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Controlling Majorana hybridization in magnetic chain-superconductor systems
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We propose controlling the hybridization between Majorana zero modes at the ends of magnetic adatom chains
on superconductors by an additional magnetic adatom deposited close by. By tuning the additional adatom’s
magnetization, position, and coupling to the superconductor, we can couple and decouple the Majorana modes,
as well as control the ground-state parity. The scheme is independent of microscopic details in ferromagnetic
and helical magnetic chains on superconductors, with and without spin-orbit coupling, which we show by
studying their full microscopic models and their common low-energy description. Our results show that scanning
tunneling microscopy and electron-spin-resonance techniques are promising tools for controlling the Majorana
hybridization in magnetic adatoms-superconductor setups, providing a basis for Majorana parity measurements,
fusion, and braiding techniques.
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I. INTRODUCTION

Majorana zero modes (MZMs) are non-Abelian quasi-
particles that are their own anti-particles and have been
the subject of intense research in condensed matter physics
due to their exotic properties and potential application in
fault-tolerant topological quantum computing [1–8]. Among
the most promising platforms for realizing MZMs are
systems based on topological insulators [9–11], fractional
quantum Hall systems [12–14], ultracold atoms [15–17],
semiconducting nanowires [18–21], planar Josephson junc-
tions [22–25], and magnetic adatoms chain deposited on a
superconductor [26–36]. Although there has been immense
theoretical and experimental progress, especially in semi-
conducting nanowires-superconducting hybrid structures, the
short nanowire length and disorder in these systems are a ma-
jor challenge in the search for MZMs [37]. Progress with this
platform demands clean systems with nanowires much longer
than the coherence length of the superconductor, which is
difficult with present technology. In the search for alternatives,
magnetic adatoms on a superconductor have garnered a lot of
interest, where MZMs could be directly probed using a scan-
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ning tunneling microscope (STM) [30,38–40]. Here, a single
magnetic adatom deposited on a superconductor induces a
spin-polarized Yu-Shiba-Rusinov (YSR) state within the su-
perconducting gap [41–44]. When a chain of such magnetic
adatoms is deposited on a superconductor, the spin-polarized
YSR states from the individual magnetic adatoms overlap to
form a nondegenerate Shiba band, which leads to an effective
p-wave superconducting gap in the chain’s electronic spec-
trum when an effective spin-orbit coupling is present. This
p-wave superconductor formed by the magnetic adatom chain
is topologically nontrivial, hosting a MZM at each end. Two
salient frameworks to realize this proposal are a chain of
magnetic adatoms with helical magnetization on an s-wave
superconductor [26–29,45–55] and a chain of ferromagnetic
adatoms deposited on an s-wave superconductor with spin-
orbit coupling [30–35,38,56,57].

Several STM experiments have reported zero-bias peaks
in differential conductance measurements on magnetic chain-
superconductor systems, which have been interpreted in terms
of MZMs [30,34,35,38]. However, zero-bias peaks can also
stem from trivial in-gap states in the magnetic chain [58,59].
In fact, it has been established across realistic platforms
proposed for creating MZMs that the observed zero-bias
conductance peaks can have alternative explanations [58,60–
62], a development that has opened up a debate about
whether the MZMs have been observed in reported experi-
ments. Unambiguous verification of zero-bias peaks as MZM
signals involves measurements exploring their non-Abelian
properties, such as fusion and braiding behavior, which are
not shared by trivial in-gap states, or via cross-correlation
shot-noise measurements [63]. Although there is an abun-
dance of such proposals in semiconducting platforms, see
Refs. [64–73] for examples, the adatom route has received

2643-1564/2024/6(3)/033154(19) 033154-1 Published by the American Physical Society

https://orcid.org/0000-0003-4084-1480
https://orcid.org/0000-0003-3639-8594
https://ror.org/012a77v79
https://ror.org/0149pv473
https://ror.org/04gzb2213
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033154&domain=pdf&date_stamp=2024-08-09
https://doi.org/10.1103/PhysRevResearch.6.033154
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


OLADUNJOYE A. AWOGA et al. PHYSICAL REVIEW RESEARCH 6, 033154 (2024)

much less attention [54,74]. This can be partly attributed to
the rigidity of this platform, since, once fabricated, the sys-
tem parameters are difficult to manipulate externally, which
is a prerequisite for quantum information processing. To
carry out non-Abelian experiments, it is imperative to have
a high-quality, time-dependent control over the hybridization
between MZMs, resulting in their coupling and decoupling, as
a first step towards experiments revealing their non-Abelian
character.

In this paper we propose a generic method to control
and shield, i.e., switch off, the hybridization of MZMs in
magnetic chain-superconductor systems via a single addi-
tional magnetic adatom. We consider two chains of magnetic
adatoms on an s-wave superconductor with a single mag-
netic adatom in between, such that there is finite overlap
between the MZMs at the ends of the magnetic chains in
the topological phase and the YSR state induced by the sin-
gle magnetic adatom. We find a model-independent strong
tunability of the MZMs hybridization energy by changing
the single adatom’s magnetic orientation, its distance from
the magnetic chains, and its coupling to the superconductor.
A tunability of the Majorana hybridization by magnetism
at the Quantum spin Hall edge has been described theoret-
ically in Ref. [75]. Here, the control of the parameters of
the single magnetic adatom can, in principle, be achieved
using electron-spin-resonance STM (ESR-STM) techniques
[76–79]; see Sec. IV for details. Remarkably, we find that
these parameters tune the MZM hybridization through a vast
range of values: between strongly hybridized MZMs and zero,
where the MZMs are perfectly shielded from each other. The
complete shielding of the MZMs occurs for fine-tuned pa-
rameters that mark a phase transition between regions with
different ground-state parity. Here, “fine-tuned” refers to the
points where the decoupling is exact. However, approximately
decoupled MZMs suffice for performing non-Abelian opera-
tions on the appropriate timescales; see Sec. IV and Eq. (12)
for details. We show that our results are general and not
model specific, which we demonstrate by the general low-
energy model and specific well-studied microscopic models
of helical and ferromagnetic adatom chains in both continuum
and lattice superconductor models. As an overarching theme,
our results show a wide variability of the MZM hybridization
with the orientation of the single magnetic adatom, which is
accessible with current experimental techniques. Control of
MZM hybridization is an essential prerequisite for Majorana
fusion and braiding experiments. Thus, our work is a step
towards realizing these MZM prospects and opens a novel,
experimentally realizable research direction in the magnetic
chain-superconductor platform. Moreover, the shielding ef-
fect can be used to decouple strongly hybridized Majorana
modes, also called precursors of Majorana modes, which
were observed in short magnetic chains [57]. Furthermore,
changes in the ground-state parity imply control over the
occupation of the ground state of the system, which is es-
sential for initialization in parity-based Majorana correlation
measurements, where perturbing one of the chains induces
measurable parity oscillation in the other chain [80–82]. Our
results enhance the understanding of the behavior of MZMs
and inspire future experiments for probing non-Abelian prop-

erties of MZMs and employing them in fault-tolerant quantum
computing.

The remainder of the paper is organized as follows: In
Sec. II we introduce the system to control the MZM hybridiza-
tion and present a general low-energy model to analytically
evaluate the effective Majorana hybridization. We show the
possible decoupling of the MZMs due to the overlap with
the YSR state from the single magnetic adatom and also
provide an analysis of the change in the ground-state par-
ity. In Sec. III we show the generality of the control of
MZM hybridization by addressing three experimentally rel-
evant physical realizations. We first present general analytical
results for continuum superconductors in Sec. III A, and then
consider helically ordered magnetic chains on a conventional
s-wave superconductor and ferromagnetic ordered chains on
an s-wave superconductor with nonzero spin-orbit coupling
both in the continuum limit, in Sec. III A 1 and Sec. III A 2, re-
spectively. In Sec. III B we consider a ferromagnetic chain on
a square lattice superconductor with finite spin-orbit coupling.
In Sec. IV we discuss a possible experimental protocol for
the proposed setup and the adiabatic constraints. Finally, we
give concluding remarks in Sec. V, where we discuss possible
future experiments achievable with our proposal, including
manipulating and decoupling precursors of Majorana modes,
and a possible method to control the Majorana hybridization
using the dynamics of the single magnetic adatom.

II. THE SYSTEM

We consider a setup with two chains, left and right, con-
sisting of NL and NR magnetic adatoms, respectively, that
are deposited on an s-wave superconductor and separated by
a distance R from each other (see Fig. 1), where Figs. 1(a)
and 1(b) depict ferromagnetic chains and a helical magnetic
chain on an s-wave superconductor with finite and vanishing
Rashba spin-orbit coupling, respectively. In addition, a single
magnetic adatom (blue sphere), with magnetic orientation
SS = SS(sin θS cos φS, sin θS sin φS, cos θS), where θS and φS
are the polar and azimuthal angle, respectively, is placed at
position RS = (xS, yS, zS) relative to the right end of the left
chain, inducing a YSR state of energy εS(φS, θS) centered at
this position. The chains are in the topologically nontrivial
phase, each accommodating a pair of MZMs at its ends which
are represented by γ operators, orange density of states in
Fig. 1. The magnetic chains are long enough to avoid overlap
of the inner MZMs, γL and γR, with the outer MZMs, γ ′

L
and γ ′

R. Yet, there is a finite bare hybridization energy, εM(R),
between the inner MZMs, γL and γR, leading to the formation
of a nonlocal fermion with energy εM. The superconduc-
tor mediates a finite coupling between the inner MZMs and
the YSR state at RS which effectively modifies both εM(R)
and εS(θS, φS) to new values EM(RS, θS, φS, εS, εM, R) and
ES(RS, θS, φS, εS, εM, R), respectively. A typical dependence
of EM and ES on φS is shown in the inset of Fig. 1(a), ex-
plained in detail in Sec. III. It should be noted that EM and
ES correspond to hybridized Majorana and YSR states with
density of states at both original states’ positions.

