, District of Columbia 20057-1229, USA

(Received 26 February 2024; accepted 27 June 2024; published 12 August 2024)

Human behavior strongly influences the spread of infectious diseases: understanding the interplay between
epidemic dynamics and adaptive behaviors is essential to improve response strategies to epidemics, with the
goal of containing the epidemic while preserving a sufficient level of operativeness in the population. Through
activity-driven temporal networks, we formulate a general framework which models a wide range of adaptive
behaviors and mitigation strategies, observed in real populations. We analytically derive the conditions for a
widespread diffusion of epidemics in the presence of arbitrary adaptive behaviors, highlighting the crucial role
of correlations between agents behavior in the infected and in the susceptible state. We focus on the effects
of sick leave, comparing the effectiveness of different strategies in reducing the impact of the epidemic and
preserving the system operativeness. We show the critical relevance of heterogeneity in individual behavior: in
homogeneous networks, all sick-leave strategies are equivalent and poorly effective, while in heterogeneous
networks, strategies targeting the most vulnerable nodes are able to effectively mitigate the epidemic, also
avoiding a deterioration in system activity and maintaining a low level of absenteeism. Interestingly, with targeted
strategies both the minimum of population activity and the maximum of absenteeism anticipate the infection
peak, which is effectively flattened and delayed, so that full operativeness is almost restored when the infection
peak arrives. We also provide realistic estimates of the model parameters for influenza-like illness, thereby
suggesting strategies for managing epidemics and absenteeism in realistic populations.
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I. INTRODUCTION

In recent years, control measures to mitigate the effects
of epidemics have become one of the most important topics
in the study of epidemic processes [1–6]. It has become in-
creasingly clear that desirable strategies are those that focus
on the optimization of mild, if possible population-targeted,
measures that allow us to control the epidemic while preserv-
ing the essential services and systems of the population, i.e.,
preserving the system activity and operativeness [6–11]. This
often corresponds to the implementation of several layers of
interventions (e.g., integrating social distancing with contact
tracing), which generally depend on the severity and conta-
giousness of the epidemic [5–8,12,13].

From this perspective, it is crucial to understand how the
population operativeness evolves in relation to the epidemic
dynamics because these two dynamics are deeply coupled by
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adaptive behaviors, i.e., changes in individual behavior due
to the presence of the epidemic [14–17]. This is fundamental
for the management of the epidemic and its consequences,
and thus for the design of sustainable response strategies
that do not disrupt the system activity and operativeness. For
instance, mitigation measures can lead to the isolation of indi-
viduals [18–20], producing a deterioration in the population
activity because of increasing absenteeism. The maximum
absenteeism level, which corresponds to the minimum of ser-
vice activity, and the delay between its occurrence and the
peak of infection are crucial, especially when the infection
reaches its maximum incidence [10,21–23]. For example, the
absenteeism peak can occur earlier than the infection peak, as
observed empirically in some systems [24–26]. This is useful
for the proper functioning of hospital facilities, as healthcare
workers are already back at work when the peak of infec-
tion occurs, providing sufficient levels of assistance [22,23].
Moreover, some control strategies seeking to maintain the
operativeness of the network may have counterintuitive effects
[27–29]. For example, one way to maintain the essential ser-
vices would be to replace infected individuals with new active
(and susceptible) ones, e.g., substitute teachers: while these
replacement strategies maintain good activity levels, they may
accelerate the spread of the epidemic [28].
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Hence, it is of great importance to develop models that
describe the spread of epidemics, accounting for the cou-
pling between the epidemic, the adaptive behaviors, and the
population operativeness. In building such models, an im-
portant point is that interactions between individuals evolve
over time [30–32] and their dynamics can change during
the epidemic due to adaptation [14–16]: for example, typ-
ically a population reduces its activity in response to an
epidemic but always remains partly active [18–20] and thus
capable of sustaining the spread of the epidemic, even under
conditions of complete closure (e.g., as seen during the lock-
downs in the COVID19 pandemic [4]). These properties can
be effectively described through adaptive temporal networks
[30,31,33,34]. Another important feature is that the temporal
networks of social interactions are often heterogeneous both
structurally and temporally: for example, individuals have
different propensities to engage in social interactions, and
structurally have largely varying numbers of social contacts
over time [35–39]. Furthermore they can participate in social
interactions through highly heterogeneous temporal patterns,
both in their formation dynamics and in their duration [40,41].
This heterogeneity plays a key role in the spread of epidemics
and in their control [33,42,43]. Therefore, models need to
account for the network evolution and heterogeneity to deeply
understand the impact of mitigation strategies, which must be
modulated and adapted to the network features.

In this paper, we formulate a general framework to model
a wide range of different adaptive behaviors and mitiga-
tion strategies, observed and implemented in real populations
exposed to epidemics. We describe the social interactions
through activity-driven temporal networks [29,44,45], a class
of evolving networks where each node is characterized by
its activity, i.e., its propensity to establish links with other
individuals [44], and the epidemic through the susceptible-
infected-susceptible (SIS) and susceptible-infected-recovered
(SIR) epidemic processes. To model the co-evolution with the
epidemic, the activity a of each node depends on its health
status, (aS, aI ) in the susceptible S and in the infected state
I , and these are drawn from a joint distribution ρ(aS, aI ).
This approach allows us to model a large set of realistic
adaptive behaviors and containment strategies, ranging from
“disease-parties” [46–48] to population-targeted mitigation
measures: indeed, the functional form of the joint distribution
defines the most general adaptive behavior. We analytically
derive the epidemic threshold as a function of the joint
distribution ρ(aS, aI ), and we show the crucial role of the cor-
relations between the nodes behavior in the infected and in the
susceptible state.

We focus on the adaptive behavior corresponding to sick
leave [18–20], which consists in activity reduction due to
illness or mitigation measures, e.g., social distancing. We
compare the effectiveness of different sick-leave strategies
in reducing the impact of the epidemic while preserving the
system activity. We study both the change in the epidemic
threshold and the dynamics of the active phase, and we show
that network heterogeneity plays a key role in shaping the
most effective adaptive policy. In homogeneous networks
all strategies are equivalent and poorly effective, requiring
the implementation of strong interventions which disrupt the
population operativeness. In heterogeneous networks targeted

strategies (over the most vulnerable nodes) are significantly
effective, even for small fractions of sick-leaving nodes, i.e.,
for mild measures, and also maintain a low level of ab-
senteeism and a high system activity. Interestingly, targeted
strategies are effective in flattening and delaying the infection
peak, and also in anticipating both the maximum of absen-
teeism and the minimum of population activity, so that the
population is almost fully operative during the infection peak.
Instead, uniform strategies require strong interventions, pro-
ducing a sharp reduction in the system activity simultaneous
with the infection peak.

II. SUSCEPTIBLE-INFECTED-SUSCEPTIBLE MODEL ON
ADAPTIVE ACTIVITY-DRIVEN NETWORKS

We consider an adaptive activity-driven network [44], in-
troducing behavioral changes in the network evolution due to
the spread of an epidemic. There are some attempts in this
direction in the literature [49–53]: for example, in Ref. [49]
an activity-driven model is proposed that includes awareness
of the epidemic to mimic the precautions taken by individu-
als to reduce their risk of infection. A uniform deterministic
rescaling of the activity of infected nodes due to infection is
proposed in Refs. [50,51]. However, in realistic populations,
nodes do not respond uniformly to infection: their response to
the epidemic is uneven, depending on the personal propensity
to change behavior during the epidemic [2,20].

