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Characterization of entanglement on superconducting quantum computers of up to 414 qubits
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As quantum technology advances and the size of quantum computers grow, it becomes increasingly important
to understand the extent of quality in the devices. As large-scale entanglement is a quantum resource crucial for
achieving quantum advantage, the challenge in its generation makes it a valuable benchmark for measuring the
performance of universal quantum devices. In this paper, we study entanglement in Greenberger-Horne-Zeilinger
(GHZ) and graph states prepared on the range of IBM Quantum devices. We generate GHZ states and investigate
their coherence times with respect to state size and dynamical decoupling techniques. A GHZ fidelity of 0.519 ±
0.014 is measured on a 32-qubit GHZ state, certifying its genuine multipartite entanglement (GME). We show a
substantial improvement in GHZ decoherence rates for a seven-qubit GHZ state after implementing dynamical
decoupling, and observe a linear trend in the decoherence rate of α = (7.13N + 5.54) × 10−3 µs−1 for up to
N = 15 qubits, confirming the absence of superdecoherence. Additionally, we prepare and characterize fully
bipartite entangled native-graph states on 22 superconducting quantum devices with qubit counts as high as 414
qubits, all active qubits of the 433-qubit IBM Osprey device. Analysis of the decay of two-qubit entanglement
within the prepared states shows suppression of coherent noise signals with the implementation of dynamical
decoupling techniques. Additionally, we observe that the entanglement in some qubit pairs oscillates over time,
which is likely caused by residual ZZ-interactions. Characterizing entanglement in native-graph states, along
with detecting entanglement oscillations, can be an effective approach to low-level device benchmarking that
encapsulates two-qubit error rates along with additional sources of noise, with possible applications to quantum
circuit compilation. We develop several tools to automate the preparation and entanglement characterization of
GHZ and graph states. In particular, a method to characterize graph state bipartite entanglement using just 36
circuits, constant with respect to the number of qubits.
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I. INTRODUCTION

Producing large-scale entangled states on many qubits rep-
resents an important frontier in the race to scale up physical
quantum computers. In quantum computers, entanglement
manifests as nonclassical correlations between qubits, such
that qubits involved in an entangled system cannot be de-
scribed independently from each other [1,2]. Entanglement
has been found to play a significant role in achieving quantum
advantage [3–6], and many quantum information processing
protocols explicitly rely on entanglement as a resource [7–10].
Furthermore, entanglement over large arrays of qubits is es-
sential in many fault-tolerant computation schemes [11–13].
Multipartite entanglement is known for its complex structure
[1], and modern quantum devices have passed the number of
qubits a classical computer can store an arbitrary quantum
state on [14,15]. Consequently, as noisy intermediate-scale
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quantum (NISQ) devices [16] continue to improve in both
size and error rates, it becomes paramount to characterize the
ability of a quantum computer to generate and maintain large
entangled states in a scalable manner.

Verifying multipartite entanglement on a quantum device
requires measuring the fidelity of a highly entangled multi-
qubit state. Greenberger-Horne-Zeilinger (GHZ) states [17]
are a popular choice, as measuring a GHZ state fidelity of
greater than 0.5 is sufficient for verifying genuine multipartite
entanglement (GME). For quantum devices with full qubit
control, GHZ states of sizes 27 and 29 qubits have been
observed on superconducting systems [18,19], and GHZ states
of size 32 qubits have been observed on ion-trap systems [20].
Graph states, also known as cluster states, are another widely
studied class of multipartite entangled states. Graph states are
useful for showing mixed state bipartite entanglement, and
full bipartite entanglement has been observed on up to 65-
qubit graph states in superconducting systems [21–23], and
20-qubit graph states in ion-trap systems [24]. There has also
been recent study showing violation of robust Bell inequalities
for 57-qubit path graph states [25], and genuine entanglement
for 51-qubit path graph states and 30-qubit 2D graph states
[26] on superconducting devices.

Increasing the size of multipartite entanglement is prof-
itless if the entangled state degrades too rapidly to be able
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TABLE I. Guiding table summarizing all main experiments, the devices tested, and the relevant sections of the paper.

Entangled state Experiment Device(s) Sec.

GHZ (static) GHZ state generation and verification up to 32 qubits ibm_washington (127 qubits) II
GHZ (dynamic) Extending seven-qubit GHZ state lifetimes with dynamical decoupling ibmq_mumbai (27 qubits) III A
GHZ (dynamic) Scaling of GHZ decoherence rate versus state size up to 15 qubits ibm_hanoi (27 qubits) III B

Graph state (static) Scalable whole-device bipartite entanglement characterization up to 414 qubits 22 devices, see Table IV IV
Graph state (dynamic) Testing dynamical decoupling for 127-qubit whole-device bipartite entanglement ibm_brisbane (127 qubits) V

to perform meaningful operations on. A source of concern
when engineering physical quantum devices is superdeco-
herence; a phenomenon where qubit decoherence rates scale
linearly with the number of qubits due to the coupling
of multiple qubits with a single reservoir [27]. Studying
the decay of entangled states can reveal information about
the noise underlying a quantum system. For example, the
decoherence of GHZ states has been used to show superdeco-
herence (or the lack thereof) in superconducting and ion-trap
systems [28,29].

Techniques such as dynamical decoupling have been devel-
oped to suppress the effect of environmental noise on quantum
states. Dynamical decoupling, a quantum control technique
that employs sequences of control pulses to suppress the effect
of environmental noise on quantum states, has been shown to
be remarkably effective at protecting four-qubit GHZ states
on ion-trap devices [30].

In this paper, we investigate both GME in the form of
GHZ state fidelities and mixed bipartite whole-device entan-
glement using native-graph states. We develop several tools
to automate the preparation and verification of these states
over the range of IBM Quantum devices. In particular, we
employ an automated GHZ state embedding scheme that em-
beds tree-type GHZ preparation circuits with minimum-depth
on heavy-hexagonal qubit architectures to generate up to 32-
qubit GHZ states on the 127-qubit ibm_washington device.
Using multiple quantum coherences (MQC) [31], we record a
fidelity of 0.519 ± 0.014 for the 32-qubit state after mitigating
for measurement errors.

We then test dynamical decoupling-based schemes in pre-
serving GHZ state coherences for a seven-qubit state, and
found both periodic dynamical decoupling (PDD) and a π

pulse to be highly effective. From then on incorporating a
π pulse, we investigate how GHZ state decoherence rates
scale with number of qubits, and observe a linear trend up to
15-qubit GHZ states. For graph states, we develop a bipartite
entanglement characterization protocol focusing on adaptabil-
ity and scalability. The protocol first prepares a native-graph
state on the device and then performs quantum state to-
mography on each pair of qubits in parallel (projected onto
maximally entangled Bell pairs by measurements on their
neighbours) in order to calculate pairwise negativities. Us-
ing the procedure, we find whole-device entanglement—i.e.,
the entangled pairs of qubits form a connected entanglement
graph that includes every device qubit—on 21 IBM Quan-
tum devices, including three 127-qubit systems. We further
show entanglement across 414 qubits on the 433-qubit Osprey
device.

We finally investigate dynamical decoupling for preserving
native-graph state entanglement. Notably, we observe revivals

in entanglement signals for several qubit pairs. The observed
resurgent signals in negativity are consistent with signals pro-
duced by residual ZZ interactions, which are known to affect
superconducting transmon qubits and generate local entan-
glement [32–36]. We observe improvement in mean device
entanglement lifetimes after implementing PDD.

To enhance the paper’s navigability, we provide a guiding
table in Table I summarizing all main experiments, the devices
tested, and the relevant sections of the paper.

