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Universal vortex statistics and stochastic geometry of Bose-Einstein condensation
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The cooling of a Bose gas in finite time results in the formation of a Bose-Einstein condensate that is sponta-
neously proliferated with vortices. We propose that the vortex spatial statistics is described by a homogeneous
Poisson point process (PPP) with a density dictated by the Kibble-Zurek mechanism (KZM). We validate this
model using numerical simulations of the two-dimensional stochastic Gross-Pitaevskii equation (SGPE) for both
a homogeneous and a hard-wall trapped condensate. The KZM scaling of the average vortex number with the
cooling rate is established along with the universal character of the vortex number distribution. The spatial
statistics between vortices is characterized by analyzing the two-point defect-defect correlation function, the
corresponding spacing distributions, and the random tessellation of the vortex pattern using the Voronoi cell area
statistics. Combining the PPP description with the KZM, we derive universal theoretical predictions for each
of these quantities and find them in agreement with the SGPE simulations. Our results establish the universal
character of the spatial statistics of point-like topological defects generated during a continuous phase transition
and the associated stochastic geometry.
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I. INTRODUCTION

Spontaneous symmetry breaking in finite time leads to
the formation of topological defects. A paradigmatic example
concerns cooling a Bose gas below the temperature for Bose-
Einstein condensation. This is characterized by a continuous
phase transition signaled by the growth of the condensed
fraction that acts as the order parameter [1]. The formation
of a Bose-Einstein condensate (BEC) involves the breaking
of U (1) symmetry and, in a pancake atomic cloud, leads to
the proliferation of spontaneously formed vortices [2], topo-
logical defects characterized by an integer-valued winding
number w ∈ Z. In this context, vortices with |w| > 1 are
unstable against the decay into vortices with w = ±1 of lower
energy.

In ultracold atoms, the density of vortices can be directly
measured, e.g., by absorption imaging after a time of flight
[3,4] or by in situ imaging [5]. In addition, the characteri-
zation of vortex patterns in BEC can be automatized using
deep learning algorithms [6,7]. This has promoted the use
of ultracold gases as a test bed for nonequilibrium statistical
mechanics. In particular, it has made it possible to probe the
validity of the Kibble-Zurek mechanism (KZM), a universal
paradigm describing the nonequilibrium dynamics across a
continuous phase transition in finite time, which predicts the
formation of topological defects [8–12]. To this end, KZM
relies on the equilibrium scaling relations for the correlation
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length ξ and the relaxation time τ as a function of the proxim-
ity to the critical point ε = (λc − λ)/λc. Here, λ is the control
parameter driving the transition at the critical point λc. Both ξ

and τ obey universal power laws

ξ (ε) = ξ0

|ε|ν , (1)

τ (ε) = τ0

|ε|zν , (2)

where ν and z are critical exponents and ξ0 and τ0 are system-
dependent constants. A finite-time quench of the control
parameter λ(t ) = λc(1 − t/τQ) leading to the linear variation
of ε(t ) = t/τQ sets a universal scaling of nonequilibrium
properties. The KZM identifies the typical response time
in which the order parameter starts to grow after crossing
the critical point. This time scale, often referred to as the
freeze-out time, is derived by matching the time elapsed after
crossing the critical point with the instantaneous relaxation
time, t = τ0/|t/τQ|zν , and reads

t̂ = (
τ0τ

zν
Q

) 1
1+zν . (3)

Note the universal power-law scaling with the quench time
τQ, with an exponent fixed by the critical exponents of the
relevant universality class characterizing the transition. The
freeze-out time t̂ further identifies a characteristic value of the
control parameter away from the critical point in which the
system responds to the quench, in dimensionless form ε(t̂ ) =
(τ0/τQ)

1
1+zν , and the correlation length out of equilibrium

ξ̂ = ξ [ε(t̂ )] = ξ0

(
τQ

τ0

) ν
1+zν

. (4)
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This prediction sets the density of point-like topological de-
fects, which scales as