Our model takes into account this kind of heterogeneous
behavioral response, modeling a change in the activity of
infected nodes: the activity of a node when healthy and
during the infection are extracted from a joint probability
distribution, whose properties and functional form define the
modeled adaptive behavior. This approach is quite general
and models a wide class of adaptive behaviors, including the
homogeneous deterministic rescaling [50] as a special case,
and includes heterogeneous adaptive behaviors in the pop-
ulation. Furthermore, it is able to model realistic behaviors
detected in populations actually exposed to epidemics, such
as sick leave [18–20]. The adaptive behavior considered in our
model targets only infected individuals and models a change
in activity due to illness (sickness behavior) or in general
social distancing and mild-to-moderate control interventions
implemented to contain or mitigate the spread of infectious
diseases [1,2]. The considered behavioral change impacts the
way nodes activate links but does not affect the way in which
they receive links, modeling a minimum level of interactions
which cannot be completely canceled [4,18,19]. This marks
the difference with the model proposed in Ref. [29], where
an attractiveness parameter was introduced to model stronger
control measures which also impact the contacts passively
received by the nodes. Thus, in the proposed model the pop-
ulation preserves an overall activity, mainly driven by healthy
nodes, as expected for mild-to-moderate control interventions
(see Sec. VI); while in strong interventions even the healthy
nodes are affected by containment, producing a strong deteri-
oration in the population operativeness [6,9,29].

Here we consider the SIS epidemic model: the network is
composed of N nodes, and each node i is characterized by
two parameters (ai

S, ai
I ), respectively the activity of node i

in the susceptible state S and in the infected state I , drawn
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from the joint distribution ρ(aS, aI ). Initially all the nodes
are disconnected, then the network evolves over time with a
continuous dynamics of link formation: each node is charac-
terized by a Poissonian activation dynamics, with rate aS if
the node is susceptible and with rate aI if the node is infected.
When a node activates, it creates one link with m randomly
chosen nodes (hereafter we consider m = 1 with no loss of
generality). If the nodes involved in a contact are one infected
I and one susceptible S, the susceptible node gets infected

with probability λ (infectious contact), S + I
λ−→ 2I , other-

wise nothing happens during the contact. Then the contact
is removed. Infected nodes recover with rate μ, through a
Poissonian spontaneous recovery process: I

μ−→ S.
Note that a susceptible node activates contagious links with

infected nodes with an overall rate λaS , and an infected node
creates contagious contacts with susceptible nodes with an
overall rate λaI . The formulation of the model is explicitly
designed to separate the description of the epidemic dynamics
from that of the network dynamics: nodes activate links over
time with a continuous dynamic of rate (aS, aI ), respectively
when susceptible and when infected; some of these links
transmit the infection (with probability λ), while others do
not. This choice is crucial for monitoring both the evolution of
the epidemic and the evolution of the population operativeness
(see Sec. VI), by considering the whole set of interactions gen-
erated over time, even if they are not epidemiologically rele-
vant. In fact, the population operativeness is measured by the
total system activity, which consists of the full set of the inter-
actions generated, whether they transmit the infection or not.

The SIS model presents a phase transition between an
absorbing state and an active phase: the control parameter
is r = λaS/μ (effective infection rate) and its critical value
is the epidemic threshold rC . If r < rC the infection reaches
only a negligible fraction of nodes and dies out (absorbing
phase), while if r > rC the epidemic produces a large-scale
diffusion in the population (active phase). This threshold be-
havior can also be equivalently formulated in terms of the
basic reproduction number R0, which is the average number
of secondary infections produced by an individual in a fully
susceptible population [33]: if R0 < 1, the epidemic rapidly
dies out, while if R0 > 1, the epidemic propagates and reaches
the active diffusion. The critical threshold in this terms is
RC

0 = 1 [33].
This simple mean-field model, which neglects memory

effects [38,54–56], temporal heterogeneities [41,43] and cor-
relations in the activation dynamics, can be analytically
solved. In particular an activity-based mean-field approach
(ABMF) is exact for the present system given that connec-
tions are continuously reshuffled over time, destroying local
correlations. Considering PaS ,aI (t ), the probability that a node
of activities (aS, aI ) is infected at time t , the following equa-
tion for the epidemic dynamics holds:

∂t PaS ,aI (t ) = − μPaS ,aI (t ) + λ
[
1 − PaS ,aI (t )

]

×
[

aS

∫
da′

I

∫
da′

Sρ(a′
S, a′

I )Pa′
S ,a

′
I
(t )

+
∫

da′
I

∫
da′

Sρ(a′
S, a′

I )a′
I Pa′

S ,a
′
I
(t )

]
, (1)

where the first term on the right-hand side accounts for the
recovery process and the second term for contagion processes.
Through the ABMF approach we obtain the probability for
a node (aS, aI ) to be infected in the steady state (asymp-
totic behavior) P0

aS ,aI
= limt→∞ PaS ,aI (t ) and the epidemic

prevalence (order parameter of the phase transition) P =∫
daS

∫
daIρ(aS, aI )P0

aS ,aI
(see Appendix A):

P0
aS ,aI

= aSP + aI P

μ/λ + aSP + aI P
, (2)

P = aI P

μ/λ − aS + aSP + aI P
, (3)

where g(aS, aI )P = ∫
daS

∫
daIρ(aS, aI )P0

aS ,aI
g(aS, aI ) and

g(aS, aI ) = ∫
daS

∫
daIρ(aS, aI )g(aS, aI ). Considering the

asymptotic steady state and applying a linear stability analysis
around the absorbing state we obtain the epidemic threshold
(see Appendix A for the detailed derivation):

rC = 2aS

aS + aI +
√

(aS − aI )2 + 4 aI aS

. (4)

The epidemic threshold rC strongly depends on the correla-
tions between aI and aS , captured in aSaI and in the joint
distribution ρ(aS, aI ), i.e., it deeply depends on the correla-
tions between the nodes behavior in the infected and in the
susceptible state. If aS and aI are uncorrelated, aI aS = aI · aS ,
the epidemic threshold is

runcorr
C = aS

aS + aI
. (5)

Equation (4) indicates that, if the activities aI and aS are
positively correlated the epidemic threshold is lower than in
the uncorrelated case (stronger epidemic); on the contrary
for negative correlations, the threshold is higher (weaker epi-
demic). Indeed, fixing aS and aI , we obtain rC/runcorr

C > 1 ⇔
aI aS − aI aS < 0. Positive correlations favor the epidemic,
since the most active susceptible nodes behave like hubs also
when infected. We notice that negative correlations are limited
by the fact that aI � 0 and aS � 0, therefore aI aS � 0, hence
maximally negative correlations are achieved if aI aS = 0 and
aI = aS .

However, reasonably infected nodes change their behavior
preserving their inclination to activate, thus realistic strategies
feature positive correlations. For example, the nonadaptive
(NAD) network corresponds to a perfect correlation between
aI and aS , that is ρ(aS, aI ) = ρS (aS )δ(aI − aS ), where δ(·)
indicates the Dirac δ function. In this case the epidemic
threshold is the same obtained in Ref. [44] (see Appendix A):

rNAD
C = aS

aS +
√

a2
S

. (6)

The NAD case represents the baseline reference scenario to
evaluate the performance of different control strategies. In-
deed, mitigation measures increase the epidemic threshold rC

with respect to the NAD case by reducing the social activity
of infected nodes [see Eq. (4)], thus rNAD

C /rC ∈ [0, 1]. There-
fore, when assessing the effect of different adaptive behaviors,
we consider the ratio rNAD

C /rC : lower values (≈0) indicate a
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stronger impact of the measures on the epidemic, while larger
values (≈1) indicate ineffective mitigation strategies.