II. GENERATION AND DECAY OF
GREENBERGER-HORNE-ZEILINGER STATES

A. GHZ states and verifying genuine multipartite entanglement

GHZ states [17] are highly entangled multipartite states
that are uniquely fragile to noise, where a single-qubit phase
error can destroy the whole-state entanglement. The ability
of a quantum device to generate large GHZ states with high
fidelity depends on a holistic combination of factors, including
qubit count, gate error rates, coherence times, and cross talk.
Generating and verifying such states has therefore become a
valuable benchmark for NISQ devices. GHZ states are typi-
cally prepared by initializing a source qubit in the |+〉 state,
and then iteratively applying CNOT gates from the source
qubit (or any other qubit that has already had a CNOT applied
in this manner) to all other qubits prepared in the |0〉 state
(Fig. 1). The resulting state is an equal superposition of all
subsystems in the |0〉 state and all subsystems in the |1〉 state.
Formally, an N-qubit GHZ state is expressed as

|GHZN 〉 = |0〉⊗N + |1〉⊗N

√
2

. (1)

To certify N-qubit GME, it is sufficient to show a GHZ
fidelity of greater than 0.5 [37] (note that a GHZ state may be
GME with a fidelity under 0.5). The fidelity F between a pure
target state ρ ideal and the actual (noisy) state ρ is calculated as

F (ρ, ρ ideal ) = Tr(ρρ ideal ). (2)

The resource requirement for full quantum state tomography
scales exponentially with the number of qubits, making it
intractable to obtain ρ using this approach even for medium-
sized systems. Fortunately, GHZ states of all sizes have the
convenient property that their density matrices (ideally) con-
sist of only four nonzero corner elements. As a result, for GHZ
states, Eq. (2) can be reexpressed as

FGHZ = Tr(ρρGHZ) = P + C

2
, (3)
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FIG. 1. GHZ state preparation circuit on a seven-qubit processor.
(a) Physical layout of the seven-qubit Falcon R5.11H processor,
where nodes represent qubits and edges represent potential two-qubit
operations. (b) Optimal GHZ circuit embedding on (a), where qubits
are mapped in a way that avoids the need for SWAP operations.
The circuit maximizes the number of CNOTs performed in parallel,
minimizing the overall CNOT depth to four.

where P = ρ00...0,00...0 + ρ11...1,11...1 are the directly
measured populations, and C = |ρ00...0,11...1| + |, ρ
11...1,00...0| are the coherences, which can be measured
using either parity oscillations [28,37] or multiple quantum
coherences (MQC) [31].

MQC is advantageous due to its natural integration with
dynamical decoupling-based techniques, such as the Hahn
echo, which refocuses noise and mitigates dephasing, as well
as readout error mitigation, since readout errors are typically
the dominant noise factor for low-depth circuits. MQC has
been used to verify GHZ states of up to 29 qubits on super-
conducting quantum devices [18,19,31]. The methodology for
computing GHZ coherences via MQC can be summarized as
follows:

(1) Prepare the N-qubit GHZ state in the form
1√
2
(|00 . . . 0〉 + |11 . . . 1〉) as exemplified in Fig. 1(b).
(2) (Optionally) Apply a refocusing π pulse, i.e., an X

gate on each qubit.
(3) Apply a phase rotation of φ on each qubit in the GHZ

state, adding an accumulative phase of Nφ to the overall state:
1√
2
(|00 . . . 0〉 + e−iNφ |11 . . . 1〉).
(4) Disentangle the state by applying the inverse of the

GHZ state preparation circuit from step 1. The accumu-
lated phase is mapped onto qubit 0: 1√

2
(|0〉 + e−iNφ |1〉) ⊗

|00 . . . 0〉.
(5) Obtain the overlap signal Sφ as the probabilities of

measuring the |00 . . . 0〉 state for different values of φ.
The N-qubit GHZ coherence can then be calculated as C =

2
√

IN where IN are the overlap signal amplitudes, which can
be obtained by applying a Fourier transform to Sφ ,

Iq = n−1

∣∣∣∣∣∣

∑

φ

eiqφSφ

∣∣∣∣∣∣
(4)

where n is the number of angles φ in the summation. To detect
up to frequency N + 1, we measure Sφ for angles φ = π j

N+1 ,

j = 0, 1, . . . , 2N + 1. Further details including deriving the
fidelity from the overlap signal concretely is presented in
[18,31].

B. GHZ state embedding on physical topologies

When preparing GHZ states on physical devices, account-
ing for hardware topology and gate error rates is crucial
for maximizing the final state fidelity. In previous exper-
iments [18], circuit embedding was performed manually.
While suitable for smaller devices, the introduction of 433-
qubit processors, and most recently, the announcement of a
1121 qubit processor [38] necessitate methods for automated
embedding of device entangling circuits.

In this paper, we develop a topology-agnostic GHZ state
preparation scheme that constructs tree-type GHZ prepara-
tion circuits on heavy-hexagonal layouts with minimal depth.
The method additionally involves selecting qubit subsets with
optimized parameters such as low two-qubit gate error rates.
The exact parameter or combination of parameters to optimize
is specified by assigning corresponding weights to the edges
of the graph. We initially considered only the CNOT error
rate. Our algorithm is divided into two components. The first
component embeds a GHZ circuit as a directed tree branching
out from a single source qubit. We apply CNOT gates in
parallel prioritizing least depth first and lowest two-qubit error
rate second. The second component runs the first component
algorithm multiple times, trialling each physical qubit or a
subset of physical qubits as the source qubit. We then select
the circuit with the least depth as the primary criterion and the
lowest total cost parameter as the secondary criterion. This
way, we can conveniently embed least-depth GHZ states on
larger and larger quantum devices.

IBM employs a heavy-hexagonal lattice as its principal
architecture for all their devices. The choice in topology is
motivated by a reduction in qubit frequency collisions [39]
and spectator errors [40], as well as surface code versatility
[41]. It has been shown for star graph states (which are equiv-
alent to GHZ states under LOCC) that the CNOT depth to
construct states of size N scales as approximately

√
2N on

heavy-hex architectures [25]. Precisely, a GHZ circuit embed-
ded on an infinite heavy-hexagonal lattice with depth d can
prepare states of up to size

N = d (d + 1)

2
+ 1 (5)

where N is the number of qubits.
For the heavy-hex topology, our algorithm embeds GHZ

states with this optimal depth scaling up to a limit imposed
by the boundaries of the physical device. We illustrate this
for a 127-qubit Eagle processor in Fig. 2, where it can be
seen that a tree-type GHZ state with a centrally located source
qubit closely follows Eq. (5), whereas selecting source qubits
closer to the boundaries results in worse scaling. We showcase
an algorithmically embedded example 60-qubit GHZ state on
the same processor in Fig. 3. We note that the algorithm is
designed to be compatible with any finite-degree device graph,
although its performance on other topologies has not yet been
investigated.
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FIG. 2. The physical qubit layout of a 127-qubit Eagle processor
(a) and the corresponding plot for algorithmically embedded GHZ
circuit depth vs GHZ state size (b). The optimal depth curve plots
Eq. (5), which describes the maximum number of qubits in a GHZ
state N that can be prepared with a circuit of depth d . The remaining
curves showcase the performance of the GHZ embedding algorithm
for different source qubits (color coded) as highlighted in (a).

C. Scalable quantum readout-error mitigation (M3)

Readout or measurement errors represent the largest source
of noise for low-depth circuits executed on NISQ devices.
Readout error rates of even a few percent can be debilitating
to the output fidelity of otherwise well-performing systems.
Nevertheless, if the readout error takes on a predominantly
classical form, which has been shown to be largely true for
IBM Quantum transmon devices [18], its effects on measured
probability distributions can be mitigated via postprocess-
ing. In its simplest form, quantum readout error mitigation
(QREM) solves the linear equation

�pnoisy = A �pideal, (6)

where �pnoisy is the noisy probability vector returned by the
system, �pideal is the ideal probability vector in the absence of
readout errors (but may include other errors), and A is the
2N × 2N calibration matrix.