Assuming that |εM| and |εS| are much smaller than the
topological gap of the Shiba bands, �t , all systems discussed
in this work share the same low-energy limit, where only the
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FIG. 1. Realizations of the system. (a) Two ferromagnetic
chains, with the left and right chain consisting of NL and NR adatoms,
respectively, on an s-wave superconductor, separated by a distance R.
An additional adatom (blue) with magnetic orientation SS(φS, θS)
is placed at distance RS = (xS, yS, zS) from the left chain. In the
topologically nontrivial phase, the MZMs γ ′

L, γL, γR, and γ ′
R reside

at the chains ends, whose density of states is shown in orange. Inset:
Schematic dependence of the effective MZM hybridization energy
EM and the effective YSR energy ES on φS, �t denotes the topolog-
ical gap. (b) Same as (a) but with helically magnetized adatoms on
an s-wave superconductor with vanishing spin-orbit coupling. The
STM tip (green) can be used to control the parameters of the single
magnetic adatom by applying a time-dependent electric field.

in-gap states in the central region of the setup are relevant,
including the overlapping inner MZMs γL and γR, and the
single magnetic adatom’s YSR state, see Fig. 1. We ignore the
outer MZMs because they decouple from the central region
for sufficiently long chains. After integrating out the super-
conductor and the Shiba bands of the chains, the effective
low-energy Hamiltonian for the γL-YSR-γR system is

Heff = i

2
εMγLγR + εSd†d + [tLd†γL + tRd†γR + H.c.], (1)

where d† creates an electron in the YSR state, tL/R =
tL/R(RS, θS, φS, εS, εM, R) is the coupling amplitude between
the YSR state and the MZM γL/R with {γi, γ j} = 2δi j . The
Hamiltonian in Eq. (1) preserves particle-hole symmetry,
breaks time-reversal symmetry, and thus belongs to the topo-
logical class D in the Cartan-Altland-Zirnbauer scheme for
topological superconductors [83,84].

To access the effective MZM and YSR energies, we ex-
press the Hamiltonian in Eq. (1) in a full fermionic basis by
f = 1

2 (γL + iγR), where f † is the creation operator of the
nonlocal fermion with energy εM. The four single-particle
eigenvalues are

ES = ±1

2

[√
ε2+ + 4|t+|2 +

√
ε2− + 4|t−|2],

EM = ±1

2

[√
ε2+ + 4|t+|2 −

√
ε2− + 4|t−|2], (2)

where t± = tL ± itR and ε± = εM ± εS. The two solutions
with larger energy value, |ES|, are the effective YSR en-
ergies, while the two solutions with smaller energy value,
|EM|, are the effective hybridization energies of MZM. The

localization of the corresponding states of EM/S strongly de-
pends on the parameters of the single magnetic adatom; see
Appendix A for details. The effective energies are unchanged
under the adiabatic exchange of γL and γR, which leads to
γL → −γR and γR → γL [3]. This implies εM → εM, tL →
tR, tR → −tL, leaving Eq. (2) invariant. Also, swapping the
labels R and L in Eq. (1) leaves Eq. (2) unchanged, since
εM → −εM ⇒ ε± → −ε±, and all other parameters are un-
affected.

We are most interested in a vanishing effective Majo-
rana hybridization, EM. Importantly, in the symmetry class
D, this corresponding zero-energy crossing of the Majorana
level is generally accompanied by a change in the fermion
ground-state parity, which is conveniently described by P =
sgn(Pf[H̃eff ]), i.e., the sign of the Pfaffian of H̃eff , which is
obtained by writing Heff in the Majorana basis [26,85,86]. We
hence find that the effective Majorana hybridization crosses
zero and the ground-state parity changes only at

�[tR]�[tL] − �[tL]�[tR] = εMεS

4
, (3)

see Appendix B for details. One scenario to satisfy Eq. (3)
is when one of tL and tR is zero or both are real (both of
which give |t−| = |t+|) and εS or εM is zero. The investigation
of more general possibilities, when both sides of Eq. (3) are
finite, requires knowledge about the parameters in Eq. (3),
which depend on the microscopic model; see inset in Fig. 1(a)
for a representative dependence of the effective Majorana hy-
bridization on the magnetic orientation of the single adatom.
An important implication of the above result is that parity
switching, which can be determined through charge sensing
[80,87–89], can serve as a tool for tracking the MZM shield-
ing. Furthermore, controlling ground-state parity is essential
in parity-based measurements of Majorana correlations [80].
Here, one can perturb one of the chains or control its parity
through the parameters of the single adatom while simulta-
neously measuring the parity of the second chain, which is
expected to change as a result of the entanglement between
the MZMs.

While the control of the Majorana hybridization and the
accompanying parity switching are general for the Majorana
setups in Fig. 1, the microscopic details of the systems are
required in order to examine the dependence of the MZM
hybridization on the control parameters of the YSR state.
We explore the experimentally relevant realizations in Fig. 1
for this purpose. In what follows we therefore investigate
the widely studied arrangements of magnetic adatoms on su-
perconductors with helical magnetization and the ones with
ferromagnetic ordering.

III. PHYSICAL REALIZATIONS

In this section we describe in detail physical realizations
of magnetic chain-superconductor systems and show explic-
itly the dependence of the hybridization of MZMs on the
control parameters. In Sec. III A we consider continuum mod-
els for superconducting substrates, derive general expressions
for tL/R, and subsequently demonstrate the control of Ma-
jorana hybridization for helical and ferromagnetic chains.
In Sec. III B we consider ferromagnetic chains on a lattice
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superconductor and show that the model yields the same
results as the former, demonstrating the universality of our
findings.

A. Continuum models for the substrate superconductor

We first discuss models where the superconducting sub-
strate is incorporated by continuous fields. In the dilute

adatom limit, kFa � 1, where kF is the Fermi wave number of
the superconducting substrate, an effective Hamiltonian that
captures the basic physics of this setup can be written in the
basis of the YSR states induced by the individual adatoms
in the chain if the energy of each YSR state is close to the
Fermi energy [28,31]. Following Refs. [28,31], we apply the
approach to the setup in Fig. 1(b) and obtain the effective
Hamiltonian as

H = HL + HR + HLR + Hd

HL =
NL∑

m=1

NL∑
n=1

b†
m[ε0δmn + (1 − δmn)hmn]bn + bm(1 − δmn)�mnbn + H.c.,

HR =
NL+NR+R/a∑
m=NL+R/a

NL+NR+R/a∑
n=NL+R/a

b†
m[ε0δmn + (1 − δmn)hmn]bn + bm(1 − δmn)�mnbn + H.c.,

HLR =
NL∑

m=1

NL+NR+R/a∑
n=NL+R/a

[hmnb†
mbn + bm(1 − δmn)�mnbn] + H.c.,

HS = εSd†d +
⎡
⎣ NL∑

m=1

(
h

NL+ RS
a ,m

d† + �
NL+ RS

a ,m
d

)
+

NL+NR+R/a∑
m=NL+R/a

(
h

NL+ RS
a ,m

d† + �
NL+ RS

a ,m
d

)⎤
⎦bm + H.c., (4)

where b†
m creates an electron with energy ε0 in the YSR

state at site m = (xm, ym, zm) in the chain, and d† creates an
electron with energy εS in the YSR state at the position of the
single magnetic adatom. Here, HLR couples the YSR states
in the left chain to those in the right chain and vice versa,
while the second term of HS couples the YSR state from the
single magnetic adatom to all YSR states in the left and right
chains. In the general form, the long-range hopping hmn and
order parameters �mn are given by [31,90]

hmn = h(0)
mn〈↑ m |↑ n〉 + h(1)

mn〈↑ m|iσy| ↑ n〉,
�mn = �(0)

mn〈↑ m |↓ n〉 + �(1)
mn〈↑ m|iσy| ↓ n〉, (5)

where σν is the ν-Pauli matrix, and h(1)
mn and �(1)

mn are material-
dependent constants that vanish when spin-orbit coupling is
absent in the superconductor. Here,

|↑m〉 = [cos (θm/2)e−iφm/2, sin (θm/2)eiφm/2]T ,

|↓m〉 = [sin (θm/2)e−iφm/2,− cos (θm/2)eiφm/2]T ,

are the spinors corresponding to the magnetic orientations
of the adatoms in the chains at position rm, which is de-
noted by S(sin θm cos φm, sin θm sin φm, cos θm), where S is the
magnitude of the spin, and θm and φm are the polar and
azimuthal angles, respectively [28,31,47]. Due to the phase
factors in hmn and �mn in Eq. (5), HL and HR in Eq. (4) break
time-reversal symmetry but preserve particle-hole symme-
try; thus, the chains are class-D topological superconductors
[83,84,91,92], like the effective low-energy model in Eq. (1).