Hereafter, we introduce some realistic response strategies
to the epidemic, modifying the perfectly positive correlated
NAD case. In particular, we fix the activity distribution of
susceptible nodes ρS (aS ) and we describe the adaptive be-
havior by the conditional probability ρI|S (aI |aS ): ρ(aS, aI ) =
ρS (aS )ρI|S (aI |aS ). In many real systems it has been observed a
broad distribution of aS [44]: heterogeneities in activity distri-
bution account for different jobs or social roles (e.g., teachers,
doctors, nurses), which require different number of contacts
over time, or for different age groups [35,37]. Henceforth
we consider a power-law distribution of aS: ρS (aS ) ∼ a−(ν+1)

S ,
with lower cutoff am and upper cutoff aM = ηam [38,44], with
η ∈ (1,∞), modeling the presence of strong heterogeneities
as observed in many human systems, in which ν ∼ 0.3–1.5,
featuring large activity fluctuations [38,39,44,55].

III. THE SICK-LEAVE PRACTICE

In many real populations it has been observed an adaptive
behavior that can be described by our model: the sick-leave
practice [18–20]. A fraction of the population, when infected,
cancels its activity aI = 0 (sickness induces sick leave), while
the remaining part of the population keeps the same activity in
infected and susceptible states aI = aS (asymptomatic or pau-
cisymptomatic agents, individuals who must necessarily go to
work because of economic reasons or for the preservation of
minimum levels of activity in workplaces, such as hospitals,
schools, and offices).

In the sick-leave practice we set ρI|S (aI |aS ) = f (aS )δ(aI −
aS ) + (1 − f (aS ))δ(aI ), where δ(·) indicates the Dirac δ func-
tion: a node with aS has a probability f (aS ) to keep its activity
when infected, and a probability 1 − f (aS ) to be inactive
when infected (aI = 0). The functional form of f (aS ) sets the
activity correlations and the sick-leave strategy implemented.
The epidemic threshold is (see Appendix B for the detailed
derivation):

rC = 2aS

aS + aS f (aS ) +
√

(aS − aS f (aS ))2 + 4 a2
S f (aS )

. (7)

The two limit cases of this approach are f (aS ) = 1 ∀ aS and
f (aS ) = 0 ∀ aS: the former is the NAD network [Eq. (6)],
while the latter corresponds to the case in which all nodes
perform sick leave.

In our model, sick-leaving nodes no longer actively cre-
ate links, but they passively suffer the activity of the rest
of the population, since susceptible and infected nodes are
equally contacted by active nodes (even if aI = 0). There-
fore, every individual engages two types of connections: an
active component, which the individual can control and re-
duce during infection; a passive component which cannot be
controlled, due to the rest of the population (e.g., neighbors,
doctors, relatives), as observed in real populations exposed
to influenza-like illness (ILL) epidemics [4,18,19]. The sick-
leave practice is a mild-to-moderate control measure, indeed
it does not affect healthy nodes. This marks the difference
between sick leave and quarantine [29]: quarantining nodes
would not actively create nor passively receive links. The

adoption of quarantine affects also healthy nodes who can-
not contact quarantined individuals, deteriorating significantly
the population overall activity (strong containment measures).
The quarantine can be implemented in our model by introduc-
ing an attractiveness parameter [29,57]; if all nodes were in
quarantine the epidemic would not spread and the threshold
would be infinite [29], on the contrary, if all nodes perform
sick leave the epidemic threshold is still finite rbest

C = 1.
Several works focus on the sick-leave practice in real pop-

ulations exposed to ILI epidemics [18–20], providing realistic
estimation of our model parameters: for example, in some
populations a 75% reduction in the number of contacts was
observed on average in infected nodes [18,19]. In Ref. [20]
the behavior of the French general population during ILI
epidemics was investigated, by considering the data collected
from the web-based GrippeNet.fr cohort study [58] (which
is part of the European consortium InfluenzaNet [59,60]). In
particular, considering three influenza seasons between 2012
and 2015, the fraction of the population performing sick leave
p = ∫

[1 − f (aS )]ρS (aS ) daS was estimated [20]: about 20%
of the population performs sick leave when infected, while
50% does not change its behavior during the infection and the
remaining 30% instead undertake an intermediate behavior,
reducing the activity but without taking sick leave.

We remark that the sick-leave practice can be realized in
a variety of implementations by appropriately choosing the
functional form of f (aS ): in the next sections we deal with
several sick-leave strategies, comparing them and identifying
the best ones.

A. Uniform strategy

The simplest sick-leave strategy is the one acting equally
on all the activity classes: every node, independently of its
activity aS , has the same probability to take sick leave. This
strategy is expected to be realized in the absence of targeted
policies or interventions.

Hereafter we refer to it as uniform strategy: formally, this
case is f (aS ) = (1 − p) ∀ aS . A fraction p of the population,
when infected, cancels its activity aI = 0, while 1 − p when
infected keeps its activity aI = aS . The threshold is (see Ap-
pendix B for the detailed derivation):

rU
C = 2aS

aS (2 − p) +
√

aS
2 p2 + 4(1 − p)a2

S

. (8)

The uniform strategy is effective in increasing the epidemic
threshold, compared with the NAD case, only when almost
all nodes take sick leave (more than 75%, p > 0.75): indeed,
the ratio rNAD

C /rU
C is significantly small only when p ≈ 1 [see

Fig. 1(a)].

B. Targeted strategy

We consider here a targeted strategy over most at risk
nodes (high activity aS). In this strategy authorities operate in
a selective way, targeting only individuals with high activity
when susceptible. The interventions (awareness campaigns
and policies) aim that all the nodes with high activity take
sick leave.
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FIG. 1. Epidemic threshold for sick-leave strategies. In each panel we show the ratio between the epidemic threshold in the NAD
(nonadaptive) scenario, rNAD

C , and when a sick-leave strategy is implemented, rC . We consider (a) the uniform strategy, rC = rU
C ; (b) the

targeted strategy, rC = rT
C ; and (c) the ε-targeted strategy, rC = rε

C . The ratio rNAD
C /rC is plotted as a function of ν, which is the exponent

of the ρS (aS ) distribution, and p, the fraction of sick-leaving nodes, through a heatmap. In all cases we fix the distribution of susceptible
activity ρS (aS ) ∼ a−(ν+1)

S with lower cutoff am = 10−3 and upper cutoff aM = 1, moreover in panel (c) we fix ε = 0.1, that is the fraction of
high-activity nodes not performing sick leave. Note that the gray zone in panel (c) corresponds to the region of prohibited p > 1 − ε values.
These results have been obtained analytically from Eqs. (6) and (8)–(10).