There are limitations to QREM, with the most significant
one being the exponential scaling of classical resources re-
quired to solve for �pideal with respect to N . There are a variety
of approaches to overcome this challenge, which often involve
approximating the calibration matrix by reducing it to a tensor
product of single-qubit components [18,42]. More recently, a
measurement error mitigation method called M3 (matrix-free
measurement error mitigation) has demonstrated order-of-
magnitude improvement in mitigation time over traditional
methods [42]. M3 relies on two main optimizations: subspace
reduction of the full calibration matrix A based on noisy
input bit strings, and implementation of a matrix-free, iterative
method for solving the system of linear equations. For two
bit-strings row, col ∈ {0, 1}N , where qubit 0 corresponds to
the least significant bit, the method directly computes matrix
elements A(T )

row,col as

A(T )
row,col =

N−1∏

k=0

P(k)(row[N − 1 − k] → col[N − 1 − k]),

(7)

where P(k)(row[N − 1 − k] → col[N − 1 − k]) corresponds
to the probability of the kth qubit being in state row[N − 1 −
k] and measured in state col[N − 1 − k]. This error mitiga-
tion technique has some caveats. Firstly, M3 works natively
with quasiprobability distributions, which can contain nega-
tive elements. These nonphysical probabilities arise from the
finite sampling and, while still adding up to one, are incom-
patible with methods such as MQC. Therefore, a classical
algorithm is used to efficiently convert the quasi-probabilities
into the closest physical probability distribution under the L2-
norm, and it runs in O(N ) time [43]. Furthermore, the speedup
of the mitigation process depends on the sparsity of the mea-
sured probability distributions. A sparser �pnoisy corresponds
to a greater subspace reduction, which makes M3 optimal for
GHZ states since they have only two measurement outcomes.
However, scalable mitigation of readout errors comes at the
expense of increased uncertainty for measurement outcomes.
The mitigation overhead M is given by

M = ‖A−1‖2
1 (8)

where ‖X‖1 is the trace norm of X . Quantity M gives an
upper bound to the standard deviation of an observable

σ �
√
M/s (9)

where s is the number of samples. Thus, results mitigated
using M3 will require more samples to achieve similar un-
certainty with results mitigated using traditional QREM.

Nevertheless, the benefits of employing M3 heavily out-
weigh the limitations in this use case. For our GHZ
experiments, we employ M3 using the publicly available
mthree Python package [44]. We apply the correction algo-
rithm with all the default settings, which include correcting
bit strings up to a Hamming distance equal to GHZ size N , a
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FIG. 3. GHZ state of size 60 qubits algorithmically embedded on ibm_washington. Qubit 63 serves as the initial source qubit, with arrows
indicating the direction of CNOT gates (control → target qubit) and the color bar mapping the CNOT depths.

convergence tolerance of the iterative method of 10−5, and a
maximum number of iterations of 25.

D. Verifying 32-qubit GHZ states
on a 127-qubit Eagle Processor

We prepare and measure the fidelities of tree-type GHZ
states of sizes N = 27, 28, 29, 30, 31, 32, on the 127-qubit
ibm_washington device. GHZ state preparation circuits are
constructed using the embedding algorithm. The algorithm se-
lects qubit 73 as the source qubit, although this choice varied
across calibration cycles due to physical error drift. Notably,
all GHZ sizes are embedded with an optimal CNOT depth of
8, which is not possible on any of IBM Quantum’s smaller
heavy-hex devices due to boundary effects. We conduct five
sets of experiments to obtain five independent measurements
of the GHZ fidelity for each N . Each experiment requires
2N + 2 circuits since the MQC method measures the overlap
signal Sφ for 2N + 1 values of φ (plus one circuit to measure
the population). Prior to any GHZ experiments, we perform
M3 readout error calibration. All circuits are executed with
4196 shots each.

Figure 4 shows population, coherence, and fidelity plots
for GHZ states of size N = 27, 28, 29, 30, 31, 32. Plotted
data points display the mean value across five experiments
and error bars represent the standard error. We plot results
with and without readout error mitigation using M3. After
applying readout correction, we measure the fidelity lower
bounds for all states to be above the 0.5 threshold required

to demonstrate GME. In particular, we measure a mitigated
fidelity of 0.519 ± 0.014 for the 32-qubit GHZ state. To the
best of our knowledge, this is the largest GHZ state observed
to have a fidelity of over 0.5. Furthermore, Fig. 5 shows the
corresponding MQC overlap signals (with QREM applied).
The signal amplitudes are filtered and calculated using a fast
Fourier transform algorithm. The observed phase shift for
certain N is likely caused by free rotations in idle qubits.

The results are unusual in some aspects. Most obvious
are the anomalously high fidelities for the 30-qubit GHZ
state, where we measure a mitigated fidelity of 0.590 ± 0.012.
Additionally, the measured populations seem to increase for
GHZ states of size N = 30, 31, 32, especially after M3 is
applied. These peculiarities are likely due to several factors.
Firstly, the experiments were executed in reverse order where
the 32-qubit GHZ experiments were performed first. Due to
the nature of the IBM Quantum job queuing system, not all
experiments could be executed consecutively. In fact, exper-
iments for GHZ size N = 30, 31, 32 were performed in a
different calibration cycle than experiments for GHZ size N =
27, 28, 29. This is important because over the course of our
research, we observed considerable performance drift in the
ibm_washington device. In some attempts, the measured GHZ
fidelities were well below the 0.5 threshold with no changes to
the experimental procedure. We suspect that the discontinuity
in the results reflects a decline in device performance during
the latter half of experiments.

We draw comparisons to previous GHZ experiments on
IBM Quantum devices [18,19,31]. We observe a relatively
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FIG. 4. Measured populations (a), coherences (b), and fideli-
ties (c) for GHZ states of size N = 27, 28, 29, 30, 31, 32 on the
ibm_washington device. Plotted data points represent the mean value
across five experiments, and error bars represent the standard error.
We show results with and without readout error mitigation via M3.
Showing an N-qubit GHZ state fidelity of at least 0.5 is sufficient
to prove N-qubit GME. For the 32-qubit GHZ state, we calculate
an unmitigated fidelity of 0.219 ± 0.006 and a mitigated fidelity of
0.519 ± 0.014.

small decrease in measured fidelities with increasing size.
This may be explained by all GHZ sizes being prepared by
the same CNOT depth of 8, in addition to the previously
mentioned performance drift. We remark that the measured
fidelities for similar size GHZ states on ibm_washington are
not substantially higher than the GHZ fidelities on smaller
devices from previous experiments [18,19] (in some cases
being lower). This is not unexpected, since the average device
error rates are often lower on the largest devices. We postulate
that the larger verifiable GHZ state sizes on the 127-qubit
device are partially enabled by its sheer scale—which allows
larger GHZ states to be prepared with lower circuit depth. This
highlights the importance of the scale of a quantum device in
addition to the quality of its qubits. Next, we study the decay
of GHZ states over time.

III. PRESERVING GHZ STATES VIA DYNAMICAL
DECOUPLING

A. Hahn Echo and Periodic Dynamical Decoupling
for GHZ States

In this section, we explore the potential of dynamical
decoupling techniques in prolonging the lifetimes of GHZ
states on IBM Quantum devices. Dynamical decoupling is
an open-loop control technique that mitigates decoherence
in quantum computers by implementing sequences of control
pulses [45,46]. In theory, these control sequences effectively
average out undesirable couplings between qubits and their
environment. Dynamical decoupling can be seen as a general-
ization of the Hahn spin echo [47], which is the special case
for a single or pair of control pulses.

There are variations between dynamical decoupling
schemes. The most basic scheme, known as periodic dy-
namical decoupling (PDD), applies equally spaced control
pulses in quick succession. More advanced schemes include
bounded-strength continuous sequences [48], concatenated
dynamical decoupling (CDD) [49], and Uhrig dynamical
decoupling (UDD) [50]. Different dynamical decoupling
schemes may optimize for different scenarios and noise en-
vironments. There is ongoing research investigating the best
way to integrate dynamical decoupling protocols with quan-
tum computing algorithms.

A typical dynamical decoupling technique on IBM Quan-
tum devices is to implement control sequences during qubit
idle periods. Most relevantly, dynamical decoupling has been
shown to preserve GHZ coherence times by orders of magni-
tude on ion-trap qubits for up to four-qubit GHZ states [30].
We study the efficacy of integrating dynamical decoupling
with MQC in order to preserve GHZ fidelities. The exper-
imental procedure follows from previous sections with the
exception of adding a variable delay period between state
preparation and fidelity measurements. We compare the decay
of GHZ populations, coherences, and fidelities for free decays
(idle qubits), and decays preserved with Hahn echo and PDD.
The relevant circuit diagrams are shown in Fig. 6.