ρ = 1

ξ d
0

(
τ0

τQ

) dν
1+zν

, (5)

in d-spatial dimensions. For a pancake BEC, effectively d = 2
and one expects the vortex density to scale with the cooling

time τQ as ρ ∝ τ
− 2ν

1+zν
Q . In the mean-field regime characterized

by ν = 1/2 and z = 2, KZM predicts the vortex density to
scales as ρ ∝ τ

−1/2
Q in a spatially homogeneous system. How-

ever, ultracold gases in the laboratory do not comply with
mean-field behavior. The experimental study of the equilib-
rium scaling relation for the correlation length (1) in the BEC
transition [13] reveals a value of ν closely matching that of the
3D XY universality class, ν = 0.6717(1) [14]. The KZM pre-
diction for the nonequilibrium correlation length (4) has been
investigated by Navon et al. [15], who reported experimen-
tal measurements consistent with the value of the dynamical
critical exponent z = 3/2 expected for this universality class
[16]. The vortex density scaling predicted by the KZM has
been experimentally demonstrated in a Bose gas [17–20] and
a strongly interacting Fermi gas [21,22].

The ubiquitous confinement potential in experiments with
trapped ultracold gases can induce a spatial dependence of the
critical point and make the transition inhomogeneous [23–26].
The role of causality in the course of symmetry breaking
is then enhanced by restricting the formation of topological
defects and can lead to a steepening of the KZM scaling as
predicted by the so-called Inhomogeneous KZM [27], stud-
ied theoretically in the context of vortex formation in BEC
[25] and observed in experiments with trapped ions [28,29]
and Bose gases [20,30]. However, such deviations from the
canonical KZM scaling can be suppressed by resorting to
fast quenches [25,27,31], below the threshold rate for defect
saturation [19,32,33], or by using homogeneous trapping po-
tentials, such as ring and box-like traps [15,17,34–39].

The recent quest for signatures of universality in the crit-
ical dynamics beyond the KZM has focused on the number
distribution of topological defects [19,40–44]. The number of
spontaneously formed topological defects fluctuates in dif-
ferent experimental runs, as well as numerically simulated
realizations. The probability of observing a given number of
defects is well described by a binomial distribution, in which
all cumulants follow the same power-law scaling with the
quench rate [40–44].

Despite their success, the KZM and its generalizations
leave without answering aspects regarding the spatial distri-
bution of topological defects. The latter is of key importance
in a variety of applications ranging from condensed matter
and nanotechnology (probing, characterizing, and controlling
defects and their interactions) to the study of turbulence, struc-
ture formation, and material aging, to name some examples.

This paper establishes the universal signatures of the spa-
tial statistics of spontaneously formed topological defects. To
this end, we combine the nonequilibrium scaling theory of
phase transitions with tools of spatial statistics and stochastic
geometry, the branch of probability theory concerned with
random spatial patterns [45]. We model spatial correlations
of vortices formed during Bose-Einstein condensation using a

homogeneous Poisson point process (PPP) on a plane with
a density dictated by KZM, i.e., Eq. (5). We characterize
the vortex-spacing distribution with and without conditioning
on the winding number w. We further analyze the two-point
correlations by mapping them to the celebrated disk line
picking problem in geometric probability. In addition, we
characterize the emergent stochastic geometry of the sponta-
neously formed vortices. Specifically, we analyze the Voronoi
area-cell distribution in a random tesselation of the vortex pat-
tern. Universal predictions for these quantities derived from
the PPP-KZM model accurately reproduce numerical simula-
tions of the Bose-Einstein condensation using the stochastic
Gross-Pitaevskii equation. Our findings establish the univer-
sal spatial statistics and stochastic geometry of topological
defects generated via the KZM.

II. KIBBLE-ZUREK DYNAMICS OF THE BEC
TRANSITION

The formation of a BEC is signaled by the emergence of a
nonzero complex order parameter � = �(r, t ), known as the
condensate wavefunction. We consider the two-dimensional
(2D) stochastic Gross-Pitaevskii equation [16,46–51] as a test
bed for the spatial statistics of topological defects formed in
a 3D pancake BEC. Specifically, we consider the evolution of
the condensate wavefunction � = �(r, t ) according to

(i − γ )
∂�

∂t
=

[
−1

2
∇2 + g|�|2 + V (r) + ε(t )

]
� + ξ (r, t ),

(6)

where V (r) represents the external trap and γ is the dissi-
pation rate [52]. The white noise ξ is a complex Gaussian
process with zero mean. It satisfies the fluctuation-dissipation
theorem