We set f (aS ) = θ (a∗ − aS ) (where θ is the Heaviside func-
tion and a∗ ∈ [am, aM]), in order to consider a completely
selective strategy: all nodes with aS � a∗ take sick leave set-
ting aI = 0, while nodes with aS < a∗ do not perform sick
leave and keep aI = aS . To make the uniform and targeted
strategies comparable, we fix a∗ so that in both strategies
the fraction of sick-leaving nodes is the same p (see Ap-
pendix B). The epidemic threshold is (fixing y = a∗/am and
η = aM/am—see Appendix B for the analytical derivation):

rT
C = 2aS

aS
(
1 + 1−y1−ν

1−η1−ν

) +
√

aS
2
( y1−ν−η1−ν

1−η1−ν

)2 + 4 a2
S

1−y2−ν

1−η2−ν

. (9)

In networks with homogeneous activities (ν � 2.5), a high
fraction of sick-leaving nodes (p > 0.75) is necessary to ob-
tain a significant increase in the epidemic threshold; on the
contrary in heterogeneous systems (ν ≈ 0.3–1.5) the targeted
strategy is effective for almost any value of p > 0.05 [see
Fig. 1(b)]. In a heterogeneous network, the same gain in the
epidemic threshold can be obtained by imposing a very small
(10%) or a higher number (≈100%) of individuals taking
sick leave: since all the key nodes in the spread of epidemics
are already inactive with small p. This suggests that the au-
thorities can intervene with low intensities using the targeted
approach and achieve a significant reduction in the epidemic
threshold.

The targeted strategy is much more effective than the uni-
form one for heterogeneous activities while for homogeneous
activities the two strategies are equivalent and both ineffec-
tive [compare Figs. 1(a) and 1(b)]: in the uniform case the
region with very low ratio rNAD

C /rU
C is small and located at

ν ≈ 1 and p > 0.95; in the targeted case it grows impres-
sively and becomes much deeper, extending in ν ≈ 0.1–1.5
and p ≈ 0.05–1, making this strategy much more effective for
heterogeneous activities.

C. ε-targeted strategy

In realistic populations it is difficult to impose to each node
with aS � a∗ to perform sick leave, since some nodes might
be asymptomatics, paucisymptomatics, or can decide not to
take sick leave (e.g., for economic reasons). It is important to
consider the effect of a small fraction ε of nodes with high
activity aS which keep their activity when infected.

We modify the targeted approach considering an ε-targeted
strategy with f (aS ) = θ (a∗ − aS ) + εθ (aS − a∗): nodes with
aS < a∗ keep aI = aS and nodes with aS � a∗ have a prob-
ability ε to keep aI = aS and 1 − ε to zero their infected
activity aI = 0. To make the three strategies comparable, we
fix a∗ so that in all strategies the fraction of sick-leaving
nodes is the same p, and we impose ε � 1 − p to guarantee
y = a∗/am � 1 (see Appendix B). The epidemic threshold is
(see Appendix B for the full derivation):

rε
C = 2aS

aS
(
1 + 1−y1−ν+ε(y1−ν−η1−ν )

1−η1−ν

) +
√

aS
2
[ (y1−ν−η1−ν )(1−ε)

1−η1−ν

]2 + 4 a2
S

1−y2−ν+ε(y2−ν−η2−ν )
1−η2−ν

. (10)

The introduction of a small fraction ε worsens the epi-
demic threshold compared with the pure-targeted strategy [see
Fig. 1(c)]. The effect is stronger for higher ε (see Fig. 2) and
for heterogeneous activities (ν ≈ 1), while for homogeneous

systems the differences are very small. This shows that het-
erogeneous systems can be controlled effectively by targeted
strategies, but they are also susceptible to the presence of
a small fraction of uncontrollable nodes. However, even for
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FIG. 2. Epidemic threshold for ε-targeted strategy. In all panels we consider the ratio between the epidemic threshold in the NAD
(nonadaptive) scenario, rNAD

C , and when the ε-targeted strategy is implemented, rε
C . The ratio rNAD

C /rε
C is plotted as a function of ν, exponent

of the ρS (aS ) distribution, and p, fraction of sick-leaving nodes, through a heatmap. In all cases we fix the distribution of susceptible activity
ρS (aS ) ∼ a−(ν+1)

S with lower cutoff am = 10−3 and upper cutoff aM = 1. In each panel we consider a different fraction of high-activity nodes
not performing sick leave, ε, reported above each panel. Note that the gray zone in each panel corresponds to the region of prohibited p > 1 − ε

values. These results have been obtained analytically from Eqs. (6) and (10).

ε > 0 the targeted strategy is still more effective than the
uniform one (compare the panels of Figs. 1 and 2), unless
ε ∼ 1 − p.

IV. SICK-LEAVE EFFECTS ON THE
SUSCEPTIBLE-INFECTED-SUSCEPTIBLE ACTIVE PHASE

Often real systems are above the epidemic threshold, with
r > rC (i.e., with R0 > 1), and it is difficult to move them
into the absorbing phase by increasing the epidemic threshold,
even with adaptive behaviors. For example, typical values of
the basic reproduction number for ILI are R0 ∈ [1, 5] [61,62].
It is interesting to investigate the effects of adaptive behaviors
and sick-leave strategies on the active phase of the epidemic,
i.e., on the epidemic prevalence P (average stationary infec-
tion probability).

In Fig. 3 we plot the prevalence, calculated by iterating nu-
merically Eqs. (2) and (3) (see Appendix A), as a function of r,
for fixed ν and p = 0.3, which represents a realistic estimation
for ILI epidemics [18–20]. All the sick-leave strategies lower
the epidemic prevalence compared with the NAD case: how-
ever, for heterogeneous activities (ν = 1) the three approaches
produce significantly different results [Fig. 3(a)] with the
targeted approach much more effective, followed by the ε-
targeted one and then by the uniform one (worst case). On the
contrary for homogeneous activities (ν = 3.5), the strategies
are almost equivalent and ineffective both in increasing the
threshold rC and in lowering the epidemic prevalence P, since
the curves overlap [Fig. 3(b)].

V. SUSCEPTIBLE-INFECTED-RECOVERED MODEL ON
ADAPTIVE ACTIVITY-DRIVEN NETWORKS

Infectious diseases can produce immunity in infected in-
dividuals, in this case the epidemic is better described by
the SIR epidemic model. In the SIR version of the adaptive
activity-driven network, each node i is characterized by three
parameters (ai

S, ai
I , ai

R), respectively the activity of node i in

the susceptible S, infected I and recovered state R, and they
are drawn from the joint distribution ρSIR(aS, aI , aR). At first
the nodes are disconnected, then the network evolves with a
continuous dynamics of link formation: each node activates
with a Poissonian dynamics, with rate aS if the node is sus-
ceptible, with rate aI if infected and with rate aR if recovered.
An active node creates one link with a randomly chosen
node: if the nodes involved in the contact are one infected
I and one susceptible S, the susceptible node gets infected

with probability λ, S + I
λ−→ 2I , otherwise nothing happens

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(a)

(b)

FIG. 3. SIS Epidemic prevalence for sick-leave strategies. In
both panels the SIS epidemic prevalence, P, is plotted as a function of
the control parameter, r, for different sick-leave strategies. We fix the
fraction of sick-leaving nodes p = 0.3, the fraction of high-activity
nodes not performing sick leave ε = 0.1, and the distribution of
susceptible activity ρS (aS ) ∼ a−(ν+1)