Decay experiments are performed for seven-qubit GHZ
states prepared on the ibmq_mumbai device consisting of 27
qubits and a quantum volume [51] of 128. For free decays, we
increment the circuit delay t by 1 µs up to a maximum delay
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FIG. 5. Measured MQC overlap signals for various size GHZ states on ibm_washington. Plotted values and error bars represent the mean
and standard error across five independent experiments, respectively. All displayed results incorporate QREM via the M3 protocol. We plot a
fitted signal curve for visualization purposes; however, the actual signal amplitudes are filtered and calculated via fast Fourier transform as in
Eq. (4).

of 15 µs. For decays preserved with Hahn echo or PDD, we
increment t by 2 µs up to a maximum of 30 µs. For PDD, we
implement control pulses in 0.5 µs regular intervals. We obtain
both unmitigated results and results with QREM-applied via
the M3 protocol. The GHZ state populations, coherences and
fidelities are measured across five independent experiments,
where circuits are executed with 4196 shots each.

Figure 7 displays the experimental results. As shown in
Fig. 7(a), neither Hahn echo nor PDD led to a marked im-
provement of GHZ population times. In fact, PDD appears
to accelerate the decay of GHZ populations. The results are
related to how the ground and excited state populations evolve
with respect to relaxation errors on superconducting quantum
devices. In detail, qubits in the excited |1〉 state will eventually

FIG. 6. Circuit diagrams for delayed measurement of GHZ state fidelities (a) (b) and periodic dynamical decoupling (c). The delays
between control pulses of length dt and the X -gate durations tX must sum up to the total delay t . For the special case of a Hahn echo (single
control pulse), we apply the X gate in the middle of the delay period.
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FIG. 7. Population (a), coherence (b), and fidelity (c) as a func-
tion of circuit delay t for seven-qubit GHZ states prepared on the
ibmq_mumbai device. The coherences are measured using MQC.
We compare the decay of the states without mitigation to the states
preserved using Hahn echo (a single π pulse) and periodic dy-
namical decoupling (PDD) with control pulses applied every 0.5 µs.
We also display result before and after applying readout error
mitigation.

spontaneously decay into the ground |0〉 state at a rate de-
scribed by the T1 relaxation time. After a sufficient amount of
time, a quantum computer will reset to the all ground |00 . . . 0〉
state (with some fluctuations). The decay in GHZ populations
is primarily caused by bit flips in the |11 . . . 1〉 state due
to thermal relaxation, although environmental noise can also
cause random bitflips. The application of control pulses in
Hahn echo or PDD, which flip the ground and excited state
probabilities, will do little to prevent relaxation errors. In fact,
as shown in the PDD curve, repeated application of X gates
only introduces additional noise from single-qubit gate errors.

Figure 7(b) shows substantial improvement in GHZ coher-
ence times in experiments with Hahn echo and PDD. The
GHZ coherences quantify the nonclassical correlations be-
tween the |00 . . . 0〉 and |11 . . . 1〉 states. For free decays, this
correlation drops to approximately 0.1 by t = 5 µs. In con-
trast, the PDD curve maintains a measured GHZ coherence
of C > 0.4 after t = 30 µs. Hahn echo also appreciably pro-
longs GHZ coherence times, resulting in C > 0.2 at t = 30 µs,
albeit to a lesser extent. These results highlight the efficacy
of dynamical decoupling-based techniques in protecting GHZ
states against dephasing errors (related to T2 dephasing times)
on superconducting quantum computers.

The decay of GHZ state populations and coherences are
combined in Fig. 7(c), which plots the GHZ state fidelities
as a function of circuit delay t . Both Hahn echo and PDD
are shown to be effective techniques for preserving GHZ
fidelities. It is interesting to observe that although PDD is
superior to Hahn echo for preserving GHZ coherences, it is
worse at preserving GHZ populations. This is likely caused
by additional noise introduced from the PDD gate sequences,
which has the effect of obfuscating population measurements
in exchange for better protection against decoherence. As a
result, Hahn echo exhibits roughly similar performance to
PDD in preserving overall fidelities. In future experiments, it
may be worth testing more advanced dynamical decoupling
protocols such as UDD [50], which are shown to be more
typically more effective than PDD [52]. We comment that
the small differences in the initial values of P, C, and F are
likely attributed to device drift. We also remark that applying
QREM mainly increases the initial P, C, and F values with
little influence to the decay rates. Next, we evaluate the scaling
of GHZ decoherence rates as a function of state size.

B. Scaling of Decoherence Rates and GHZ Size

Studying the decoherence rates of multipartite states as a
function of their size may provide vital insight into the noise
underlying a quantum system. The strength and nature of this
noise can determine the feasibility of scaling up a quantum
device. In particular, it may reveal whether a system exhibits
superdecoherence. Superdecoherence describes the coupling
of qubits to a single reservoir, which cause qubit decoherence
rates to scale with the size of the system [27]. Such an effect
is detrimental to the realization of large-scale, fault-tolerant
quantum computers. GHZ states are particularly convenient
for detecting superdecoherence due to their high sensitivity to
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FIG. 8. Circuit for measuring GHZ decoherence rates as a function of the number of qubits, as in Fig. 6. We set a delay of t between GHZ
state preparation and MQC measurement. We implement a single π pulse in the middle of the delay period to extend GHZ coherence times.

noise. In detail, GHZ states accumulate decoherence between
qubits, so if the dominant noise model is uncorrelated across
qubits (i.e., the decoherence rate per qubit is constant), we ex-
pect GHZ decoherence rates to scale linearly with the number
of qubits. In contrast, if the dominant noise model is correlated
across qubits (i.e., the system experiences superdecoherence),
we expect GHZ decoherence rates to scale polynomially.

GHZ decoherence rates as a function of state size have
been studied on ion-trap and superconducting quantum de-
vices for up to state size 6 and 8, respectively [28,29].
Prominently, the ion-trap device was shown to exhibit
quadratic scaling of GHZ decoherence rates, indicating su-
perdecoherence (note that this does not imply the same for
all ion-trap systems). On the other hand, the IBM Quantum
superconducting device displayed linear GHZ scaling. In this
section, we extend the study on GHZ decoherence scaling on
IBM’s more recent superconducting devices, for GHZ states
of up to 15 qubits in size. Furthermore, for the first time, we
incorporate readout error mitigation and measure the coher-
ences via MQC, incorporating Hahn echo.

To provide easy comparison, we conduct our experiments
in a manner similar to Ozaeta and McMahon’s previous
study involving IBM Quantum devices [29]. The study, un-
dertaken in 2018, measured GHZ decay rates on the now
retired 16-qubit ibmq_melbourne device, which employed a
square lattice qubit topology. Today, we implement our study
on the 27-qubit ibm_hanoi device, which employs a heavy-
hex topology. In contrast to Ozaeta and McMahon’s study,
which measures GHZ coherences using parity oscillations,
we employ MQC, incorporating dynamical decoupling-based
techniques in the form a single π pulse.

The circuit for measuring GHZ decoherence rates is shown
in Fig. 8. To prolong coherence times, we implement a single
π pulse in the middle of the delay period. For an N-qubit GHZ
state, we model the coherence C(N ) as a function of delay t as
the exponential decay

C(N )(t ) = C(N )
0 e−α(N )t (10)

where C(N )
0 = C(N )(t = 0) is the initial coherence, and α(N ) =

1/T (N )
GHZ is the decoherence rate, where its reciprocal T (N )

GHZ is
the GHZ coherence time.

Figure 9(a) plots the N-qubit GHZ state coherences
(normalized) as a function of circuit delay t for

N = 3, 5, 7, 9, 11, 13, 15 on ibm_hanoi, which consists
of 27 qubits and a quantum volume of 64. We increase total
delay t in increments of 2.5 µs. The maximum delay for
each experiment ranges from tmax = 47.5 µs for N = 3 to
tmax = 20.0 µs for N = 15. For reference, the average CNOT
gate time on ibm_hanoi is 385 ns. Data points represent the
average measured coherence between five experiments, and
error bars represent the standard deviation. We fit the plotted
data with the exponential decay curve Eq. (10). We execute
circuits with 4196 shots each. We mitigate readout errors
using M3, although as shown in the previous section, this has
little effect on the decay rates.