While the bare Majorana hybridization, εM, depends only
on the distance R between the chains and the material-specific
details, the low-energy coupling tL/R on the other hand de-
pends also on the parameters associated with the single

magnetic adatom. We find that tL/R have separable depen-
dencies on the magnetic adatom’s spin orientation and the
remaining parameters. By using Eqs. (4) and (5) with Eq. (1)
(see Appendix C for details), we obtain the general form of
the couplings,

tL/R = ei
φS
2 cos

(
θS

2

)
FL/R + e−i

φS
2 sin

(
θS

2

)
GL/R, (6)

where the functions GL/R = GL/R(RS) and FL/R = FL/R(RS)
contain the microscopic details of the superconductor and
magnetic chain. Here, FL/R can be obtained from GL/R by flip-
ping the direction of every spin of each chain, FL/R(φm, θm) =
GL/R(−φm, π − θm). Equation (6) is valid for all magnetic
adatom chain-superconductor systems in the dilute and deep
Shiba limits.

Next, we present two specific continuum models of our
setup and demonstrate the control of the Majorana hybridiza-
tion.

1. Helically magnetized chains on a conventional
s-wave superconductor

A well-studied model is the helical arrangement of the
magnetic adatom chain on the superconductor due to the
RKKY interactions [28,54,93]. Such a spin structure was
found for iron adatoms on the surface of superconducting
rhenium [34].

In the absence of spin-orbit coupling, corresponding to
h(1)

mn = �(1)
mn = 0 in Eq. (5), analytical zero-energy Majorana

solutions of HL and HR can be found in the vicinity of the
Bragg point, kh = kF, where kh = 2πχ is the wave vector
corresponding to the periodicity of the helix χ [29]. We
first focus on the Bragg point for building up a physical
understanding. We have explored deviations from this point
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FIG. 2. Majorana hybridization at the Bragg point of a chain of helically oriented planar spins on an s-wave superconductor (continuum
model). (a) The effective Majorana energy multiplied with the ground-state parity, EM × P, as a function of the orientation of the single
magnetic adatom φS and θS for bare adatom energy εS = 0.002� and the position relative to the right edge of the left chain RS = (8a, 0, 0).
The red and blue regions have opposite parity, while the MZMs are decoupled in between. The black line denotes the exact decoupling
parameters, EM = 0. (b) Line cut along the dashed green line in (a). (c) Hybridization as a function of the YSR energy εS at φS = π , and
(d) as a function of the distance from the left chain RS at φS = 0. Here, RS = (xS, 0, 0) = xS is plotted in steps of the intermagnetic adatom
distance, a, in the chains. In all panels, we set the distance between the chains R = 20a, the bare energy of the magnetic adatoms of the chains
ε0 = 0.005�, and the superconducting coherence length ξsc = 15a.

numerically and found no qualitative difference when the
system remains in the topologically nontrivial phase. Follow-
ing Ref. [28], we consider an in-plane helical magnetization
in the chains, which corresponds to setting θm = π/2. We
further specify the helical structure for the left (right) chain
as φL,m = −2kham (φR,m = 2kham), and we fix m = 0 at the
inner ends of the chains, which are both oriented in the x
direction. For analytical tractability, we consider the semi-
infinite limit of both chains such that the outer MZMs, γ ′

L/R,
are at infinity. For this case, we find that GL(RS) = −iF ∗

L (RS)
and GR(RS) = iF ∗

R (RS), see Appendix C 1. Using this result
and the Majorana solutions of HL and HR [29], we find the
effective low-energy parameters in Eq. (1), see Appendix D,
as

εM = iB2

�kFa

∑
w=1,2
ζ=±

ζe−Aζ
2F1

(
w, R

a + w − 1; R
a + w; eAζ

)
R
a + w − 1

,

tL = tL(FL → G, GL → −iG∗),

tR(RS, φS, θS) = t∗
L (R − RS,−φS, θS),

G = Be
−

[
ikFRS+ RS

ξsc
+i π

4

]

2kFRS
2F1

(
1,

RS

a
;

RS

a
+ 1; eA−

)
. (7)

Here, B2 = (1−β2 )�2

2 , β = ea/ξsc sin(kF aε0/�)
sin(2kF a+kF aε0/�) , Aζ = − a

ξsc
+

ln (β ) + iζ2kFa, 2F1 is the ordinary hypergeometric function,
and ξsc is the superconducting coherence length of the
substrate. For the effective model parameters in Eq. (7),
we use a three-dimensional (3D) bulk superconductor in the
model and also take RS = (xS, 0, 0) for analytic convenience.
If the interchain distance R is large or the single magnetic
adatom is far from the chains, the effective model parameters
are small and can be represented by their asymptotic form,
see Appendix E.

Combining Eqs. (7) and (2), we next track both the shield-
ing effect and the tuning of the Majorana hybridization.
First, we focus on controlling the Majorana hybridization and
its shielding with the single adatom’s magnetic orientation,
which is the parameter that can be altered fastest in an ex-
periment, being adaptable without changing the positions of

the adatoms. Notably, the effective Majorana hybridization,
EM, is tuned through a wide range of values, see Fig. 2(a),
where the blue and the red region denote parameter regimes
of different ground-state parity. Remarkably, at the boundary
between these parameter regions, the MZMs are completely
decoupled, EM = 0, as described by Eq. (3). Such a parity
switch, seen in the change in the sign of EM, around this region
confirms the zero-energy crossing of the MZMs.

To further understand the Majorana shielding effect for
the model, we consider the case where θS = π/2, see dashed
green line in Fig. 2(a). In this case, Eqs. (6) and (7) imply
�[tL] = −�[tL] and �[tR] = �[tR]. Substituting these condi-
tions in the general shielding condition in Eq. (3), we obtain
�[tR]�[tL] = εSεM/8. In the limit of the realistic condition
εSεM ≈ 0, the condition for the crossings at θS = π/2 reduces
to EM = 0 ⇐⇒ �[tR]�[tL] ≈ 0. The two distinct crossings
of EM can be seen in Fig. 2(b). Figure 2(b) also shows that ES
has a similar angular dependence as EM, but remains finite.

The above result motivates us to find expressions for the
zeros of tL and tR. For this purpose, we determine the mag-
netic orientations of the single magnetic adatom φS,L(RS),
[φS,R(RS)] for which tL = 0, [tR = 0], using Eq. (7). We ob-
tain the expression (see Appendix E for asymptotic forms),

φS,L(RS) = − 2kF RS + 2 tan−1 (ϕ) mod 2π,

φS,R(RS) = − φS,L(R − RS), (8)

where ϕ = arg[2F1(1, RS/a, RS/a + 1, e−A− )], and A− is de-
fined below Eq. (7). In general, for every position of the single
magnetic adatom, Eq. (8) provides distinct angles, φS,L/R for
θ = π/2, for which tL and tR vanish.

The bare YSR energy, εS, and the distance of the mag-
netic adatoms from the chains can also be used to control
the Majorana hybridization EM, as shown in Figs. 2(c) and
2(d), respectively, demonstrating the flexibility in controlling
EM. As seen in Fig. 2(d), the effective YSR energy ES oscil-
lates symmetrically about RS = R/2. The wavelength of this
oscillation is determined by kF , such that the hybridization
oscillates multiple times within the lattice constant a in the
dilute impurity limit, which we do not depict, assuming the
magnetic impurity is placed at defined positions on the lattice
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FIG. 3. Majorana hybridization for a ferromagnetic chain on a 2D spin-orbit coupled superconductor (continuum model). (a) Effective
Majorana hybridization EM × P as a function of the magnetic orientation of the single magnetic adatom θS and φS for εS = 0.002�, RS =
(8a, 0.58a). The black line denotes the exact decoupling parameters, EM = 0. This result is qualitatively the same as Fig. 2(a). (b) Maximal
distance yS,max of the adatom to the x axis where decoupling can be achieved in dependence on xS for several φS and εS values and fixed
θS = π/2. (c) Maximal distance yS,max of the adatom to the x axis where decoupling can be achieved as a function of xS and εS for fixed
θS = π/2, φS = 0. In all panels, ξsc = 5a, R = 20a, NL = NR = 100, ε0 = 0.005�, and spin-orbit coupling strength λ = 0.09�. The value
of the topological gap is �t ≈ 0.04� [black dashed line in (c)].

only. We note that a larger value for the coherence length ξSC

than the choice we made for Fig. 2 increases the tunability
of EM. This is because the coupling parameters tL/R are sup-
pressed for distances much larger than the coherence length,
as shown in Eq. (7). This highlights the applicability of the
shielding effect beyond our setup. When the single magnetic
adatom is close to one of the magnetic chains, tL ≈ 0 or
tR ≈ 0, and ES has the largest deviation from εS due to strong
overlap of the YSR state with one of the MZMs. Consistently,
for the case when the adatom is close to the left chain, if
additionally the bare Majorana coupling vanishes (εM = 0),

then ES = ±
√

ε2
S + 4|tL|2 and EM = 0, which implies that the

system behaves like a single magnetic chain with a single
additional magnetic adatom close by.

For the Bragg point, see Fig. 2, we find a good agreement
between analytical and numerical results when EM, ES � �t

which marks the regime where the higher-energetic Shiba
bands can be safely neglected. Away from this limit, while
both analytical and numerical results agree qualitatively, there
is a noticeable quantitative difference as expected, especially
when the YSR state couples very strongly to one of the MZMs
(see Appendix F for more details). The numerical results
are obtained by diagonalizing Eq. (4), for h(1)

mn = �(1)
mn = 0 in

Eq. (5), within the Bogoliubov–de Gennes (BdG) formalism
with NL = NR = 100. For this length we confirmed that the
outer MZMs have negligible overlap with inner MZMs or the
single YSR state. While our analytical evaluation considers
the single magnetic adatom to be on the x axis, i.e., aligned
with the chains, we have checked numerically that the mag-
netic adatom can still be used to tune EM even if the adatom is
displaced from the x axis as long as the MZMs and the YSR
state overlap is sufficiently strong.