S with lower cutoff am = 10−3,
upper cutoff aM = 1, (a) ν = 1 and (b) ν = 3.5. The results are
obtained by iterating numerically Eqs. (2) and (3).
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FIG. 4. SIR Epidemic final-size for sick-leave strategies. In both
panels the SIR epidemic final size R∞ is plotted as a function of the
control parameter r for different sick-leave strategies. We fix the frac-
tion of sick-leaving nodes p = 0.3, the fraction of high-activity nodes
not performing sick leave ε = 0.1 and the distribution of susceptible
activity ρS (aS ) ∼ a−(ν+1)

S with lower cutoff am = 10−3, upper cutoff
aM = 1, (a) ν = 1 and (b) ν = 3.5. The results are obtained through
numerical simulations over networks of N = 103 nodes: each point is
obtained by averaging over at least 103 realizations of the dynamical
evolution and of the underlying network, until the errors on R∞ and
on the maximum of the infection peak, Pmax, are both lower than 1%.

during the interaction. Then the contact is removed. Infected
nodes recover with rate μ, through a Poissonian spontaneous
recovery process, I

μ−→ R, and they get immunity (i.e., they
are no longer infectious and cannot get any more infected).
Hereafter we assume that the recovered nodes regain the activ-
ity they had before the infection ai

R = ai
S: ρSIR(aS, aI , aR) =

ρ(aS, aI )δ(aR − aS ), where δ(·) indicates the Dirac δ func-
tion. This choice has no significant implication, as far as the
epidemic dynamics is concerned: recovered nodes no longer
enter into the contagion process. However, this choice signif-
icantly influences the average activity level of the population
and the network evolution (see Sec. VI).

The epidemic threshold rC of the SIR and SIS models is
the same, because of the completely mean-field nature of the
model [54,63]. On the contrary, the active phase is different:
the SIR model lacks a stationary endemic state and we cannot
obtain information on the active phase of the epidemic in
an analytic way, thus we perform extensive numerical sim-
ulations. The effects of the sick-leave strategies on the SIR
active phase can be estimated by several quantities: (i) the
epidemic final size R∞, i.e., the total fraction of nodes infected
throughout the epidemic, which is the order parameter of the
phase transition; (ii) the temporal evolution of the average
infection probability P(t ), in particular (iii) the height of the
infection peak Pmax, (iv) the time t I

max at which the peak occurs
and (v) the width of the peak are relevant for the impact
of the epidemic on the healthcare system and for planning
countermeasures [2]. Note that in the SIR model the epidemic
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FIG. 5. Infection peak for sick-leave strategies. In both panels
we plot the fraction of infected nodes, P(t ), as a function of time for
several sick-leave strategies. We fix the control parameter r = 3, the
fraction of sick-leaving nodes p = 0.3, the fraction of high-activity
nodes not performing sick leave ε = 0.1, and the distribution of
susceptible activity ρS (aS ) ∼ a−(ν+1)

S with lower cutoff am = 10−3,
upper cutoff aM = 1, (a) ν = 1 and (b) ν = 3.5. The results are
obtained through numerical simulations over networks of N = 103

nodes: each curve is obtained by averaging over at least 103 realiza-
tions of the dynamical evolution and of the underlying network, until
the errors on the epidemic final size R∞ and on the maximum of the
infection peak, Pmax, are both lower than 1%.

final size R∞ coincides with the final fraction of nodes recov-
ered, since susceptible nodes can get infected only once in the
epidemic process and after the infection they all recover by
gaining immunity.

We perform numerical simulations of the SIR process on
the adaptive activity-driven network. We assign to each of the
N nodes their activities aS and aI according to the sick-leave
strategy adopted: the network dynamics and the epidemic
spreading are simulated by using a Gillespie-like algorithm
[29,43,64]. We first let the network evolve without epidemics
so that network dynamics is relaxed to equilibrium. Then the
epidemic is initialized by infecting the node with the highest
activity aI [65]. See Appendix C for a detailed sketch of
the numerical implementation. The results are averaged over
several realizations of the dynamical evolution and of the
underlying network.

In Fig. 4 we plot R∞ as a function of r for each sick-
leave strategy, fixing p = 0.3 and ε = 0.1. All the sick-leave
strategies generally lower the epidemic final-size, reducing
the number of people been infected during the epidemic.
However, for ν = 1 the three strategies performances are sig-
nificantly different [Fig. 4(a)]: the targeted approach is the
most effective one, followed by the ε-targeted strategy and
finally by the uniform approach (worst case). On the contrary
for homogeneous activities ν = 3.5 [Fig. 4(b)], the strategies
are almost equivalent and poorly effective, both in increasing
the threshold rC and in decreasing the epidemic final size.
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FIG. 6. Effects of sick-leave strategies intensity on the epidemic active phase. In panel (a) we plot the epidemic final size R∞ as a function
of the fraction of sick-leaving nodes p. In panel (b) we plot the ratio Pmax/P

NAD
max between the infection peak height in the adaptive and in

the nonadaptive (NAD) case as a function of p. In panel (c) we plot the ratio t I
max/tNAD

max between the infection peak time in the adaptive
and in the NAD case as a function of p. In all panels are plotted both the uniform and targeted case, we fix the control parameter r = 3
and the distribution of susceptible activity ρS (aS ) ∼ a−(ν+1)

S with lower cutoff am = 10−3, upper cutoff aM = 1, and ν = 1. The results are
obtained through numerical simulations over networks of N = 103 nodes; each point of the adaptive and NAD case is obtained by averaging
over at least 103 realizations of the dynamical evolution and of the underlying network, until the errors on R∞ and on Pmax are both lower
than 1%.

In Fig. 5(a) we plot the fraction P(t ) of infected nodes over
time, fixing r = 3 (as for realistic ILI [61,62]), p = 0.3, and
ν = 1. The targeted strategy is extremely effective in delay-
ing and reducing the impact of the epidemic, flattening the
infection peak, on the contrary the uniform strategy slightly
affects the infection peak. These strong differences between
strategies hold as long as the activities are heterogeneous:
see Fig. 5(b) for a comparison with the homogeneous case
at ν = 3.5, where the differences are significantly reduced.

To study the effect of the strategy intensity, p, we fo-
cus on a realistic system with heterogeneous activities ν = 1
[38,39,44,55] in the active phase r = 3, as for realistic ILI
[61,62]. In Fig. 6 we plot R∞, Pmax/P

NAD
max (ratio between

the infection peak height in the adaptive and NAD cases)
and t I

max/tNAD
max (ratio between the temporal occurrence of the

infection peak in the adaptive and NAD cases) as a function
of p. Both uniform and targeted strategies at most can reduce
the epidemic final size of about 75% and the infection peak
of about 90%, while they can delay the peak of ≈4.5 times.
However, only the targeted strategy is effective at small p
allowing intervention with mild measures: when realistically
25% of the population performs sick leave [20], the time of
infection peak occurrence is more than quadrupled, the epi-
demic final-size is reduced to 50% of the population, and the
infection peak height is reduced by 80%. On the contrary, the
uniform strategy is extremely ineffective: in order to obtain
the same results, at least 95% of the population is needed to
perform sick leave.

VI. EFFECTS OF SICK LEAVE ON POPULATION
ACTIVITY AND ABSENTEEISM LEVELS

When epidemic control measures are implemented, it is
important to estimate whether and to what extent these
compromise the operativeness of the population [6–11,22,23].

We now study the effects of the sick-leave strategies on
the average population activity level 〈a〉(t ) = (

∑
i∈I (t ) ai

I +∑
j∈S(t ),R(t ) a j

S )/N , on the fraction of simultaneous sick-
leaving nodes A(t ), and on their evolution. These are the
relevant quantities to determine if the sick-leave strategies
compromise the operativeness and activity of the system
[6,9,10,22,23].