Most of the decay curves are modeled well by the expo-
nential decay function. A notable exception, however, is the
N = 3 coherences, which appear to plateau slightly before
exhibiting exponential decay. As a result, the decay fit incor-
rectly projects the initial coherence C(N=3)

0 to be greater than
1. We observe a clear pattern of increasing decay rates with in-
creasing GHZ size. In order to quantify this trend, we plot the
decoherence rate α and the GHZ size N , shown in Fig. 9(b).
We take the error from the standard deviation, which we derive
from the covariance matrix produced by the fitting algorithm.
In agreement with Ozaeta and McMahon, we are able to
well fit the data with the linear trendline α(N ) = (7.16N +
5.39) × 10−3 µs−1 with R2 = 0.962—now extending up to
N = 15. (With an anomalous data point at N = 9.) Our results
support the notion that recent IBM Quantum transmon devices
are naturally robust against superdecoherence. We remark that
although we only measure coherence times for GHZ states
of up to 15 qubits, MQC and dynamical decoupling-based
techniques improve the initial C0 values enough that one can
feasibly extend the study to larger GHZ states, especially as
error rates and coherence times improve.

We summarize the GHZ coherence times on ibm_hanoi
in Table II. For easy comparison, we include the measured
GHZ coherence times from Ozaeta and McMahon’s exper-
iments. For N = 3, 5, 7, we report an average increase of
coherence times of 133% over previous results. Furthermore,
we report longer coherence times on 15-qubit GHZ states
than on previous eight-qubit GHZ states of 8.31 ± 0.55 µs
and 5.49 ± 0.38 µs, respectively. The improvement in GHZ
coherence times may be attributed to hard improvements in
combination with superior coherence detection methods, in-
corporating dynamical decoupling-based techniques.
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FIG. 9. GHZ normalized coherences for various state sizes as a function of circuit delay t . Data points represent the coherence averaged
over five experiments. Error bars represent the standard deviation. The dashed lines graph the fitted exponential decay curve from Eq. (10).
(b) The GHZ decoherence rate α = 1/T (N )

GHZ as a function of state size N . The error bars represent the standard deviations obtained from the
covariance matrix produced by the curve fitting algorithm. We fit a linear trend over the plotted al pha values, drawn by the dashed line.
The straight line equation is given by α(N ) = (7.16N + 5.39) × 10−3 µs−1 with R2 = 0.962. We include results from Ozaeta et al. [29] for
comparison.

IV. EFFICIENT BIPARTITE ENTANGLEMENT
CHARACTERIZATION IN WHOLE-DEVICE

GRAPH STATES

A. Graph States

Graph states are a class of entangled multiqubit states
that are defined with respect to a connected graph. They
are a generalization of cluster states [53], and hence form a
universal basis for measurement-based computation [54].
Graph states are additionally useful for quantum error correct-
ing codes [55], quantum secure communication [56], quantum
metrology [57], and probing Bell inequalities over multipar-
tite systems [58]. In quantum circuit notation, a graph state
may be expressed as

|Gn〉 =
∏

(a,b)∈E

CZa
b |+〉⊗n (11)

where |+〉 = 1√
2
(|0〉 + |1〉), E is the set of edges connecting

graph Gn containing n vertices (qubits), and CZa
b represents a

controlled-phase gate between adjacent qubits a and b. We can
equivalently define the stabilizing operator Sa for each qubit
a in G,

Sa = σ (a)
x

∏

b∈N (a)

σ (b)
z (12)

where σ (a)
x,y,z are Pauli operators acting on qubit a and

N (a) is the set of qubits adjacent to a. Thus |Gn〉 is the
simultaneous +1 eigenstate of n operators following
Sa |Gn〉 = |Gn〉.

Graph states are a convenient choice for studying large-
scale entanglement as they are simple to prepare and
comparatively noise robust [53]. Controlled-phase opera-
tions that do not overlap vertices can be applied in parallel,
allowing any graph state to be prepared by a linear-size

TABLE II. Fitted values of GHZ decoherence rates α and coherence times TGHZ where TGHZ = 1/α. For comparison, we include results
from Ozaeta et al. [29] from experiments on previous IBM Quantum devices.

N α [µs−1] (MQC) T (N )
GHZ [µs] (MQC) T (N )

GHZ [µs] [29]

1 − − 48.34 ± 1.56
2 − − 26.15 ± 1.67
3 (27.96 ± 0.27) × 10−3 35.77 ± 0.35 16.11 ± 0.89
4 − − 12.25 ± 0.62
5 (45.84 ± 1.46) × 10−3 21.81 ± 0.70 10.83 ± 0.75
6 − − 7.63 ± 0.36
7 (57.50 ± 1.36) × 10−3 17.39 ± 0.41 6.32 ± 0.83
8 − − 5.49 ± 0.38
9 (58.80 ± 3.00) × 10−3 17.01 ± 0.87 −
11 (83.66 ± 1.03) × 10−3 11.95 ± 0.15 −
13 (93.95 ± 3.59) × 10−3 10.64 ± 0.41 −
15 (120.27 ± 8.01) × 10−3 8.31 ± 0.55 −
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FIG. 10. Native-graph state preparation circuit (b) for seven-
qubit layout (a). Firstly, prepare each qubit into an equal superpo-
sition by applying Hadamard gates on the |0〉 states. Next, apply
a controlled-phase (CZ) corresponding to each edge on the device
graph. The two-qubit gate depth of the preparation circuit is at least
the maximum node degree of the represented graph.

constant-depth circuit [59]. Concretely, a bounded degree
graph can be prepared with a two-qubit gate depth equal to
the maximum degree between its vertices [60]. An example
least-depth graph state preparation circuit on a seven-qubit
layout is shown in Fig. 10. The qubit layout is represented
in Fig. 10(a) where nodes represent qubits and edges display
possible CNOT operations. Since the graph has a maximum
node degree of three, its graph state preparation circuit has a
two-qubit gate depth of three.

To characterize bipartite entanglement across an entire de-
vice, we prepare a native-graph state containing every edge.
We then perform full quantum state tomography on every
locally entangled bipartition corresponding to each edge on
the device. In detail, graph states have the property that pro-
jecting all but two qubits in an entangled cluster leaves the
pair in a maximally entangled Bell state [61]. The extent of
two-qubit entanglement can then be quantified by measuring
the negativity [62]. For a quantum state represented by the
density matrix ρ, the negativity N (ρ) between subsystems A
and B is calculated as

N (ρ) =
∣∣∣∣∣∣

∑

λi<0

λi

∣∣∣∣∣∣
=

∑

i

|λi| − λi

2
(13)

where λi are the eigenvalues of ρTB ; ρTB being the partial
transpose of ρ with respect to subsystem B. A maximally
entangled Bell state has a negativity of N = 0.5, whereas
a fully separable state has a negativity of N = 0. Although
there are many other entanglement measures, including more
complex multipartite entanglement witnesses, negativity is an
entanglement monotone that is simple to compute. A nonzero
measurement for the negativity on a two-qubit state is a nec-
essary and sufficient condition for entanglement. This makes
it a great choice for bipartite entanglement on graph states,
where edges can be reduced to Bell states. Additionally, nega-
tivity is related to the minimum teleportation distance dmin(ρ)

achievable with state ρ acting on Cm ⊗ Cm,

dmin(ρ) � 2

m + 1
(m − 1 + 2N (ρ)). (14)

A device is said to be whole-device entangled if every qubit is
connected to the main graph where edges correspond to qubit
pairs with a measured negativity of N > 0. This is distinct
from saying the qubits are genuinely multipartite entangled
(which follows a more strict criteria), but rather, there exist
no bipartition of qubits on the device that results in separable
states.

B. Bipartite Entanglement Characterization Protocol

We develop a protocol to efficiently characterize bipartite
entanglement on quantum computers, inspired by experiments
from Mooney et al. [22,23]. Development of the scheme is
driven by three main design principles: to devise an entan-
glement characterization protocol that is highly automated,
scalable, and architecture-independent. We implement the
protocol in Python, utilizing the Qiskit API to interface
with IBM superconducting quantum devices. However, the
techniques and procedures in the program are generally ap-
plicable. The protocol can be divided into five components:

(1) Native-graph state preparation. Automatically con-
struct a whole-device graph state preparation circuit, which
entangles every qubit on the device.

(2) Parallel quantum state tomography. Execute quantum
state tomography circuits on Bell states prepared on the graph
state in parallel. For heavy-hex qubit architectures, this step
can be performed in four batches of nine circuits each.