2. Ferromagnetic chains on an s-wave superconductor
with nonvanishing spin-orbit coupling

In this section we turn our attention to ferromagnetic chains
on a superconductor with spin-orbit coupling, see Fig. 1(a).
The model describes, for example, Fe adatoms on a super-
conducting Pb [30] and Mn adatoms on Nb superconductor

[57]. Following Ref. [31], we consider a two-dimensional
(2D) continuum superconductor and extract the matrix ele-
ments for both the left and right chains according to Eq. (5);
see Appendix G for details. Here, an analytic solution to the
Majorana wave function has not yet been found, to the best
of our knowledge, because of the complicated form of the
matrix elements [31]. We therefore proceed numerically by
diagonalizing Eq. (4) in the BdG formalism for a chain of
NL = NR = 100 in the topologically nontrivial regime.

The Majorana hybridization is controllable, like in the
helical chain model in Sec. III A 1, and we find that
the ground-state parity switches when crossing EM = 0 as
the orientation of the single magnetic adatom varies, see
Fig. 3(a). Comparing Figs. 3(a) and 2(a), we see that the
results from both physical realizations qualitatively agree, and
the MZM hybridization can be tuned to zero energy by fine-
tuning the parameters. When the single magnetic adatom is
placed at RS = R/2, the effective Majorana energy EM does
not depend on the azimuthal angle φS of the single adatom’s
magnetization; see Appendix C 2 for a proof.

To determine the threshold overlap between the MZMs and
the YSR wave function that is necessary to control EM, we
numerically search for the farthest position of the single mag-
netic adatom from the chains, yS,max, beyond which Majorana
shielding is no longer possible, i.e., Eq. (3) is not satisfied,
and there is no change in parity. As expected, yS,max depends
on the single magnetic adatom parameters, see Figs. 3(b) and
3(c). It is noteworthy that the Majorana hybridization can be
tuned to zero for εS values larger than the topological gap,
see Fig. 3(c). With increasing εS, the bare YSR energy moves
away from εM, which reduces the coupling of the YSR state
to the MZMs, leading to the decrease in yS,max. Similarly,
positioning the magnetic adatom closer to one of the magnetic
chains reduces the overlap of the YSR state with the MZM on
the other chain, which further decreases with increasing yS.
This leads to a smaller yS,max compared to an adatom present
near the middle of the two chains. The values are not symmet-
ric about xS = R/2 due to the absence of mirror symmetry for
a fixed magnetic orientation of the single magnetic adatom.
However, mirroring the setup and simultaneously flipping the
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FIG. 4. Majorana hybridization for ferromagnetic chains on a 2D square lattice s-wave superconductor with spin-orbit coupling. (a) Effec-
tive Majorana hybridization EM × P as a function of φS and θS for a single magnetic adatom placed at (xS/a, yS/a) = (−5, 0). The black line
denotes the exact decoupling parameters, EM = 0. The behavior is qualitatively similar to continuum superconductors shown in Figs. 2(a) and
3(a). (b) Effective YSR and Majorana hybridization E vs y for a single magnetic adatom with fixed xS/a = −5 (black) and xS/a = 5 (brown)
for (φS, θS) = (0, 0). (c) E vs JS for a magnetic adatom at different positions. The calculation is carried out on an 81 × 81 square lattice
with � = 0.2t, λ = 0.3t, μ = 0.5t, t = 1, and R/a = 21. The chains are in the topologically nontrivial phase with J/� = 11.2, resulting in
εM/� = 0.035, �t/� ≈ 0.4.

spin of the single magnetic adatom is a valid symmetry, which
results in yS,max(xS, φS = 0) = yS,max(R/2 − xS, φS = π ). To
achieve full control over the Majorana hybridization, includ-
ing the complete shielding of Majorana hybridization and the
change of the ground-state parity, yS should be kept within
its maximum limit. This condition applies to all magnetic
chain-superconductor setups.

Having demonstrated the Majorana shielding effect
with continuum superconductors, we next turn our at-
tention towards lattice models for the superconducting
substrate.

B. Lattice model for the superconducting substrate:
Ferromagnetic chains on a superconductor

with nonvanishing spin-orbit coupling

We next consider ferromagnetic adatom chains on a 2D su-
perconducting square lattice with Rashba spin-orbit coupling,
which has been used to describe several experimental re-
ports of signatures of topological superconductivity in atomic
chains [30,35,38,57]. The lattice model incorporates the full
bandwidth and the lattice symmetries of the system. The con-
tinuum models in Sec. III A can be obtained by expanding
the lattice model around small momenta and keeping only the
lowest orders.

In order to a priori exclude the outer MZMs, γ ′
L and γ ′

R, de-
picted in Fig. 1(a), we consider a slightly altered setup where
the outer ends of the chains are connected by periodic bound-
ary conditions. We similarly use periodic boundary conditions
for the substrate. Thus the components of the Hamiltonian are
[94–97]

H = HSC + HR+L + HS, where

HSC =
∑

m,b,α

[(4t − μ)c†
m,αcm,α − tc†

m+b,αcm,α]

+
∑
m,b

[−λeiθb c†
m+b,↓cm,↑ + �c†

m,↑c†
m,↓ + H.c.],

HR+L = JS
∑
my

NL+NR∑
mx=1

∑
α,β

σ z
αβc†

m,αcm,β δ
my,

My+1
2

,

HS = JS

∑
α,β

(σ · SS)αβc†
NL+RS,αcNL+RS,β . (9)

Here, HR+L is the Hamiltonian of the left and the right chains,
connected by the periodic boundary condition. The operator
c†

m,α creates an electron with spin α at site m = (mx, my)
on the Mx × My 2D lattice, while σ ν are the Pauli matri-
ces in spin space. In HSC, t is the nearest-neighbor hopping
strength, μ is the homogeneous chemical potential, and λ

is the strength of the Rashba spin-orbit coupling, which has
directional dependencies given by the polar coordinates θb
of the nearest-neighbor bond vectors b. This Hamiltonian, in
addition to breaking time-reversal symmetry through HR+L

and HS, also breaks the spin rotation symmetry through spin-
orbit coupling. Thus, this system also belongs to class D in the
Cartan-Altland-Zirnbauer classification scheme for topologi-
cal superconductors [83,84].

We proceed numerically by diagonalizing the Hamiltonian
within the BdG formalism and extract the low-energy levels
and their corresponding eigenvectors using the iterative Lanc-
zos method, which is applicable because of the sparse BdG
Hamiltonian, enabling us to handle lattices corresponding
to ∼104 × 104 matrices for studying the low-energy physics
[98,99]. We find qualitatively similar results as for the con-
tinuum superconductors in Sec. III A, underlining the model
independence of our results. In particular, the Majorana hy-
bridization as a function of the spin orientation of the single
magnetic adatom shows a clear shielding effect with concomi-
tant changes in the parity of the ground state, see Fig. 4(a).

In Sec. III A 2 we defined the y offset of the mag-
netic adatom yS < yS,max to obtain Majorana shielding, see
Fig. 3(b). For the lattice model here, we find yS,max to be
a few lattice sites away from the chains. Figure 4(b) is a
representative plot of the in-gap levels EM and ES as functions
of yS for different xS. The exchange coupling, JS, between
the single magnetic adatom and the superconductor also tunes
the Majorana hybridization, as shown in Fig. 4(c) for two
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positions of the single magnetic adatom. This is expected
since JS determines εS, corroborating the dependence of the
in-gap states on the bare YSR energy and its control of the
shielding effect shown in Fig. 2(c). It is worth mentioning that
at small and large JS, the bare YSR energy, εS, exceeds the
topological gap and thus the effective MZM-YSR coupling is
almost vanishing, i.e., EM ≈ εM, in that regime.

IV. EXPERIMENTAL CONSIDERATIONS

In this section we discuss possible experimental ap-
proaches for manipulating and detecting the described Majo-
rana hybridization. A priori, there are several parameters that
can be tuned to control the hybridization: the single adatom’s
position on the substrate, the induced YSR energy, and the
orientation of the adatom spin. The interchain distance R is
difficult to alter; thus we consider it fixed in our analysis. One
of the caveats of the YSR route for designing unconventional
superconducting devices is that the magnetic adatoms can be
changed on the timescale of milliseconds to seconds, making
it impossible to alter this system parameter within the coher-
ence time of the MZM. One way to bypass such parameter
rigidity is to trigger the magnetic adatom spin dynamics in
ESR-STM setups, a technique that has gained a lot of attention
due to its sub-μeV energy resolution and its ability to detect
and manipulate the spin of single atoms [76,77,79,100]. An
applied radio-frequency voltage between an STM tip, harbor-
ing a spin Stip, and the substrate induces a variation in the
tip-substrate distance, which in turn creates a modulation of
the exchange coupling Jex between Stip and the spin SS of
the single magnetic adatom, which effectively generates an ac
magnetic field that can drive the latter. While a full description
of the adatom spin dynamics is beyond the scope of this paper,
here we provide a short account of the effective model that has
been used to describe ESR-STM measurements. A minimal
adatom spin Hamiltonian consistent with the experimental
findings reads [101,102]

Hm(t ) = −KS2
S,z + γ B(t ) · SS, (10)

where K > 0 is the easy-axis anisotropy, γ is the gyromag-
netic factor, and B(t ) = (Jex(t )/γ )〈Stip〉 + Bex is the total
magnetic field acting on the adatom, being the sum of the
time-dependent exchange bias and the externally applied field.
Here, 〈Stip〉 is the average spin of the tip, which is deter-
mined by both the external magnetic field Bex and local
anisotropies [78]. The equilibrium orientation of the adatom
spin, SS(θS, φS), can be found by minimizing the energy in
Eq. (10). Since Jex ∝ exp(−d/dex) [78], with dex a charac-
teristic length, changing the tip height d could facilitate the
rotation of the spin SS by arbitrary angles {θS, φS}. We note
in passing that the term ∼S2

S,z is generated by breaking the
inversion symmetry of the surface states and, at a more fun-
damental level, enables the use of the classical approximation
for describing the adatom spin [103,104].