〈ξ ∗(r, t )ξ (r′, t ′)〉 = 2γ T δ(r − r′)δ(t − t ′), (7)

where T is the temperature of the thermal cloud. The physical
quantities in Eq. (6) are dimensionless. The units of length,
time, and energy are respectively given by ξ , mξ 2/h̄, and
h̄2/(mξ 2) and are defined in terms of the healing length ξ =√

h̄2/(mgn0), where m is the atomic mass and n0 is the density
of the uniform condensate (V = 0). Additionally, temperature
is measured in h̄2/(kBmξ 2) units, where kB is the Boltzmann
constant. The equation of motion (6) conserves the norm,

N =
∫ +∞

−∞
n(r) dr = 1, and n(r) = |�(r)|2, (8)

for γ = 0. In the absence of an external trap (V = 0), Eq. (6)
is associated with the effective potential Ve(�) = g

2�4 + ε�2.
The control parameter ε(t ) = −μ(t ) is set by the chemi-
cal potential μ. Its variation across the critical point εc =
0 describes the formation of a BEC, bringing the system
from a symmetric phase with � = 0 (ε < 0) to a symmetry-
broken phase represented by a ground-state complex wave
function � = √|μ|/gexp(iθ ) (ε > 0), where θ represents the
global phase of the condensate. In the nonequilibrium set-
ting, the polar decomposition of the condensate wavefunction
reads �(r, t ) = |�(r, t )| exp[iθ (r, t )]. The condensate veloc-
ity v(r, t ) = h̄

m ∇θ (r, t ) may acquire a net circulation around
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a given point∮
v(r, t ) · d
 = 2π h̄

m
w, w ∈ Z. (9)

The associated singularity constitutes a vortex, which is char-
acterized by a vanishing density at its core and a finite healing
length. According to KZM, vortices spontaneously form dur-
ing the phase transition. To describe the critical dynamics of
BEC formation, we consider a linear quench of the control
parameter

ε(t ) = −μi − t

τQ
|μ f − μi|, (10)

where τQ is the quench time, μi is the initial chemical
potential, and μ f is the final chemical potential. To solve
Eq. (6) numerically, we use the software package XMDS [53].
This software efficiently solves stochastic differential equa-
tions numerically by using a semi-implicit algorithm. Unless
otherwise specified, we consider a homogeneous condensate,
V (r) = 0, with the domain size D = 4 × L2, where L = 15.
We further fix the parameters μi = 0.1, μ f = 20, g = 1, γ =
0.03, and T = 10−6. Additionally, we build an ensemble out
of R stochastic trajectories corresponding to different noise
realizations to characterize the spatial statistics. We begin our
numerical experiments with the initial condition � = 0 and
let the system relax for a time t0 = 10 before the beginning of
a quench.

III. UNIVERSAL VORTEX STATISTICS

Above the BEC transition, the order parameter effectively
vanishes. During the phase transition, it grows in a time scale
set by the freeze-out time t̂ . KZM introduces the nonequilib-
rium correlation length scale ξ̂ . We model the vortex spatial
statistics by assuming that a mosaic of protodomains forms
with an average length scale set by ξ̂ and tessellate the atomic
cloud in the early stages of the dynamics. In each domain, we
assume the phase of the emergent BEC to be homogeneous
and chosen at random. When such domains merge at a point,
a vortex is formed with probability p [54,55].

A. Universal BEC growth dynamics

Figure 1(a) shows the dynamics of BEC formation as mon-
itored by the growth of the condensate wavefunction norm
when the chemical potential is varied in different quench
time scales. According to the KZM, the response time of
the nonequilibrium system is set by the freeze-out time t̂ =
(τ0τ

zν
Q )

1
1+zν . This universal scaling can be revealed by monitor-

ing the growth of the order parameter in real time for different
values of the quench rate and rescaling the time of evolution
by the freeze-out time t̂ [46,56,57]. This prediction is verified
in Fig. 1(b), which leads to a collapse of the different curves
of the left panel. In addition, numerical simulations show that
for a given quench time τQ, the growth of the condensate norm
exhibits a transition from an early exponential regime to a later
stage characterized by a linearly in-time behavior. We refer to
the crossover time as the equilibration time teq (marked by
red points), which is expected to be proportional to t̂ and thus
scales with the quench time as teq ∝ √

τQ when zν = 1. An

FIG. 1. Kibble-Zurek universality in the response time of the
order parameter in a BEC transition. (a) Norm N as a function of the
time of evolution following a linear ramp of the chemical potential
with τQ = (10, 20, ..., 130) (left to right) in a single realization. Red
points indicate the crossover from an exponential growth to a linear
growth, and the corresponding time is denoted by teq. (b) The collapse
of the growth of the BEC quantified by N as a function of the evolu-
tion time scaled by the freeze-out time t̂ ∝ √