(3) Quantum readout error mitigation. Mitigate readout
errors using classical post-processing.

(4) Density matrix reconstruction. Reconstruct the Bell
state density matrices using readout error mitigated or unmit-
igated measurement results.

(5) Negativity calculation and entanglement mapping.
Calculate the bipartite negativities corresponding to each
qubit pair on the device and construct the entanglement graph.

The first and second component, which contain techniques
unique to this paper [22,23], are elaborated below.

1. Native-Graph State Preparation

Similar to the GHZ case, the objective is to embed depth-
optimal circuits using an automated routine. (In previous
studies [21–23], this is done manually) Since heavy-hex lat-
tices have a maximum node degree of three, it is possible
to embed a native-graph state circuit with a minimum two-
qubit gate depth of three. Topology-specific methods for
constructing optimal graph state circuits exist, such as stitch-
ing together smaller circuits embedded on unit cells [23]. It
is sufficient, however, to implement a greedy algorithm that
applies as many CNOT gates in parallel in each step. The
algorithm also has the advantage of working with any qubit
layout, although it is unknown if it is universally optimal. A
whole-device graph state embedding prepared by the algo-
rithm on the 127 qubit Eagle processor is shown in Fig. 11.
Additional graph state embeddings on other IBM physical
layouts are shown in the results section below.
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FIG. 11. Graph state preparation on the Eagle r1 processor (127 qubits). Edges represent controlled phase gates between qubits, where red
edges are applied at depth one, green edges at depth two, and blue edges at depth three. The device graph is defined by a heavy-hexagonal
lattice (or subdivided honeycomb).

2. Parallel Quantum State Tomography

In previous graph state experiments [22,23], full quantum
state tomography (QST) is performed on one qubit pair (and
its neighbors) at a time. Using such method, the number
of circuits required to fully characterize a device increases
linearly with the number of edges. Our procedure improves
upon this by executing QST in parallel. In detail, we perform
simultaneous basis measurements on nonoverlapping sets of
qubits, where each set defines a target qubit pair and its neigh-
bors. By grouping sets into batches and performing parallel
QST for batches at a time, we can fully characterize bipartite
entanglement on any size device (provided invariable qubit
topology) with a constant number of circuits.

Using a specialized scheduling scheme for the heavy-
hex hardware layout, the number of required batches can
be reduced to only four when allowing Bell pairs to share
neighbors. This can be achieved by using an alternate tiling
of two unit cells (able to be rotated 180◦), where each unit
cell is composed of six edges and each edge is assigned to one
of four batches. However, similar to the case of graph state
embedding, we instead opt for a topology-agnostic algorithm
that performs parallel QST for as many nonoverlapping Bell
pairs as it can fit into a single batch. In our implementation,
we prevent target pairs from sharing neighbors for practical
convenience. Table III lists the number of batches required to
characterize IBM Quantum devices up to 433 qubits in size.

TABLE III. Number of tomography batches and total circuits required by the batch-finding algorithm for full QST on IBM Quantum devices.

Device(s) Qubits Batches Circuits

manila, belem, lima, quito, santiago, bogota 5 4 36
perth, jakarta, lagos 7 6 54
guadalupe 16 6 54
kolkata, mumbai, toronto, montreal, hanoi, cairo 27 6 54
brooklyn, ithaca 65 6 54
washington, sherbrooke, brisbane 127 8 72
seattle 433 8 72
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FIG. 12. Negativity plots of four various-size devices and their graph state embeddings. The edge negativity is taken to be the maximum
negativity between Bell state projections on neighboring qubits, averaged over eight experiments. A negativity of 0 represents no entanglement,
whereas a negativity of 0.5 represents maximal entanglement. The error bars show the standard error. The mean unmitigated device negativities
for ibmq_manila, ibm_oslo, ibmq_guadalupe, and ibm_cairo are 0.388, 0.403, 0.335, and 0.356 respectively. After quantum readout error
mitigation (QREM), the mean device negativities are 0.487, 0.488, 0.447, and 0.455 respectively, representing an average percent improvement
of 26.3%. All four systems exhibit whole-device entanglement. The full data table summarizing all results.

The table shows that the batching algorithm collates to-
mography circuits into 6–8 batches for heavy-hex devices.
Performing full QST on n qubits requires 3n circuits corre-
sponding to each combination of Pauli bases. Therefore each
batch, which performs two-qubit QST in parallel, contains
nine circuits. The variation in the number of batches is likely
attributed to the greedy nature of the algorithm, which may
group sets of qubits into batches in nonoptimal order. Nev-
ertheless, the procedure’s main utility lies in reducing the
number of tomography circuits to a roughly constant number
in addition to being compatible with various qubit topologies.

C. Bipartite Entanglement on IBM Quantum Devices

We characterize bipartite entanglement on all IBM Quan-
tum devices accessible by the University of Melbourne IBM
Quantum Hub. At the time of experiment, these include four

five-qubit systems, five seven-qubit systems, one 16-qubit
system, eight 27-qubit systems, three 127-qubit systems, and
one 433-qubit system, totaling to 22 systems. Both unmit-
igated and mitigated results using QREM are shown. It is
important to present unmitigated results because not all pro-
tocols involving graph states can incorporate readout error
mitigation. Notably, quantum teleportation schemes, which
use mid-circuit measurements are incompatible with QREM.

We perform eight sets of graph state experiments per de-
vice, sampling all circuits with 8192 shots. Readout error
calibration circuits are sampled with the same number of
shots. All native-graph states are prepared with the optimal
two-qubit gate circuit depth of three. The number of circuits
per experiment for various size devices is shown in Table III.
Besides practicality, reducing the number of circuits per ex-
periment is beneficial because it also reduces the variability in
results caused by device drift. To assign a single negativity for
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FIG. 13. Negativity plot for 127-qubit device ibm_washington. The native-graph state circuit embedding is shown in Fig. 11. The
unmitigated negativities have a mean of 0.290 and a standard deviation of 0.117. The mitigated negativities have a mean of 0.408 and a
standard deviation of 0.102. Qubits 4 and 12 display abnormally high readout error rates of 0.338 and 0.390 respectively. These correspond to
the large gaps between mitigated and unmitigated negativity values for edges 4–5, 4–15, 3–4, 12–17, 12–13, and 11–12.

each device edge, we calculate the mean maximum negativity
between experiments, where maximum refers to the largest
negativity between possible Bell state projections. We take the
error to be standard error.

Figure 12 show sample negativity plots for devices up to
27 qubits in size and their respective graph state embeddings.
Edges are sorted in order of ascending lower bounds of mit-
igated negativities. Among these systems, ibm_oslo purports
both the highest mitigated and unmitigated mean device neg-
ativities of 0.488 and 0.403, respectively. Nevertheless, all
negativity plots indicate that each of these systems exhibit
whole-device entanglement. The improvement in negativities
due to QREM is consistently significant. The average percent-
age improvement in mean negativity across the four devices is
26.3%.

Figure 13 shows the negativity plot for 127-qubit device
ibm_washington, with the respective graph state embedding is
shown in Fig. 11. The unmitigated negativities have a mean of
0.290 and a standard deviation of 0.117. After implementing
QREM, the resulting negativities have a mean of 0.408 and
a standard deviation of 0.102—a 40.7% percent improvement
in mean device negativity. We comment on several anomalous
edges with large gaps between the mitigated and unmitigated
negativity, such as edges 4–5, 4–15. These can be attributed
to significantly higher than average readout error rates for
certain qubits. In particular, qubits 4 and 12 display abnor-
mally high readout error rates of 0.338 and 0.390 respectively,

corresponding to the large negativity gaps at edges 4–5, 4–15,
3–4, 12–17, 12–13, and 11-12.