The same Hamiltonian in Eq. (10) can be harnessed for the
readout of the electronic state in ESR-STM measurements.
To demonstrate this, we first stress that the electronic spin
density at the position of the adatom RS can act back on the
spin SS via its exchange coupling J , or the effective magnetic
field Bn = (J/γ )〈σ(RS)〉n, where 〈σ(RS)〉n ≡ 〈ψn|σ(RS)|ψn〉
represents the spin expectation value of the superconductor

condensate at the position of the adatom in the many-body
state |ψn〉. Consequently, the dynamics of the adatom spin
depends on the electronic state via the total magnetic field

Bn,tot = B + Bn, (11)

which in turn influences SS ≡ SS,n and hence the resonance
condition. The jiggling of the STM tip height d at a fre-
quency ω would give rise to a time-dependent magnetic field
Bac(t ) ⊥ SS,n ∝ δJex cos(ωt ), with δJex the amplitude of the
ac field. Then, sweeping ω should allow extraction of the
electronic state-dependent resonance frequency in ESR-STM
measurements [77,105,106].

Another viable way to accomplish full control of the hy-
bridization is to place a single magnetic adatom directly on a
superconducting STM tip, instead of the bulk superconductor.
Its interaction with the bulk superconductor (and hence its
YSR energy) can be tuned by changing the height of the STM
tip, while its placement on top of the superconductor can be
arbitrary [79,107–109]. The ESR-STM technique would work
analogously to the intrinsic adatom case described above,
although the microscopic coupling parameters and their scal-
ing with the STM position would need separate investigation.

The detection of the ESR signal is performed in conduc-
tance measurements, and thus the effective ac fields that drive
the impurity pertain to charge currents flowing into the YSR
state, causing relaxation and dephasing via inelastic electron
tunneling. Hence, both manipulation and detection must be
performed on timescales shorter than the induced decoherence
time T2. Timescales on the order of T2 ∼ 102 µs have recently
been reported for adatoms on normal metals [77], which also
makes this technique particularly attractive also for supercon-
ducting substrates.

So far we have addressed the static and dynamical as-
pects of the proposed setup in Fig. 1. Next we consider the
non-Abelian aspects, i.e., braiding and fusion manipulations.
Paramount to these experiments are the time constraints of
these operations, which we discuss below.

Fusion and braiding operation conditions

For braiding and fusion of Majorana modes, the two most
important constraints on the operation time T are the follow-
ing [64,66,67]: the operation should be sufficiently slow to
avoid bulk excitations, which gives a lower limit, Tadiabatic,
and it should be fast enough such that the Majorana modes
are degenerate within this timescale, setting an upper limit,
Tsplitting. Braiding protocols require at least three chains con-
nected in a trijunction. However, two chains, as discussed
in the above sections, are sufficient for a fusion operation
[67]. During braiding, for a trijunction protocol [64,73,110],
two shielded Majoranas are uncoupled or very weakly cou-
pled with hybridization energy, Emin

M , while the remaining
Majoranas are strongly coupled with hybridization energy,
Emax

M . Thus, in general, the relevant energy that determines the
slowest timescale, Tsplitting, is Emin

M , while the fastest timescale,
Tadiabatic, takes into consideration the energy levels of strongly
coupled Majorana modes. It is worth mentioning that in fusion
protocols that require two chains, there are no extra unshielded
pairs of MZMs that need to be taken into account [71].

In our setup the energy of the level closest to the Majorana
can be one of the following: the topological gap �t , the
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FIG. 5. Application of our shielding mechanism to precursors of Majorana modes using a short single ferromagnetic chain on a 2D square
lattice s-wave superconductor with finite spin-orbit coupling. (a) Majorana hybridization in the absence of the single magnetic adatom, EM =
εM, as a function of chain length Nchain. The dashed green line notes a chain length for which the hybridization is almost zero. (b) Majorana
hybridization EM × P, for Nchain = 13 [dashed green line in (a)], as a function of the single impurity position at the right end of the chain for
(θS, φS) = (π/2, 0). Note the logarithmic scale of the color bar. (c) EM × P/� as a function of the orientation of a single magnetic impurity
placed at (xS, yS) = (3a, 2a), marked “green X” in (b). Compare to Figs. 2(a), 3(a), and 4(a). (d) E/� as a function of φS for θS = π/2 [along
the dashed green line in (c)]. Only positive EM (red), ES (black), and �t (green) are shown for clarity. Inset: Close-up of EM (left axis), and
the corresponding ground-state parity (right axis), clearly showing the behavior of the hybridization and the parity flip at zero crossing. The
calculation is carried out on a 39 × 29 square lattice with � = 0.5t, λ = 0.4t, μ = 0.5t, t = 1, for fixed J/� = 6.28, JS/� = 4.4.

hybridized YSR energy, ES and Emax
M (for braiding protocols).

Therefore, the operation window is

h̄

min
{
�t, ES, Emax

M

} − Emin
M

� T � h̄

Emin
M

. (12)

We have shown, in Figs. 2(a), 3(a), and 4(a), that Emin
M can

be tuned very close and also exactly to zero, and thus the
experimental accuracy sets the slowest time limit. Therefore
we consider min{�t, ES, Emax

M } − Emin
M ≈ min{�t, ES, Emax

M }.
In magnetic adatom-superconductor systems, the topologi-
cal gaps can potentially be large, �t ∼ [10−2�, 10−1�], for
instance, in Mn chains on Nb(110) [35]. Also, ES can be
tuned to values even larger than �t [see Fig. 3(c)], and
Emax

M can go up to 10−2� [see Fig. 4(a)]. Thus we consider
min{�t, ES, Emax

M } ∼ 10−2� � Emin
M . This gives the lower

limit for operation time to be 10−11 s, that is, the upper limit of
frequency is 100 GHz. In practice, a large ratio Emax

M /Emin
M al-

lows for a low accuracy threshold for manipulating the control
parameters and enhances the protocol’s robustness, see Fig. 6.
Operating within the above-estimated frequency constraints
is well within the capabilities of ESR-STM, which typically
reaches frequencies up to 40 GHz [79].

V. CONCLUDING REMARKS

In this work we have demonstrated efficient control of the
hybridization of Majorana zero modes in magnetic chains-
superconductor systems by using an additional magnetic
adatom in the proximity of the chain. We found that the
adatom parameters, such as the spin orientation, the exchange
coupling to the superconductor, and its position on the sub-
strate, can alter the Majorana spectrum. Specifically, we have
shown that the Majorana shielding, i.e., the complete suppres-
sion of the Majorana hybridization, and ground-state parity
flipping are not only possible but are universal and model
independent. Experimentally, manipulation of the single
magnetic adatom parameters and hence the MZMs hybridiza-
tion could be implemented by using STM and ESR-STM
techniques. Therefore, our study opens a potential route
toward experiments that directly probe the non-Abelian char-

acter of MZMs in magnetic chain-superconductor platforms.
Moreover, it could facilitate the implementation of a univer-
sal set of quantum gates with Majorana qubits. Furthermore,
successful control of Majorana hybridization is an essential
prerequisite for fusion and several braiding schemes of MZMs
[71,81,111]. To this end, we envision networks of chain-
adatom-chain constructions that allow for the time-dependent
tuning of multiple MZM hybridizations at junctions with ad-
ditional single magnetic adatoms.

In the remainder of the discussion, we emphasize two
potential applications of our results beyond the aforemen-
tioned ones. Recently, STM experiments have constructed
magnetic adatom chains on a superconductor atom by atom
and have probed the chains at both ends. However, the chains
achieved so far are not long enough, leading to strongly
hybridized MZMs, termed precursors of Majorana modes,
whose hybridization energy oscillates with chain length [57].
Our proposal shows a path to alleviate this problem. By re-
laxing the condition that the MZMs on the same chain do not
couple and focusing on a single chain, our proposal reduces
to the short chain-superconductor system with precursors of
Majorana modes, which can be tuned to zero energy by plac-
ing a single magnetic adatom close to one end of the chain,
following the procedures of our proposal, see Fig. 5. The
Majorana hybridization in the absence of the magnetic adatom
oscillates with the chain length similarly to what is observed
in experiment [see Figs. 4(g)–4(h) in Ref. [57]], see Fig. 5(a).
By placing the single magnetic adatom near one end of the
chain and varying its position or orientation, the ground-state
parity can be flipped, indicating that the hybridization crosses
zero, see Figs. 5(b)–5(d). Remarkably, a large gap separating
the precursors Majorana modes and the next energy level can
be engineered, see Fig. 5(d). Our proposal suggests the use of
the shielding effect as a building block for fusion and braiding
experiments in magnetic adatom chain systems. By consid-
ering realistic experimental parameters, we have provided an
estimate for the relevant timescales in fusion and braiding op-
erations. Thus, our proposal can be tested with state-of-the-art
experiments in existing devices. The most direct test would be
to position an additional magnetic adatom at various positions
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close to a chain that accommodates precursors of Majorana
modes with finite energy and determine the ideal position for
Majorana shielding by minimizing the observed energy of the
precursors of the STM spectrum.