τQ. For slow quenches
(τQ > 20), all the lines collapse to a single line for t < teq. The inset
in (b) shows teq as a function of τQ with a scaling teq ∝ τ 0.48±0.046

Q

indicated by the solid line. The scaling of teq is consistent with the
KZM prediction for t̂ in Eq. (3).

analogous time scale has been identified in the holographic
superfluids [32]. Its scaling with the quench time is verified
in the inset of the right panel. For fast quenches, t̂ deviates
from the KZM scaling

√
τQ, saturating at a plateau where the

vortex number becomes independent of the quench time. This
behavior agrees with the breakdown of the KZM in the fast
quench limit [18,31–33]. We focus on the range of quench
times in which KZM holds. In this regime, the time scale
in which the BEC is formed exhibits a universal power-law
scaling as a function of the quench time in which the transition
is driven.

At the crossover time teq, the expected number of defects
is maximum due to the development of well-defined vortex
cores resulting from merging multiple protodomains. The ex-
ponential and linear stages of the BEC growth under a slow
quench are associated with regimes of vortex generation and
adiabatic BEC growth, respectively [32]. Figure 2 shows the
condensate density |ψ |2 with both positively and negatively
charged vortices at different times of the dynamical process
for t ∼ teq. In addition, our simulations of the homogeneous
BEC formation rely on the SGPE with periodic boundary
conditions. As a result of the Poincaré-Hopf theorem, the total
topological charge of the system at any given time should
vanish identically. This is verified in Fig. 2. Further, the num-
ber of vortices following the quench generally decreases with
the passage of time due to vortex antivortex annihilation by
emitting sound waves.

B. Vortex number statistics

While our primary interest lies in the vortex spatial
statistics and the associated stochastic geometry, we first char-
acterize the fluctuations in the total number of spontaneously
formed vortices. These fluctuations among independent real-
izations affect the spatial statistics and lie beyond the KZM.
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FIG. 2. Spontaneous vortex formation resulting from BEC formation. Panels (a)–(d) show snapshots of the nonequilibrium condensate
density |�|2 with spontaneously formed vortices in a homogeneous 2D BEC at different times (t > teq) for a fixed quench time τQ = 90. The
total vortex number N is the sum of vortices with positive and negative charges, represented by red and blue circles, respectively. The total
topological charge is zero in each realization. (e) Dependence of the total vortex number N = κ1 on the quench time τQ, determined at the
time of evolution t = teq. The red symbols show the average over R = 400 different runs. As the quench time is increased the total vortex
number exhibits a crossover from a plateau value, observed in the limit of fast quenches, to a power-law behavior. The fluctuations of the
vortex number share this behavior. The fits to the first two cumulants, the average (κ1) and variance (κ2) of the total number of defects N , agree
with the universal cumulant power-law prediction in Eq. (12) with mean-field critical exponents ν = 1/2 and z = 2.

A description of the vortex full counting statistics relies on
the assumption that vortex formation at different locations is
described by independent events [40,41]. This model uses the
KZM correlation length to partition the emergent BEC into
protodomains, in which the condensate phase is coherent. A
vortex forms at the merging point between different domains
with a given success probability according to the geodesic
rule. Events for defect formation are assumed to be identically
distributed, with a success probability p. The number of possi-
ble domain locations for defect formation can be estimated as
Nd = A/(ξ̂ 2), for an emergent BEC of area A. The probability
of forming N defects is then given by the binomial distribution

P(N ) =
(Nd

N

)
pN (1 − p)Nd −N . (11)

This distribution encodes the universal scaling of its cumu-
lants κq with the quench time τQ,

κq ∝
(

τ0

τQ

) 2ν
1+zν

. (12)

The distribution given in Eq. (11) approaches a normal
distribution in the large Nd limit,

P(N ) = 1√
2π (1 − p)〈N〉 exp

(
− (N − 〈N〉)2

2(1 − p)〈N〉
)

, (13)

where 〈N〉 represents the mean defect numbers averaged over
different initial conditions.

Figure 2(e) shows the average (k1) and variance (k2) of
the total defect number N as a function of τQ. In the slow
quench regime, the first two cumulants κ1 and κ2 follow the
scaling law κ1 ∝ τ−0.48±0.08

Q and κ2 ∝ τ−0.58±0.2
Q , respectively.