As IBM Quantum’s earliest Eagle processor,
ibm_washington purports a lower mean device negativity
than most 27-qubit Falcon processors and the newer Eagle
r3 devices (see Table IV). Although, after applying QREM,
we observe whole-device entanglement across all 127
qubits. To illustrate, Fig. 14 draws graphic representations
of entanglement within ibm_washington. Negativity values
are mapped on device edges where thin red edges represent
low negativity and thick blue edges represent high negativity.
Edges with lower-bound negativities of zero are greyed out.
We remark that edges with low negativity tend to coalesce
in regions. These areas of low entanglement, such as in
the lower left corner of Fig. 14, may arise due to physical
factors such as nonuniform heat distribution in the device. To
further our investigation of entanglement within the 127-qubit
device, we plot the Bell state negativities against CNOT error
rates in Fig. 15. Precisely, we take the CNOT error to be
the average CNOT error between edges in the tomography
set, which in addition to the Bell state pair, includes its
adjacent neighbors. Furthermore, unlike previous figures,
we take the negativity as the mean between projections on
adjacent qubits rather than the maximum. Figure 15 shows
Pearson correlation values of R = −0.414 for unmitigated
results, and R = −0.388 for mitigated results. These values,
although lower than predicted, lie within general expectations
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TABLE IV. Summary of bipartite negativities on IBM quantum devices. Negativities are acquired by performing parallelized quantum state
tomography for every local qubit bipartition on the whole-device graph state. A maximally entangled pair has a negativity of 0.5. The table
includes result with and without QREM, where the calibration matrices are obtained from tensoring single-qubit calibrations Ai. The column
with label Mean N shows the average device negativities. The columns with label N � X% represent the size of the largest connected graph
with edges satisfying N � X% of the max negativity. A device is whole-device entangled if all qubits form a connected graph using edges with
larger than zero negativity.

No QREM

Device Qubits QV Mean N N � 50% N � 75% N � 90% Whole-device

lima 5 8 0.363 ± 0.036 5 3 0 ✓

belem 5 16 0.315 ± 0.030 5 0 0 ✓

quito 5 16 0.301 ± 0.012 5 0 0 ✓

manila 5 32 0.388 ± 0.013 5 5 0 ✓

jakarta 7 16 0.303 ± 0.029 7 0 0 ✓

oslo 7 32 0.403 ± 0.019 7 6 0 ✓

nairobi 7 32 0.375 ± 0.005 7 3 0 ✓

lagos 7 32 0.372 ± 0.026 7 3 0 ✓

perth 7 32 0.353 ± 0.015 7 0 0 ✓

guadalupe 16 32 0.335 ± 0.027 16 2 0 ✓

toronto 27 32 0.223 ± 0.118 9 3 0 ✓

geneva 27 32 0.239 ± 0.118 11 2 0 ✗ (26)
hanoi 27 64 0.330 ± 0.066 26 3 0 ✓

auckland 27 64 0.372 ± 0.065 26 13 0 ✓

cairo 27 64 0.356 ± 0.039 27 4 0 ✓

mumbai 27 128 0.315 ± 0.088 23 4 0 ✓

montreal 27 128 0.247 ± 0.061 8 0 0 ✓

kolkata 27 128 0.333 ± 0.118 24 9 0 ✓

washington 127 64 0.290 ± 0.117 85 6 0 ✗ (121)
sherbrooke 127 32 0.382 ± 0.066 125 76 4 ✓

brisbane 127 0.365 ± 0.054 125 26 0 ✓

seattle 433 0.115 ± 0.099 11 3 0 ✗ (184)

QREM

lima 5 8 0.470 ± 0.011 5 5 5 ✓

belem 5 16 0.427 ± 0.010 5 5 0 ✓

quito 5 16 0.486 ± 0.010 5 5 5 ✓

manila 5 32 0.487 ± 0.003 5 5 5 ✓

jakarta 7 16 0.482 ± 0.007 7 7 7 ✓

oslo 7 32 0.488 ± 0.010 7 7 7 ✓

nairobi 7 32 0.488 ± 0.004 7 7 7 ✓

lagos 7 32 0.466 ± 0.008 7 7 7 ✓

perth 7 32 0.482 ± 0.011 7 7 7 ✓

guadalupe 16 32 0.447 ± 0.032 16 16 11 ✓

toronto 27 32 0.403 ± 0.075 27 11 4 ✓

geneva 27 32 0.461 ± 0.089 26 26 25 ✓

hanoi 27 64 0.467 ± 0.026 27 27 17 ✓

auckland 27 64 0.437 ± 0.060 27 26 13 ✓

cairo 27 64 0.455 ± 0.026 27 27 9 ✓

mumbai 27 128 0.460 ± 0.078 27 27 23 ✓

montreal 27 128 0.424 ± 0.055 27 24 8 ✓

kolkata 27 128 0.407 ± 0.134 25 22 11 ✓

washington 127 64 0.408 ± 0.102 115 90 43 ✓

sherbrooke 127 32 0.472 ± 0.023 127 127 114 ✓

brisbane 127 0.467 ± 0.048 127 124 99 ✓

seattle 433 0.340 ± 0.118 330 37 11 ✓ (active qubits)
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FIG. 14. A graphic representation of entanglement within native-graph states prepared on 127-qubit device ibm_washington. Both
unmitigated results (a) and results mitigated with QREM (b) are shown. Thin red and thick blue edges represent minimal and maximal
entanglement, respectively. Qubits not connected (entangled) to the main graph are greyed out. In (a), there are six qubits disconnected from
the main graph. In (b), we observe whole-device entanglement. Notably, pairs with low entanglement tend to concentrate in regions, such as
in the lower left corner.

since higher two-qubit gate error rates should correspond to
lower levels of entanglement. Other factors that may impact
negativity measurements include relaxation and dephasing
time, crosstalk, and single-qubit gate errors.

We also plot the mean device negativity versus mean de-
vice CNOT error rate for all IBM Quantum devices in Fig. 16,
measuring R = −0.591 for unmitigated negativities and R =
−0.643 for mitigated negativities. The results similarly lie

FIG. 15. Negativity versus CNOT error rates on 127-qubit ibm_washington with and without QREM. The CNOT error is taken to be the
average CNOT error between the Bell state pair in addition to its neighboring qubits. Panel (a) shows a Pearson correlation of R = −0.414
between unmitigated negativities and CNOT error rates, whereas (b) shows a correlation of R = −0.388 between mitigated negativities and
CNOT error rates. These values lie within general expectation, since CNOT errors should negatively correlate with entanglement measures.
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FIG. 16. Mean device negativity vs mean device CNOT error rate for various device size N . We take the device negativities to be the
maximum negativities between bins. Panel (a) plots the unmitigated negativities and (b) plots the negativities with QREM applied. We observe
a correlation of R = −0.591 and R = −0.634 for unmitigated and readout error mitigated results, respectively.

within expectation, indicating the potential utility of our pro-
tocol as a scalable whole-device benchmarking tool.

We summarize all graph state experiment results in Ta-
ble IV. In addition to tabulating device size, quantum volume,
and mean device negativity, we display the sizes of the largest
connected entanglement graphs with edges above a certain
negativity threshold. In detail, columns with label N � x%
represent the size of the largest connected graph where edges
exist only between qubits pairs whose measured negativity
is at least x% of the maximum value. This metric allows us
to simultaneously probe the scale and quality of clusters of
entanglement. We observe a few general trends. Firstly, the
standard deviation in negativities for each device typically
decreases once we apply QREM. Similarly, the variance be-
tween mean device negativities also diminishes. This may
be attributed to the bound on the maximum negativity and
variance in mean readout error rates, which range from 1.1%
on ibm_lagos to 5.2% on ibmq_quito. Secondly, for devices
of similar size, quantum volume is not a good predictor of
mean device negativity. For instance, ibm_geneva, which has
a quantum volume of 32, has a mean device negativity of
0.461 ± 0.089 (QREM) compared to ibm_kolkata’s 0.407 ±
0.134, which has a quantum volume of 128. This may be
ascribed to a couple of factors, the first being that quantum
volume is defined over a subset of qubits, instead of the whole
device, and the second being that our entanglement protocol
utilizes primarily low-depth circuits.

D. Generating 414-Qubit Graph States

Using the same protocol, we characterize bipartite entan-
glement on a larger 414-qubit graph state prepared on the
433-qubit device ibmseatt le, where at the time of experi-
ment, 19 of the 433 device qubits were inoperable. Figure 17
displays the average negativity versus nearest-neighbor qubit
pairs. The average qubit pair negativity is found to be 0.115
without QREM, and 0.340 with QREM. We report proportion-
ally higher readout error rates compared to previous devices.