Another direction for future research concerns the quantum
nature of the adatoms spin and its effects on the Majorana
hybridization. Indeed, while here we have used a classical
description of the spins, which is valid in the limit of large
spins and/or large easy-axis anisotropies, recent works sug-
gest that quantum effects can become important for smaller
spins [112–114]. In particular, the Kondo-like screening of
the adatoms’ spins by the Shiba electrons could have conse-
quences on the Majorana hybridization, and on the topological
phase diagram in general in our model. Hence, it would be
interesting to explore the resulting dynamics pertaining to the
coupling between the two quantum systems and eventually
establish efficient ways to control the Majorana hybridization
in ESR-STM experiments [104].
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APPENDIX A: LOCAL DENSITY OF STATES OF THE
EFFECTIVE LOW-ENERGY MODEL

In Sec. II of the main text, we mention the dependence of
the localization of the low-energy states on the parameters
of the single magnetic adatom. Here, we present a general
analytical derivation of the Majorana weight, WM, which is
the local density of states of the MZMs at the position of the
single magnetic adatom, d . We obtain the Green’s function of
the effective low-energy Hamiltonian, Eq. (1) in the main text,
by solving the Green’s functions equations of motion in the
basis ( f , d, f †, d†) given above Eq. (2) in the main text. The
electronic component of the single magnetic adatom’s Green’s
function is

Gdd† (E ) = A(E )(
E2 − E2

S

)(
E2 − E2

M

) , (A1)

where we have defined

A(E ) = (
E2 − ε2

M

)
(E + εS)−(E − εM)|t1|2 − (E + εM)|t2|2,

(A2)

where t1 = tL − itR and t2 = −(t∗
L − it∗

R ). As a consistency
check, we observe that the poles of the Green’s function
appear at the effective energies of Eq. (2). This yields the local
density of states as LDOS(E ) = − limn→0 �Gdd† (E + in)/π.

We find

LDOS(E ) = A(EM )δ(E − EM ) + A(−EM )δ(E + EM ) − A(ES )δ(E − ES ) − A(−ES )δ(E + ES )

2E
(
E2

M − E2
S

) , (A3)

which, integrated over energy, equals 1, as it should for a single-particle state. Hence, the Majorana weight at the single magnetic
adatom becomes

WM = A(EM ) − A(−EM )

2
(
E2

M − E2
S

)
EM

= E2
M − ε2

M − |t1|2 − |t2|2
E2

M − E2
S

. (A4)

We can then rewrite Eq. (A4) as

WM = 1

2
− ε2

S − ε2
M

2
√

[(εS − εM )2 + 4 | tL − itR |2][(εS + εM )2 + 4 | tL + itR |2]
. (A5)

From the above, we check three different limits. First, if εS = εM and |tL| �= 0 or |tR| �= 0, the Majorana LDOS at the position of
the single YSR adatom is exactly 1

2 . Next, in the large hybridization limit, i.e., |t1|, |t2| � εS, εM, the Majorana LDOS is again
1
2 . On the other hand, in the small hybridization limit, i.e., εS, εM � |t1|, |t2|, the Majorana LDOS at the single adatom vanishes.
In order to determine the spatial distribution of the MZM at the parameters of Majorana shielding, we calculate the Majorana
LDOS at EM = 0:

WM,0 = 1

2
− 1

2

ε2
S − ε2

M

(εS − εM)2 + 4 | t1,0 |2 = 1

2
− 1

2

ε2
S − ε2

M

ε2
S + ε2

M + 4 | tL,0 |2 +4 | tR,0 |2 = 1

2
− 1

2

ε2
S − ε2

M

E2
S,0

, (A6)
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where ES,0 is the YSR effective energy and t1,0 the hopping
parameter at the Majorana shielding points. The parameters
tL,0 and tR,0 generally depend on εS and εM themselves. On
the other hand, WM,0 cannot be expressed solely in terms of εS

and εM. If |εS| � |εM|, the Majorana shielding is complete
WM,0 ≈ 0. On the other hand, when 1 � εS − εM > 0, the
Majorana LDOS at the position of the single magnetic adatom
is maximal, and the states are completely mixed, WM,0 ≈ 1

2 .

APPENDIX B: PARITY CHANGE AT ZERO-ENERGY
CROSSING

We mentioned in the main text that the fermion parity of
the ground state changes only through a zero-energy-level
crossing in symmetry class D. Due to the small size of the
Hamiltonian in Eq. (1), we can demonstrate this behavior
explicitly and give details on the polarization of the states.
To this end, we investigate the changes in the ground-state
parity as the parameters of the single magnetic adatom are
tuned. We consider the effective low-energy Hamiltonian,
Eq. (1), in Fock space in the basis |n f , nd〉 = ( f †)n f (d†)nd |00〉,
where n f /d = 0, 1 is the fermion occupation of the nonlocal
fermion or YSR state, and the parity of the states is defined
as P = (−1)n f +nd . The many-body energies in the odd/even
subspaces Eo/e

± are obtained as

E e
± = 1

2ε+ ±
√

ε2+ + 4|t−|2], (B1a)

Eo
± = 1

2 [ε+ ±
√

ε2− + 4|t+|2], (B1b)

and their corresponding eigenstates are |V e
±〉 = ±v00|00〉 +

v11|11〉 and |V o
±〉 = ±v10|10〉 + v01|01〉 are linear combina-

tions of |n f , nd〉, with amplitudes vn f nd , within a single
fermion parity sector.

We see that Eo
− and E e

− are the lower energies, and either
of them can be the ground-state energy, while Eo

+ and E e
+ are

higher in energy. Even and odd states cross at the degenerate
point Eo

− = E e
− ( Eo

+ = E e
+) accompanied by a fermion parity

switching. From Eq. (B1) we see that the condition for the
many-body ground-state degeneracy is the same as the Majo-
rana shielding condition of Eq. (3).

APPENDIX C: DERIVATION OF GENERALIZED
LOW-ENERGY MODEL COUPLING, tL/R

In Eq. (6) in Sec. III A of the main text, we presented the
generalized expression of the coupling between YSR state and
the MZMs in the left and right chains, tL/R. Here, we give a
detailed derivation of these quantities, independently of the
microscopic model. We first consider the Hamiltonian that
describes the coupling of the left chain to the single magnetic
adatom, obtained from the last line of Eq. (4) in the main text,
as

HLS = d†
∑

m

hNL+ RS
a ,mbLm + �NL+ RS

a ,mb†
Lm

+ d
∑

m

−hNL+ RS
a ,mb†

Lm + �NL+ RS
a ,mbLm. (C1)

We make a basis transformation of Eq. (C1),

HLS = d†

(
tLγL +

∑
m

qm pm

)
+

(
t∗
LγL +

∑
m

q∗
m p†

m

)
d,

(C2)

where γL, pi correspond to the Majorana operator and the
YSR band orbitals of the left chain, respectively, and qi are
unknown matrix elements. Next, we extract the matrix ele-
ment tL via

tL = 1
2 {d, [HLS, γL]}. (C3)

By expressing the Majorana solution in the fermionic basis in
the second quantized formalism, Eq. (C3) yields

tL =
∑

m

[
umhNL+ RS

a ,m + vm�NL+ RS
a ,m

]
, (C4)

where um and vm are the particle and hole components
of the Majorana solutions’ Bogoliubov–de Gennes (BdG)
eigenmode. We evaluate the matrix elements hNL+ RS

a ,m and
�NL+ RS

a ,m of Eq. (5) from the following equations:

〈
↑

(
NL + RS

a

)∣∣∣∣ ↑ (m)〉 = cos(θS/2)eiφS/2 cos(θm/2)e−iφm/2 + sin(θS/2)e−iφS/2 sin(θm/2)eiφm/2,

〈
↑

(
NL + RS

a

)∣∣∣∣ ↓ (m)〉 = cos(θS/2)eiφS/2 sin(θm/2)e−iφm/2 − sin(θS/2)e−iφS/2 cos(θm/2)eiφm/2,

〈
↑

(
NL + RS

a

)∣∣∣∣iσy |↑ (m)〉 = cos(θS/2)eiφS/2 sin(θm/2)eiφm/2 − sin(θS/2)e−iφS/2 cos(θm/2)e−iφm/2,

〈
↑

(
NL + RS

a

)∣∣∣∣iσy |↓ (m)〉 = − cos(θS/2)eiφS/2 cos(θm/2)eiφm/2 − sin(θS/2)e−iφS/2 sin(θm/2)e−iφm/2. (C5)

By substituting the matrix elements in Eq. (C4), the general form of tL is expressed as

tL = ei
φS
2 cos

(
θS

2

)
FL + e−i

φS
2 sin

(
θS

2

)
GL, (C6)
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which is presented in Eq. (6) in Sec. III A of the main text. Here,

FL = 1

2

∞∑
m=0

um

(
h(0)

NL+ RS
a ,m

cos(θm/2)e−iφm/2 + h(1)

NL+ RS
a ,m

sin(θm/2)eiφm/2

)

+ vm

(
�

(0)

NL+ RS
a ,m

sin(θm/2)e−iφm/2 − �
(1)

NL+ RS
a ,m

cos(θm/2)eiφm/2

)
,

GL = 1

2

∞∑
m=0

um

(
h(0)

NL+ RS
a ,m

sin(θm/2)eiφm/2 − h(1)

NL+ RS
a ,m

cos(θm/2)e−iφm/2

)

− vm

(
�

(0)

NL+ RS
a ,m

cos(θm/2)eiφm/2 + �
(1)

NL+ RS
a ,m

sin(θm/2)e−iφm/2

)
. (C7)

Hence, we explicitly show the dependence of the coupling of
the YSR state to the MZM on the orientation of the single
magnetic adatom. Notably, from Eq. (C7), we establish that

FL(φm, θm) = GL(−φm, π − θm). (C8)

A similar form can be derived for tR by substituting the
Majorana solution and the matrix elements of the right chain.