These scaling are in good agreement with the beyond-KZM
prediction in Eq. (12), where for mean-field critical exponents

2ν
1+zν = 1/2.

C. Vortex spatial statistics and stochastic geometry

We model the location of the vortices using a homogeneous
Poisson point process with a density determined by the KZM
scaling law, i.e., the PPP-KZM model. Building on it, we next
derived closed-form distributions characterizing spontaneous
vortex patterns and the spatial correlation between vortices.

1. Vortex distance distribution

We first characterize the distribution of the distance be-
tween any two vortices. Vortices are assumed to be randomly
distributed on a disk of radius R. Given the vortex locations r
and r′, we consider the distance s = ‖r − r′‖.

The distribution of the distance s between vortices is then
that of the disk line picking problem in geometric probability
[58]. The vortex distance distribution is

P2(s) = 4s

πR2

[
arccos

(
s

2R

)
− s

2R

√
1 − s2

4R2

]
, (14)

with the mean, 〈s〉 = ∫ 2R
0 sP(s)ds = rR, r = 128

45π
. A crucial

feature of P2(s) is that it is “blind” to the KZM scaling, as it
is independent of the total number of vortices. As long as the
vortex locations are described by a PPP, the result for P2(s)
is the same whether it is computed for a pair of vortices or a
hundred. As such, P2(s) is ideally suited to test the validity of
the PPP description, independently of the validity of the KZM
scaling.

2. Unconditioned vortex spacing distribution

Given the location of a vortex as a reference, the spacing
distribution is defined as the probability of finding any of the
other (N − 1) vortices at a distance between s and s + ds, with
the remaining (N − 2) vortices being located farther away.
This definition treats vortices with winding number w = ±1
on equal footing, without distinction by their topological
charge.

A schematic representation of the first-nearest-neighbor
distance s is shown in Fig. 3. In the limit of large N , and using
the spacing normalized to the mean S = s/〈s〉 the spacing
distribution takes the form of a Wigner-Dyson distribution
[59]

P(1)(S) = P(S) = π

2
S exp

(
− π

4
S2

)
. (15)

In this expression, the KZM universality is hidden in the
scaling of the mean spacing, predicted to be

〈s〉 =
√

π

2
ξ̂ ∝

(
τQ

τ0

) ν
1+zν

. (16)
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FIG. 3. Schematic representation of the defect spacing s with
respect to the reference vortex at the center of the circle in the case of
(a) P(s) = P(1)(s) and (b) P(2)(s). The black points represent vortices
without accounting for their topological charges.

3. Vortex spacing distribution of kth order

The spacing distribution in Eq. (15) can be generalized
by focusing on the kth-nearest neighbor; see Fig. 3 for a
schematic representation. To be precise, considering a vortex
of reference at the origin, with its first (k − 1) neighbors being
located in the interval (0, s), the distribution P(k)(s) describes
the probability to find the kth neighbor at a distance between
s and s + ds, provided that the remaining N − k − 1 vortices
are farther apart. An explicit computation using the PPP-KZM
model shows that for the spacing relative to the mean,

P(k)(S) = 2

(k − 1) !
r2kS2k−1e−r2S2

, (17)

where r = �( 1
2 +k)

�(k) , as detailed in Appendix A. This is in
agreement with the known kth-order-spacing distribution of
a PPP with unit mean spacing [58].

Using these figures of merit, let us assess the validity of
the PPP-KZM model in describing the vortex patterns in a
newborn BEC. The randomness of the numerically obtained
vortex locations is verified in Fig. 4(a). The distribution of the
distance between two defects agrees well with the prediction
in Eq. (14) for the distance between two random points on a
disk, i.e., the disk line picking problem [60]. The deviation
in the tail of the probability distribution from the analytical
prediction is attributed to the square geometry of the domain.

As a result of thermal fluctuations, the vortex number is
a stochastic variable, fluctuating among different realizations.
The vortex number statistics follows the normal distribution
Eq. (13), a limiting case of the binomial distribution Eq. (11).