The coupling map is displayed in Fig. 18. After mitigating
for readout errors, all bipartitions not involving inactive qubits
had measured negativities above 0.

V. PRESERVING WHOLE-DEVICE GRAPH STATES VIA
DYNAMICAL DECOUPLING

We extend our study of preserving large-scale entangle-
ment on IBM Quantum devices via dynamical decoupling
to whole-device graph states. This application holds signif-
icant potential as graph states are considered to be more
practically relevant than GHZ states on NISQ devices ow-
ing to their greater noise resilience. In particular, preserving
large-scale entanglement in graph states is crucial for several
measurement-based computation schemes, where qubits may
experience long idle times due to the distributed manner in
which quantum information is processed.

The methodology for testing dynamical decoupling on
whole-device graph states parallels the GHZ case. A whole-
device graph state is prepared as previously outlined. A
variable delay period is inserted between state preparation
and whole-device quantum state tomography. We compare
negativity decays for circuits without mitigation (free decay),
and circuits mitigated with PDD and Hahn echo. The general
circuit diagram is shown in Fig. 19 and the PDD circuit in
Fig. 6(b).

Whole-Device Graphstate Negativity Decays
on a 127-Qubit Device

Time-dependent graphstate experiments are performed on
the 127-qubit Eagle r3 backend ibm_brisbane with median
T1 = 222.8 µs and T2 = 137.9 µs. The device did not have a
published quantum volume at the time of experiment. We vary
the delay period t from 0 µs up to 12 µs in 1 µs increments for
free decays (idle qubits), Hahn echo, and PDD with 4 µs−1 and
8 µs−1 pulse rates (i.e., frequency of X gates). We implement
the double π pulse with a 1:2:1 delay spacing. We perform
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FIG. 17. Negativity vs the corresponding qubit pairs where Bell states are projected to for the 433-qubit ibm_seattle device. Each negativity
is averaged over all possible nearest-neighbor projections and trials, and the error bars represent 95% confidence level calculated from two
times the standard errors (2σ ) among the four trials. Red bars represent the results calculated from unmitigated counts and probability vectors,
whereas blue bars represent the negativities calculated after applying QREM. The results are plotted in the ascending order of mitigated
negativities. From this plot, we observe N > 0 for all nearest-neighbor qubit pairs.
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FIG. 18. Graphic representation of entanglement with native-graph state prepared on ibm_seattle after QREM. Nodes represent the qubits,
and edges represent their connections. The color of an edge indicates the average negativity of the Bell states on the qubits incident to it. Some
qubits are not connected (entangled) to the main graph since they are inactive and cannot be accessed.

single sets of experiments for each circuit delay value, execut-
ing all circuits with 4096 shots each. We apply readout error
mitigation to all results.

Figure 20 shows the negativity over time for each edge
in the native-graph state, comparing free decays with various
dynamical decoupling configurations. Figure 21 displays the
mean device negativity over time, where error bars repre-
sent the standard deviation between negativities of individual
edges.

Immediately apparent in Fig. 20 are resurgent signals in
negativity for several qubit pairs. Furthermore, in Fig. 21,
we observe an average increase in device negativity of 0.025
for free decays, and 0.061 for double π pulse, between
t = 8 µs and t = 12 µs. We also note the sharp negativ-
ity oscillations of certain qubit pairs in PDD experiments.

While we present data from only a single set of experi-
ments, experiments performed shortly thereafter show similar
oscillations in negativity for the same qubit pairs (with
some device drift). These oscillations, while initially unex-
pected, are consistent with signals produced by residual ZZ
interactions.

ZZ interactions, also known as ZZ couplings or crosstalk
are known to affect weakly anharmonic transmon qubits
[32–36]. ZZ interactions represent a coherent noise process
whose effect on idle qubits is effectively a controlled-phase
rotation. Therefore, ZZ interactions can generate entan-
glement between qubit pairs, and conversely, accelerate
disentanglement. Assuming no other noise mechanism such as
dephasing is present, an isolated ZZ pair interaction produces
a | cos(t )| signal in the negativity.
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FIG. 19. General circuit diagram for whole-device time-
dependent negativity decay experiments. A variable circuit delay
period is inserted between entangled state preparation and (parallel)
quantum state tomography.

With this in mind, we consider the effects of dynamical
decoupling sequences on the negativity decays of native-graph
states. Figure 21 shows that both PDD experiments demon-
strate sizable improvement in mean entanglement lifetimes
over free decay and double π -pulse experiments. The double
π -pulse experiment demonstrates slight improvement over

free decays. In addition, increasing the PDD pulse rate does
not appear to substantially improve the mean device nega-
tivity decay curve. From Fig. 20, we observe that PDD does
not completely eliminate revivals in negativity, however, does
well to prolong the majority of pairwise negativity lifetimes
and suppress some coherent noise artifacts.

While we focus on mean improvements in entanglement
lifetimes for native-graph states, recent results have shown
that implementing a precisely timed dynamical decoupling
sequence can more effectively cancel the coherent ZZ errors
in a 12-qubit ring graph state [63]. A similar approach of
tailoring the dynamical decoupling sequence for native-graph
states may also be beneficial, although can be considerably
more complex depending on the scale and connectivity of the
underlying graph. For the purposes of improving the mean
entanglement lifetime of a large-scale graph state, we show
that even a simple PDD sequence incurs significant benefits.
Additionally, we note that an adaption of our procedure may
be potentially useful in detecting and characterizing the co-
herent noise effects.

FIG. 20. Negativity decays for all edges in a 127-qubit native graph state prepared on ibm_brisbane for (a) free decays, and (b) decays
implementing double π pulse, (c) periodic dynamical decoupling with 4 µs−1 pulse rate, and (d) periodic dynamical decoupling with 8 µs−1

pulse rate.
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FIG. 21. Mean device negativity decays corresponding to data
shown in Fig. 20. Error bars represent the standard deviation between
individual edge negativities.

VI. DISCUSSION

We prepared and studied several GHZ and native-graph
states prepared across the range of IBM Quantum devices. In
particular, we measured the time-dependent decay of entan-
glement in these states and verified the efficacy of dynamical
decoupling in prolonging entanglement lifetimes.

For GHZ states, we developed a topology-agnostic circuit
embedding algorithm that embeds N-qubit GHZ prepara-
tion circuits on heavy-hex quantum devices with least-depth
d ≈ √

2N . Using the algorithm, we prepared a 32-qubit
GHZ state on the 127-qubit ibm_washington device and
measured a fidelity of 0.519 ± 0.014, after mitigating for
readout errors via matrix-free measurement mitigation (M3).
We demonstrated the efficacy of implementing dynamical
decoupling-based techniques in preserving GHZ coherences
on superconducting qubits. Specifically, we showed that in-

corporating either a pi pulse or PDD substantially prolonged
seven-qubit GHZ coherence times on the ibmq_mumbai de-
vice. On ibm_hanoi, we graphed the GHZ decoherence rate
versus the state size N up to N = 15 qubits, fitting a linear
trend of α = (7.13N + 5.54) × 10−3 µs−1. This result sup-
ports the notion that IBM Quantum superconducting devices
are naturally robust against superdecoherence.

For graph states, we developed a bipartite entanglement
characterization protocol that constructs entanglement graphs
depicting bipartite entanglement in IBM Quantum devices
using as low as a constant 36 circuits. We used the protocol to
verify and quantify whole-device bipartite entanglement over
20 different IBM Quantum systems, including three 127-qubit
systems. We further showed entanglement across 414 qubits
in a 433-qubit device. We then tested dynamical decoupling
for preserving qubit pair negativities in a native-graph state
prepared on the 127-qubit ibm_brisbane device. We observed
coherent noise signals consistent with residual ZZ interac-
tions, which were partially suppressed after application of
PDD. PDD led to an overall improvement in mean device
bipartite entanglement lifetimes. We also note the potential
utility of a running a similar procedure to detect and charac-
terize the coherent noise signals.

Overall, our paper highlights both some of the growing
capabilities of NISQ devices alongside current limitations
through the lens of large-scale entanglement. It also highlights
the need for and benefit of noise mitigation and suppression
techniques for generating and maintaining large-scale entan-
glement in NISQ devices.
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