In Fig. 7 we plot the temporal evolution of the infection
peak P(t ), the fraction A(t ) of absent nodes and the population
activity level 〈a〉(t ). In the NAD case the activity level is
constant and there is no absenteeism curve, while both in
the uniform and targeted strategies, 〈a〉(t ) and A(t ) feature
respectively a minimum and a maximum. Interestingly, the
minimum of activity anticipate the infection peak, especially
in the targeted case. The first nodes to be infected are, indeed,
the most active ones which are removed by the sick-leave
mechanism, so that the activity immediately collapses in the
early stages. Then when nodes of higher activity start to
recover, the other nodes are also infected, generating the infec-
tion peak, which thus is delayed compared with the minimum
in activity. Hence, the temporal shift is relevant only in het-
erogeneous networks and is more pronounced in the case of a
targeted strategy, since all the most active nodes perform sick
leave. In the targeted strategy an anticipation is also observed
in the absenteeism peak compared with the infection peak
(Fig. 7). This time shift is crucial, for example, in hospitals
or schools, since the population becomes almost completely
operative during the infection peak, thus providing essential
services in the most critical phase.

The observed time shift between human activity and the
infection peak was investigated in different settings; for exam-
ple, several studies of absenteeism in schools and workplaces
show signs of a delay [24–26], while other studies do not
detect this delay [21]. Moreover, a temporal shift in the peak
of infection between different age groups is often observed:
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FIG. 7. Effects of sick-leave strategies on the population activity and absenteeism dynamics. In each panel is plotted the fraction P(t ) of
infected individuals (blue solid line: left y axis), the fraction A(t ) of absent nodes (yellow dash-dotted line: left y axis), and the average activity
〈a〉(t ) (red dotted line: right y axis), as a function of time t . The first panel on the left side correspond to the nonadaptive (NAD) case, while
the panels on the right side correspond to the uniform (first row) and targeted (second row) strategies for several values of the fraction of
sick-leaving nodes p (see above each panel). In each panel, the inset is a zoom on the infection and absenteeism peaks. We fix the control
parameter r = 3 and the distribution of susceptible activity ρS (aS ) ∼ a−(ν+1)

S with lower cutoff am = 10−3, upper cutoff aM = 1, and ν = 1.
The results are obtained through numerical simulations over networks of N = 103 nodes: each curve is obtained by averaging over at least 103

realizations of the dynamical evolution and of the underlying network, until the errors on the epidemic final size R∞ and on the maximum of
the infection peak, Pmax, are both lower than 1%.

children experience an early infection peak compared with
adults due to their high mixing rate and their high activity (i.e.,
different activity classes in our model) [35–37].

Figure 8(a) shows that both uniform and targeted strategies
at most produce a reduction of 30%–35% in the average
activity level despite the intensity of the strategies adopted
(p). In the targeted strategy the activity after a sudden drop
at p ≈ 0 starts to recover and reaches a saturation at p ≈ 0.3,
where the number of infected nodes is significantly reduced
[see Figs. 6(a) and 6(b)]. Therefore, the targeted strategy with
p ≈ 0.3, which is consistent with its realistic value [20], pro-
duce an important reduction of epidemic spreading without
reducing excessively the activity of the system (reduction of
about 20% of the average activity level). On the contrary, the
uniform strategy produces a similar level of reduction in the
average activity for p ≈ 0.3 without any significant reduction
in the epidemic transmission.

In both the uniform and targeted strategies the activity
minimum anticipates the infection peak, since the most ac-
tive nodes are usually the first to get infected. However, in
the uniform strategy the relative time delay 


〈a〉
peaks = (t I

max −
t 〈a〉
min)/t I

max between the activity minimum and the infection
peak increases with p reaching 0.6 [see Fig. 8(c)]. Instead, in
the targeted case we get a large delay, about 0.6, independently
of p, since high activity nodes always take sick leave also for
small p: even for low intensities of the mitigation measure,

the infection peak is distinct from the minimum in population
activity, unlike the uniform strategy.

So far we have considered the impact of sick leave on the
average activity of the population. However, in real systems it
is complicated to estimate the reduction in the system activity
because it would require knowing the social activity of each
sick-leaving node. On the contrary, one typically has easy
access to the level of absenteeism over time in a specific
setting [21,24–26]. We now focus on the number A(t ) of
individuals simultaneously absent in time and its maximum
Amax (see Fig. 7).

The targeted strategy keeps very low the number of simul-
taneously absent nodes (3%–5%) also at p ≈ 0.3 [Fig. 8(b)]
where significant containment is obtained. On the contrary,
the uniform strategy produces a larger level of absenteeism
(10%–20%), especially for realistic p values and for p val-
ues that produce a sufficient epidemic mitigation for this
strategy.

Furthermore, in the uniform strategy the relative time delay

A

peaks = (t I
max − tA

max)/t I
max between the peak of infection and

the maximum of absenteeism is approximately zero for every
value of p [see Fig. 8(d)], hence during the most critical
phase of the epidemic the population is always characterized
by high levels of absenteeism. On the contrary, the targeted
strategy produces an anticipation of the absenteeism peak on
the infection peak, with a relative delay of approximately
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FIG. 8. Effects of sick-leave strategies on the population activity and absenteeism levels. In panel (a) we plot the ratio 〈a〉min/〈a〉NAD

between the minimum average activity in the adaptive case and in the NAD case as a function of the fraction of sick-leaving nodes, p. In panel
(b) we plot the maximum fraction of simultaneously absent nodes Amax as a function of p. In panel (c) is plotted 


〈a〉
peaks = (t I

max − t 〈a〉
min )/t I

max, the

relative time delay between the minimum in the population activity t 〈a〉
min and the infection peak t I

max as a function of p. In panel (d) is plotted

A

peaks = (t I
max − tA

max)/t I
max, relative time delay between the maximum in the absenteeism, tA

max, and the infection peak t I
max as a function of p.

In all panels are plotted both the uniform and targeted case. We fix the control parameter r = 3 and the distribution of susceptible activity
ρS (aS ) ∼ a−(ν+1)

S with lower cutoff am = 10−3, upper cutoff aM = 1, and ν = 1. The results are obtained through numerical simulations over
networks of N = 103 nodes. Each point of the adaptive and NAD case is obtained by averaging over at least 103 realizations of the dynamical
evolution and of the underlying network, until the errors on R∞ and on Pmax are both lower than 1%.


A
peaks ≈ 0.2 for realistic p ≈ 0.3, which then decreases to

zero when increasing p.
In realistic heterogeneous populations, sick-leave strate-

gies targeted on the most at-risk nodes are significantly more
effective compared with uniform strategies, especially for
mild control. In particular, for a fraction p  0.3 of sick-
leaving nodes, the targeted strategy strongly weakens the
epidemic, while keeping low the absenteeism level and high
the population activity level. Moreover, it increases the time
shifts in the minimum of population activity and in the max-
imum of absenteeism, with respect to the infection peak,
suggesting that the population returns almost completely op-
erative during the infection peak. Therefore, p  0.3 can
be considered an effective fraction for a targeted sick-leave
prescription. On the contrary, uniform strategies are inef-
fective in facing the epidemic and also produce a strong
deterioration in population operativeness, with high level of

absenteeism and low system activity, especially during the
infection peak.