So far, we have derived the general expressions without the
microscopic details of the chains and superconductor. We next
focus on special cases, which are model dependent.

1. Special case: Helical chain model

Let us consider the special case where the spins of mag-
netic adatoms in the chains form a planar helix with θm =
θ = π/2 and a chiral symmetry C is present in the system.
This specific case corresponds to the model presented in
Sec. III A 1. For C = σy, the zero-energy modes of the chains
will be chiral counterparts of the C operator. Here, σy is
a Pauli matrix which acts on the basis of the particle-hole
components of the YSR orbitals. This constraints the form of
the BdG eigenspinors of the Majoranas to satisfy vm = ium

for the γL [29]. The equality u∗ = v holds due to particle-hole
symmetry. Under these assumptions we compute

F ∗
L = 1

2
√

2

∑
m

eiφm/2

(
vmh(0)

NL+ RS
a ,m

+ um�
(0)

NL+ RS
a ,m

)

= i

2
√

2

∑
m

umeiφm/2

(
h(0)

NL+ RS
a ,m

− i�(0)

NL+ RS
a ,m

)

= iGL. (C9)

We conclude that GL = −iF ∗
L , as mentioned in Sec. III A 1 of

the main text. It follows that G∗
L = iFL and |GL| = |FL|. Sim-

ilarly, we obtain F ∗
R = −iGR. Using the above, we calculate

the absolute value of the coupling |tL|2 from Eq. (C6). We
arrive at

|tL|2 = |GL|2 + 2 sin

(
θS

2

)
cos

(
θS

2

)
�[

ieiφS G2
L

]
. (C10)

Here |tL|2 is symmetric for θS → π − θS , as expected. This
derivation is general in the sense that we have not assumed a
semi-infinite chain and do not restrict our calculations to the
Bragg point kF = kh.

2. Special case: Ferromagnetic chain model

We now consider the model presented in Sec. III A 2. In the
case where the magnetizations of the YSR atoms of the chains
are pointing perpendicular to the SOC plane of the substrate
in the z direction, the effective BdG Hamiltonians of each
of the chains acquire an extra chiral symmetry C̃ = σx. This
implies that the Majorana BdG eigenspinors are restricted to
be eigenstates of σx. This implies uL = −vL and uR = vR, or
uR = −vR and uL = vL. Without loss of generality, we focus
on the first case. Combining that with the reality condition of
the Majorana wave function, we conclude that uR = vR = u
and uL = −vL = iu, where u is real. We verified the above
by a numerical evaluation of the Majorana wave functions. In
that case, the parameters in Eq. (C7) can be simplified to

FL = 1

2

∞∑
m=0

uLmh(0)

NL+ RS
a ,m

− vLm�
(1)

NL+ RS
a ,m

= i

2

∞∑
m=0

um

(
h(0)

NL+ RS
a ,m

+ �
(1)

NL+ RS
a ,m

)
,

GL = − 1

2

∞∑
m=0

uLmh(1)

NL+ RS
a ,m

+ vLm�
(0)

NL+ RS
a ,m

= − i

2

∞∑
m=0

um

(
h(1)

NL+ RS
a ,m

− �
(0)

NL+ RS
a ,m

)
, (C11)

where the matrix elements h0(1),�0(1) are calculated in Ap-
pendix G. We write the same expressions for tR:

FR = 1

2

∞∑
m=0

uRmh̃(0)

NL+ RS
a ,m

− vRm�̃
(1)

NL+ RS
a ,m

= 1

2

∞∑
j=0

um

(
h̃(0)

NL+ RS
a ,m

− �̃
(1)

NL+ RS
a ,m

)
,

GR = − 1

2

∞∑
m=0

uRmh̃(1)

NL+ RS
a ,m

+ vRm�̃
(0)

NL+ RS
a ,m

= − 1

2

∞∑
m=0

um

(
h̃(1)

NL+ RS
a ,m

+ �̃
(0)

NL+ RS
a ,m

)
, (C12)

where the tilded matrix elements couple the single magnetic
adatom to the right chain and the index j runs over the right
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FIG. 6. Tuning of Majorana energy, EM , from the decoupled
regime (below the green line) to the coupled regime (above the green
line) solely by the polar angle of the control atom’s magnetization
in a mirror-symmetric ferromagnetic impurity chains atomic setup.
(a) EM as a function of θS, and (b) zoom-in view of the magenta
dashed box is given in (a). The single impurity is positioned at the
midpoint between the chains (RS = 10a), which are separated by a
distance R = 20a. Due to mirror symmetry, EM is independent of
φS. The green line denotes the condition, EM = 0.01Emax

M . Majorana
modes are considered effectively shielded when EM lies below this
threshold, represented by the green line in (a). This gives an error
tolerance window �θS

π
∼ 8% for fine-tuning the control impurity

orientation as shown in (b). Here, εS = 0.013�, λ = 0.09�, ε0 =
0.005�, ξsc = 5a, NL = NR = 100.

chain. We now focus on the case where the single magnetic
adatom is placed exactly in the middle of the two chains
RS = R/2. Notably, the elements h1(0) and �1(0) are odd(even)
functions of the relative positions of the YSR states. We
rewrite the matrix elements Eq. (C12):

FR = 1

2

∞∑
m=0

um

(
h(0)

NL+ RS
a ,m

+ �
(1)

NL+ RS
a ,m

)
,

GR = −1

2

∞∑
m=0

um

(
−h(1)

NL+ RS
a ,m

+ �
(0)

NL+ RS
a ,m

)
. (C13)

We establish that FL − iFR = 0 and also GL + iGR = 0. From
Eq. (2) it is evident that φS enters EM in the terms t2

± = |tL ∓
itR|2. Thus we compute

|tL + itR| =
∣∣∣∣eiφS cos

(
θS

2

)
(FL + iFR)

∣∣∣∣
=

∣∣∣∣ cos

(
θS

2

)
(FL + iFR)

∣∣∣∣, (C14)

|tL − itR| =
∣∣∣∣e−iφS sin

(
θS

2

)
(GL − iGR)

∣∣∣∣
=

∣∣∣∣ sin

(
θS

2

)
(GL − iGR)

∣∣∣∣. (C15)

Both the above expressions are independent of φS. Thus, we
proved that when the single magnetic adatom is placed at
the middle of the chains, its azimuthal orientation does not
influence the hybridization of the MZMs. See Fig. 6 for a
numerical demonstration.

APPENDIX D: DERIVATION OF THE EFFECTIVE MODEL
PARAMETERS FOR SEC. III A 1

In this section we present a detailed derivation of the
low-energy parameters, εM, tL, and tR, in Sec. III A 1 of the

main text. In the following the semi-infinite chain limit and
the Bragg point approximation are considered. Following
Ref. [29], we rotate in the fermionic basis and express the
normalized Majorana operators at the right edge of the left
chain γL and at the left edge of the right chain γR as

γL =
√

1 − β2
∞∑

m=0

e−ln(|β|)m(eiπ/4bLm + e−iπ/4b†
Lm), (D1)

γR =
√

1 − β2
∞∑

m=0

e−ln(|β|)m(e−iπ/4bRm + eiπ/4b†
Rm), (D2)

written in the basis of the YSR creation and annihilation oper-
ators of the left and right chain, respectively, and β is defined
in the main text in Eq. (7). We note the usual exponential
decay of the Majorana operators.

1. YSR-Majorana couplings, tL, tR

Following [28], we acquire

hNL+ RS
a ,m

= − �√
2

sin[kF (RS + am)]

kF (RS + am)
e−(RS+am)/ξsc

×
[

cos

(
θS

2

)
ei(φS+2kham)/2 + sin

(
θS

2

)
e−i(φS+2kham)/2

]
,

(D3)

�NL+ RS
a ,m

= �√
2

cos[kF (RS + am)]

kF (RS + am)
e−(RS+am)/ξsc

×
[

cos

(
θS

2

)
ei(φS+2kham)/2 − sin

(
θS

2

)
e−i(φS+2kham)/2

]
.

(D4)

We now substitute the Majorana solution from Eq. (D1) in the
general Eq. (C6) to get

tL = e−iπ/4
√

1 − β2

2

∑
m

βm
(
hNL+ RS

a ,m + i�NL+ RS
a ,m

)
. (D5)

After substituting the matrix elements Eqs. (D3) and (D4), and
performing this infinite sum, we reach Eq. (7) of the main
text. A similar calculation can be performed for tR where the
helicity changes sign kh → −kh in Eq. (D3), and also the
Majorana solution γR in Eq. (D2) should be used.