VII. CONCLUSIONS

This work provides a framework for understanding the in-
terplay between social interaction dynamics, epidemic spread-
ing, and adaptive behaviors of individuals, allowing us to
investigate the effects of adaptation and of mild-to-moderate
control measures, such as sick leave. The combined effects of
these interventions on the epidemics and on the interaction
dynamics are crucial for reaching the control of epidemics
[1,2,29] while preserving the essential services and systems,
i.e., the population overall operativeness and activity [6,9].

Through adaptive temporal networks, we formulate a gen-
eral framework which models a wide range of different
adaptive behaviors and mitigation strategies, observed and
implemented in real populations exposed to epidemics. We
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derive an analytical estimate of the epidemic threshold for ar-
bitrary adaptive behaviors, and we highlight the crucial role of
correlations between individuals behavior in the infected and
in the susceptible state. We focus on the sick-leave practice
and we compare the effects of several strategies on the SIS
and SIR epidemic processes, showing the critical relevance of
heterogeneity: in homogeneous systems, targeted and uniform
strategies are equivalent and both are poorly effective. On the
contrary, in heterogeneous networks, targeted strategies (over
most at-risk nodes) are considerably more effective than non-
targeted ones, especially for small fractions of sick-leaving
nodes, that is, for mild control measures. These results are
robust against even small errors in detecting high-risk nodes
in the targeted strategy. Moreover, targeted strategies are both
effective in flattening the infection peak and delaying it, also
increasing the time difference with the maximum of absen-
teeism and the minimum in the activity of the population,
so that the population returns almost completely operative
during the infection peak. The activity of the system is not
excessively reduced, guaranteeing the operativeness of the
system, and the strategy keeps the number of simultaneously
absent nodes low. On the contrary, the uniform strategy re-
quires very high control, producing high levels of absenteeism
and a strong deterioration in the activity of the population,
especially during the infection peak, i.e., the most critical
phase of the epidemic.

Our results, despite the simplicity of the model, provide
crucial insights on the implementation of mitigation strategies
and adaptive behaviors, and on their impact on population
operativeness, opening new perspectives in the control of
epidemic spreading on realistic adaptive temporal networks.
The model can be modified to account for other realistic
features, such as a differentiated adaptive behavior for strong
and weak ties [54–56], as detected in several real populations
[20,55], heterogeneous temporal patterns [41,43], or addi-
tional mild interventions [5,13,29]. Moreover, the introduced
model paves the way for the modeling of even more compli-
cated behaviors that can be easily implemented through the
proposed framework, for example, the introduction of mul-
tiple groups that have intermediate activity reduction when
infected [18–20], or the modeling of groups of people who
chase the infection and increase their social activity when
infected [46–48].
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APPENDIX A: ANALYTICAL DERIVATION OF THE
GENERAL EPIDEMIC THRESHOLD AND EPIDEMIC

PREVALENCE

In this Appendix we provide the detailed analytical deriva-
tion of the asymptotic epidemic prevalence and of the

epidemic threshold of the SIS epidemic model on the adaptive
activity-driven network described in Sec. II.

Each node is assigned with two parameters (aS, aI ) drawn
from the general joint distribution ρ(aS, aI ). We apply an
activity-based mean-field approach (ABMF), which is exact
since correlations are destroyed over time by link reshuffling.
We divide the population into classes with the same activities
(aS, aI ) and consider the probability PaS ,aI (t ) that a node in
class (aS, aI ) is infected at time t . In the thermodynamic limit,
the epidemic dynamics is governed by Eq. (1). Focusing on
the SIS asymptotic steady state and on the asymptotic epi-
demic prevalence P0

aS ,aI
= limt→∞ PaS ,aI (t ), Eq. (1) becomes

∂t P
0
aS ,aI

= −μP0
aS ,aI

+ λ
(
1 − P0

aS ,aI

)
[aSP + aI P], (A1)

where P = ∫
daS

∫
daIρ(aS, aI )P0

aS ,aI
is the aver-

age asymptotic epidemic prevalence and aI P =∫
daS

∫
daIρ(aS, aI )aI P0

aS ,aI
is the average asymptotic

infectivity. The first term on the right-hand side corresponds
to recovery processes, while the second term corresponds to
infection processes, according to the two possible paths: a
susceptible node of class (aS, aI ) activates and contacts an
infected node of any class (a′

S, a′
I ) or an infected node of

any (a′
S, a′

I ) class activates and contacts a susceptible node
of the (aS, aI ) class. By multiplying both sides of Eq. (A1)
by ρ(aS, aI ) and integrating over (aS, aI ), we obtain the
equation for P:

∂t P = [−μ + λ(aS − aSP)]P + λ(1 − P)aI P, (A2)

where g(aS, aI )P = ∫
daS

∫
daIρ(aS, aI )P0

aS ,aI
g(aS, aI ) and

g(aS, aI ) = ∫
daS

∫
daIρ(aS, aI )g(aS, aI ). Similarly, by mul-

tiplying both sides of Eq. (A1) by aIρ(aS, aI ) and integrating
over (aS, aI ), we obtain the equation for aI P:

∂t aI P = λ(aIaS − aI aSP)P + [−μ + λ(aI − aI P)]aI P.

(A3)

Equations (A2) and (A3) compose a set of nonlinear differ-
ential equations which admits the absorbing state (P, aI P) =
(0, 0) as a stationary solution. We apply a linear stability
analysis around the absorbing state to obtain the epidemic
threshold λC . We linearize the equations around the absorbing
state and obtain

∂t P = [−μ + λaS]P + λaI P, (A4)

∂t aI P = [−μ + λaI ]aI P + λaI aSP. (A5)

This system has Jacobian matrix J:

J =
[−μ + λaS λ

λaI aS −μ + λaI

]
, (A6)

which admits eigenvalues:

ξ1,2 = 1
2 [λ(aI + aS ) − 2μ ± λ

√
(aS − aI )2 + 4aI aS]. (A7)

The stability of the absorbing state is obtained by imposing
that the maximum eigenvalue is negative ξmax < 0. This con-
dition produces the following epidemic threshold:

λC = 2μ

aS + aI +
√

(aS − aI )2 + 4 aI aS

. (A8)
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This threshold is the same as in Eq. (4), which is formulated
in terms of r = λaS/μ: it is exact since the model is exactly
mean field, and it holds for arbitrary ρ(aS, aI ). For example,
the nonadaptive (NAD) case corresponds to the case where no
adaptive behaviors nor response measures are implemented in
the population, i.e., ρ(aS, aI ) = ρS (aS )δ(aI − aS ), where δ(·)
is the Dirac δ function, thus all nodes feature aS = aI . In this
case, aI = aS and aI aS = a2

S: thus, substituting in Eq. (A8),
the epidemic threshold is

λNAD
C = μ

aS +
√

a2
S

, (A9)

as in Eq. (6) and as obtained in Ref. [44].
Equations (A1) and (A2) can provide analytically the epi-

demic prevalence in the steady state. By using the definition
of steady state, ∂t P0

aS ,aI
= 0 and ∂t P = 0, and replacing this in

Eqs. (A1) and (A2) we obtain the explicit equations for P0
aS ,aI

and P as shown in Eqs. (2) and (3). Equation (3) for P depends
on aI P and on aSP. However, it is not possible to close these
equations analytically since each variable an

I P ∀ n depends on

an
I aSP and each variable an

SP ∀ n depends on an+1
S P, constitut-

ing a set of infinite coupled equations. Therefore, we obtain P
by iterating numerically Eqs. (2) and (3).

APPENDIX B: ANALYTICAL DERIVATION OF THE
EPIDEMIC THRESHOLD FOR THE SICK-LEAVE

STRATEGIES

In this Appendix we provide in details the analytical
derivation of the epidemic threshold for the different sick-
leave strategies. Hereafter, we indicate with δ(·) the Dirac δ

function.
Initially we consider the general sick-leave practice, pre-

sented in Sec. III: in this case ρ(aS, aI ) = ρS (aS )ρI|S (aI |aS )
with ρS (aS ) ∼ a−(ν+1)

S , where aS ∈ [am, ηam] with
η ∈ (1,∞), and ρI|S (aI |aS ) = f (aS )δ(aI − aS ) + [1 −
f (aS )]δ(aI ). In this case,

aI =
∫

daS daIρS (aS )aI f (aS )δ(aI − aS )

+
∫

daS daIρS (aS )aI [1 − f (aS )]δ(aI )

= aS f (aS ), (B1)

aI aS =
∫

daS daIρS (aS )aI aS f (aS )δ(aI − aS )

+
∫

daS daIρS (aS )aI aS[1 − f (aS )]δ(aI )

= a2
S f (aS ). (B2)

Therefore, by replacing Eqs. (B1) and (B2) into Eq. (A8), we
obtain

λC = 2μ

aS + aS f (aS ) +
√

(aS − aS f (aS ))2 + 4 a2
S f (aS )

,

(B3)

which corresponds to Eq. (7) for r = λaS/μ. The fraction of
sick-leaving nodes is np = ∫

daSρS (aS )[1 − f (aS )].
Now we consider the uniform strategy, with f (aS ) = (1 −

p) ∀ aS: in this case the fraction of sick-leaving nodes is nU
p =

p. Moreover,

aS f (aS ) =
∫

daSρS (aS )aS (1 − p) = (1 − p)aS, (B4)

a2
S f (aS ) =

∫
daSρS (aS )a2

S (1 − p) = (1 − p)a2
S. (B5)

Therefore, by replacing Eqs. (B4) and (B5) into Eq. (B3),
we obtain Eq. (8) for the epidemic threshold of the uniform
strategy.

Let us now consider the targeted strategy, where
f (aS ) = θ (a∗ − aS ) (with θ the Heaviside function and a∗ ∈
[am, ηam]). To compare the different strategies, we fix a∗, i.e.,
y = a∗/am, so that the fraction of sick-leaving nodes is equal
to p, as in the uniform strategy. The fraction of sick-leaving
nodes is

nT
p =

∫
daSρS (aS )[1 − θ (a∗ − aS )] = y−ν − η−ν

1 − η−ν
. (B6)

Therefore, we impose nT
p = p and obtain

y = [p + η−ν (1 − p)]−1/ν . (B7)

This relation must respect that a∗ ∈ [am, ηam], i.e., y ∈ [1, η]:
this is always guaranteed since p ∈ [0, 1], η ∈ (1,∞), and
ν � 0. Thus, for this strategy,

aS f (aS ) =
∫

daSρS (aS )aSθ (a∗ − aS ) = aS
1 − y1−ν

1 − η1−ν
, (B8)

a2
S f (aS ) =

∫
daSρS (aS )a2

Sθ (a∗ − aS ) = a2
S

1 − y2−ν

1 − η2−ν
. (B9)

Then, by replacing Eqs. (B8) and (B9) into Eq. (B3), we ob-
tain Eq. (9) for the epidemic threshold of the targeted strategy.

Finally, we focus on the ε-targeted strategy, f (aS ) =
θ (a∗ − aS ) + εθ (aS − a∗) (where θ is the Heaviside function,
a∗ ∈ [am, ηam] and ε ∈ [0, 1]). Also here, in order to compare
the different strategies, we fix a∗, i.e., y = a∗/am, so that the
fraction of sick-leaving nodes is p as in the other strategies.
The fraction of sick-leaving nodes is

nε
p =

∫
daSρS (aS )[1 − θ (a∗ − aS ) − εθ (aS − a∗)]

= (1 − ε)
y−ν − η−ν

1 − η−ν
. (B10)

Therefore, by imposing nε
p = p we obtain

y =
(

η−ν + p
1 − η−ν

1 − ε

)−1/ν

. (B11)

By imposing that a∗ ∈ [am, ηam], i.e., y ∈ [1, η], we obtain a
condition on ε: ε � 1 − p, otherwise a∗ would have unaccept-
able values. Thus, for this strategy:

aS f (aS ) =
∫

daSρS (aS )aS[θ (a∗ − aS ) + εθ (aS − a∗)]

= aS
1 − y1−ν + ε(y1−ν − η1−ν )

1 − η1−ν
, (B12)
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a2
S f (aS ) =

∫
daSρS (aS )a2

S[θ (a∗ − aS ) + εθ (aS − a∗)]

= a2
S

1 − y2−ν + ε(y2−ν − η2−ν )

1 − η2−ν
. (B13)

Then, by replacing Eqs. (B12) and (B13) into Eq. (B3), we
obtain Eq. (10) for the epidemic threshold of the ε-targeted
strategy.

APPENDIX C: SKETCH OF THE GILLESPIE-LIKE
ALGORITHM FOR NUMERICAL SIMULATIONS

In this Appendix we present schematically the Gillespie-
like algorithm [29,43,64] implemented to numerically simu-
late the SIR dynamics.

We consider a population of N nodes and we assign to each
node their activities (aS, aI , aR) extracted from the distribution
ρ(aS, aI , aR), which is fixed by the specific adaptive behavior
considered. We let the network evolve without the epidemic
process, i.e., in the absorbing state, up to a relaxation time t0
ensuring that the activation dynamics of the network relaxes
to equilibrium:

(1) At time t = 0, the first activation time ti for all the
nodes i is extracted from their distribution �i(ti) = ai

Se−ai
Sti .

(2) The node i with the lowest activation time ti activates
and creates a link with a node selected uniformly at random in
the population, and the new activation time of i is set to ti + τ ,

with τ drawn from the interevent time distribution �i(τ ) =
ai

Se−ai
Sτ .

(3) The generated link is removed and the process is iter-
ated from point 2 up to time t0.

At time t = t0, the network activation dynamics has relaxed
to equilibrium, each node has an activation time ti > t , and the
epidemic dynamics is introduced:

(1) The entire population is initialized in the susceptible
status (S) except for the node with the highest ai

I which is set
as the infection seed (I) [65].

(2) The node i with the lowest ti activates and the current
time is set to t = ti. The nodes infected at time t ′ recover at
time ti with probability 1 − e−μ(ti−t ′ ): recovered nodes change
their activity aI → aR.

(3) The active node i creates a link with a node selected
uniformly at random in the population. If the link connects a
susceptible S and an infected node I , the susceptible node gets
infected with probability λ (infectious contact) and the new
infected node changes its activity aS → aI ; otherwise, nothing
happens during the contact.

(4) The new activation time of the active node i is set
to ti + τ , with τ drawn from the interevent time distribution
�i(τ ) = ai

ke−ai
kτ , where ai

k denotes the node current activity,
depending on its health status k.

(5) The generated link is removed and the process is iter-
ated from point 2 until the system reaches the absorbing state
with no infected nodes.
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