2. Bare Majorana hybridization, εM

In order to calculate the bare Majorana hybridization be-
tween the inner MZMs of the chains, we consider the effective
Hamiltonian of Eq. (4),

HLR =
∑
mn

b†
Lm(hmnbRn + �mnb†

Rn)

+
∑
mn

bLm(�mnbRn − hmnb†
Rn), (D6)
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where bLm, bRn are annihilation operators for electrons at the
YSR orbitals in the left and right chains, respectively, and

hmn = − cos[kha(m + n)]
� sin[kF (am + an + R)]

kF (am + an + R))
e− am+an+R

ξsc ,

(D7)

�mn =i sin[−kha(m + n)]
� cos[kF (am + an + R)]

kF (am + an + R)
e− am+an+R

ξsc ,

(D8)

are the matrix elements taken from [28]. We express Eq. (D6)
in the fermionic eigenbasis of the left and right chains:

HLR = i

2
εMγLγR +

∑
mn

kmγL pRm

+ lnγR pLn + Mmn pLn pRm + H.c., (D9)

where pLn, pRm correspond to the electrons of the YSR band
orbitals of the left and right chain, respectively. These are
independent fermionic operators that anticommute with each
other. Also, km, ln, Mmn are material-specific matrix elements.
These a priori unknown matrix elements do not need to be cal-
culated, because we assume that the associated orbitals of the
YSR bands are high in energy compared to the bare Majorana
hybridization and hence they play no role in the subsequent
calculations for the low-energy theory. It is straightforward to
extract the element iεM from Eq. (D9) as

iεM = 1
2 {γR, [γL, HLR]}. (D10)

Now, we substitute the Majorana operators from Eqs. (D1)
and (D2), and HLR from Eq. (D6) to obtain

iεM = (1 − β2)
∑
mn

e(m+n)ln(β )(�mn + ihmn). (D11)

Next, by substituting the matrix elements Eqs. (D7) and (D8)
and performing the double infinite sum, we acquire εM(R) in
Eq. (7) of the main text.

APPENDIX E: ASYMPTOTIC LIMITS

We further analyze the model in Sec. III A 1 by taking the
asymptotic limit for the parameters in Eq. (7). In our parame-
ters, we take the asymptotic limit R/a → ∞ and RS/a → ∞
to get

2F1

(
1,

R

a
;

R

a
+ 1; e−As

)
→ 1

1 − e−As
, (E1)

2F1

(
2,

R

a
+ 1;

R

a
+ 2; e−As

)
→ 1

(1 − e−As )2 . (E2)

Here, a 3D bulk superconductor has been assumed. For prac-
tical purposes, the limits in Eqs. (E1) and (E2) give a good
approximation for our considered setup in Fig. 2, where R =
20a, and εM in Eq. (7) scales as

εM ∼ e−R/ξsc

kF R
L(kF R), (E3)

where L(kF R) is the oscillating part. In the dilute adatom
limit that we are working with, we expect the bare Majo-
rana hybridization to cross zero multiple times as we are
increasing the distance between the chains due to the high
frequency of the oscillations kF a � 1. This shows that for

big distances until R ≈ ξsc, there is a power-law decay for the
Majorana-Majorana hybridization. When R � ξsc, the expo-
nential decay dominates. In both cases the oscillations part is
present. For the parameters tL and tR that appear in Eq. (7),
only the limit of Eq. (E1) enters. The asymptotic limit of
Eq. (8) for RS � a is

φS,L(RS) = −2kF RS + 2 arctan
sin(2kF a)

−e
a

ξsc
−ln(β ) + cos(2kF a)

.

(E4)

As we see in Eq. (E4), the crossing angle φS,L(RS) scales
linearly with the distance of the single magnetic adatom from
the chain.

APPENDIX F: QUANTITATIVE COMPARISON BETWEEN
ANALYTICAL AND NUMERICAL SOLUTIONS

IN SEC. III A

Here, we test the validity of the low-energy approximations
and compare the analytical results shown in Fig. 2 with the
corresponding numerical solution. The validity of the low-
energy model described by Eq. (1) holds as long as there
is small interference between modes of the Shiba bands and
the orbital of the single magnetic adatom. In other words,
when the couplings tL or tR are of the order of the topological
gap, our analytical approximation is no longer valid because
second-order effects, due to the interference of the single mag-
netic adatom with the Shiba bands, can quantitatively change
the effective Majorana hybridization EM and YSR energy ES.
Our derivation of the coupling parameters tL and tR in Eq. (C2)
has been done under the above approximations. To test our
hypothesis, we compare the analytical and numerical results
for two different positions of the magnetic adatom in Fig. 7.
When the single magnetic adatom is not too close to one
of the chains, RS � a, exemplified by (xS, yS) = (8a, 0) in
Figs. 7(a)–7(c), numerical and analytical results match also
quantitatively, irrespective of the value of εS as seen in (a),
(b), and (c) for εS < �t , εS = �t , and εS > �t , respectively.
When the magnetic adatom is close to one of the chains,
exemplified by (xS, yS) = (a, 0) in Figs. 7(d)–7(f), we ob-
serve strong quantitative deviations between numerical and
analytical solutions for EM because the crossing points (as a
function of φS) are shifted. We confirm that on a quantitative
level our analytical formulas are reliable as long as the pa-
rameters tL and tR are small enough and there is no significant
interference with the Shiba bands. Still, the qualitative picture
of the shielding effect (number of zero-energy crossings) is
not influenced by the analytical approximations even in the
regime of strong quantitative deviations.

APPENDIX G: FERROMAGNETIC CHAINS ON
CONTINUUM SUPERCONDUCTOR WITH
NONVANISHING SPIN-ORBIT COUPLING

In Sec. III A 2 of the main text, we presented the results
for a model of two ferromagnetic chains in a 2D continuum
s-wave superconductor with finite Rashba spin-orbit coupling
separated by a distance R and a magnetic adatom placed in
between at RS away from the left chain. In this section we give
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FIG. 7. Comparison between the analytical and numerical Majorana hybridization for the helical magnetic spin chain discussed in Sec. III A
of the main text. (a)–(c) Majorana hybridization, EM, for RS = (xS, yS) = (8a, 0) within the validity regime of the analytical model. (d)–(f)
Same as (a)–(c) but for RS = (xS, yS) = (a, 0), outside the validity regime of the analytical model. Here, we consider εS = 0.01� = 0.2�t in
(a) and (d), εS = 0.05� = �t in (b) and (e), εS = 0.08� = 1.6�t in (c) and (e). The value of �t is extracted from the numerical solution. We
consider ξSC = 15a, R = 20a, ε0 = 0.005�, as in Fig. 2 of the main text.

details of the extension of the model in Ref. [31] to our system.
As discussed in Sec. III A, in the dilute deep Shiba limit where
the YSR states from individual magnetic adatoms are well
within the superconducting gap close to the Fermi energy, the
low-energy effective Hamiltonian is described by Eq. (4). The
matrix elements, HL, HR, and HLR, for this model can be
explicitly written down using Eq. (5) as

hmn = h(0)
mn = I+

1 (rmn) + I−
1 (rmn)

2
,

�mn = �(1)
mn = i

I+
4 (rmn) − I−

4 (rmn)

2
, (G1)

since 〈↑ (m)|↓(n)〉 = 〈↑ (m)|iσy|↑(n)〉 = 0 when the mag-
netic adatoms in the chains are all aligned along z direction.
The matrix elements coupling the single adatom to the chains
can be written as

hNL+RS,m =h(0)
NL+RS,m cos

θS

2
eiφS/2 + h(1)

NL+RS,m sin
θS

2
e−iφS/2,

�NL+RS,m =�
(1)
NL+RS,m cos

θS

2
eiφS/2 + �

(0)
NL+RS,m sin

θS

2
e−iφS/2.

(G2)

where h(1)
mn = I+

2 (rmn )−I−
2 (rmn )

2
xmn+iysm

rmn
and �(0)

mn =
I+
3 (rmn )+I−

3 (rmn )
2

xmn−iysm

rmn
. In the kF a � 1 limit, the overlap

integrals can be written in the asymptotic form as

Iν
1 (rmn) ≈ − N ′

ν (rmn) cos

(
kF,νrmn − π

4

)
, Iν

2 (rmn)

≈ − i sgn(xmn)N ′
ν (rmn) cos

(
kF,νrmn − 3π

4

)
,

Iν
3 (rmn) ≈ − N ′

ν (rmn)ν sin

(
kF,νrmn − π

4

)
, Iν

4 (rmn)

≈ i sgn(xmn)N ′
ν (rmn) sin

(
kF,νrmn − 3π

4

)
. (G3)

where N ′
ν (rmn) = Nν

√
2

πkF,νrmn
e−rmn/ξsc with Nν = N0(1 −

νλ̃/
√

1 + λ̃2), N0 being the density of states of the super-
conductor in its normal state at the Fermi level. Here, kF,ν =
kF (

√
1 + λ̃2 − νλ̃), vF = h̄kF /

√
1 + λ̃2 with the dimension-

less spin-orbit coupling strength λ̃ = mλ/h̄kF and ν = ±
representing the helicity sector. Furthermore, kF and vF are
the Fermi wave vector and velocity without spin-orbit cou-
pling, respectively.
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