Given this, we analyze the spatial statistics for a fixed N
and for varying N . The corresponding histograms are shown
in Figs. 4(c) and 4(d) and are in good agreement with the
Wigner-Dyson distribution Eq. (15). The difference in the
spatial statistics with fixed and varying N is negligible in the
scaled spacing variable S. This is further verified and shown
in the Appendix B by considering a PPP of random points
generated on a domain of size D = 4 × L2, where L = 15.
Additionally, as shown in Fig. 5, an excellent agreement is
found between the numerically calculated and analytically es-
timated probability distributions for the kth-nearest-neighbor

FIG. 4. Histograms of (a) the distance s between two defects,
(b) the total number of defects N , and (c) the spacing between
topological defects S relative to the mean, for varying N , (d) and
for fixed N at t = teq for τQ = 90. The solid-black line in (a) repre-
sents the disk line picking distribution Eq. (14), the solid-red line in
(b) denotes the normal distribution Eq. (13), and in (c) and (d), the
solid-blue line stands for the Wigner-Dyson distribution in Eq. (15).

distance. We further verify the matching between numerical
and analytical results in the Appendix C. Figure 6 shows
the mean spacing 〈s〉 calculated at t = teq as a function of
τQ. At fast quenches, the average spacing remains constant.
The vortex number saturates at a plateau in this limit due
to the breakdown of the KZM scaling, recently shown to be
universal [32,33]. For slower quench times, the mean spacing
scales with τQ as 〈s〉 ∝ τ 0.27±0.04

Q . This power law agrees with
the prediction in Eq. (16) beyond the KZM. Similar statistics

FIG. 5. Histogram P(k)(S) of the spacing between topological
defects S for the kth-nearest neighbor, with k = 1, 2, 3, 4 from left
to right at t = teq, and τQ = 90. The solid-blue line in each panel
represents the corresponding distribution in Eq. (17).
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FIG. 6. The mean spacing 〈s〉, 〈s〉++, and 〈s〉+− are shown in red
symbols as a function of τQ. The values are computed at t = teq, using
an average over R = 400 different runs, that sets the width of the
error bars.

are found at different times for t ∼ O(teq), as long as vortex
decay arising from coarsening remains subdominant.

4. Conditioned vortex spacing distribution

The PPP-KZM model assumes the location of vortices
to be uncorrelated. In particular, it ignores the topological
charge of the vortices. It also ignores that once fully formed,
vortices interact with each other through an effective logarith-
mic potential as a two-dimensional Coulomb plasma [61]. As
a result, vortices with equal topological charges repel each
other, while those with opposite charges attract. In short, there
are vortex-vortex and vortex-antivortex correlations that the
PPP-KZM model ignores.

Given the restriction in the winding number w = ±1, the
total number of vortices is the sum of the number N+ of those
with w = +1 and the number N− of those with w = −1, i.e.,
N = ∑

w=±1 Nw = N+ + N−. The effect of the interactions
between vortices can be studied by introducing the generaliza-
tion of the spacing distribution conditioned on the topological
charge.

We denote by Pww′ (S)dS the probability that given a w

vortex of reference, the nearest w′ vortex is at a distance
between S and S + dS, with no condition on the location of
the other w vortices, and with all other w′ vortices being
further away. See Fig. 7 for a schematic representation. The
specific sign of the charge should have no bearing, so we
expect P++(S) = P−−(S), and similarly, P+−(S) = P−+(S).

To estimate Pww′ (S), we combine energetic considerations
with the PPP-KZM. In the case of P++(S) = P−−(S), there is
likely to be a −w vortex on the interval (0, S) because of the
attractive interaction of two oppositely charged vortices. This
is verified in Fig. 2. We analytically estimate the probability
distribution in this case in Appendix D. The distribution is
approximately given by P(2)(S), i.e.,

P++(S) = P−−(S) = 2r4S3 exp(−r2S2), (18)

FIG. 7. Schematic representation of the spacing s between a
reference vortex, at the center of the black circle, and its near-
est neighbor with a given topological charge. Red and blue points
represent positively and negatively charged vortices, respectively.
The associated probability distributions (a) P+−(s) = P(1)(s) and
(b) P++(s) ≈ P(2)(s) involve conditioning on opposite and equal
topological charges of the vortex pair.

where r = �( 5
2 ) = 3

√
π

4 . This indicates that the universal
KZM scaling

〈s〉++ = 〈s〉−− = 3
√

2π

4
ξ̂ ∝

(
τQ

τ0

) ν
1+zν

(19)

still holds.
In the case of P+−(S), it is unlikely to find a vortex with

w = +1 on the interval (0, S) due to the repulsive inter-
action between the identically charged vortices. A similar
argument applies to P−+(S). Hence, the distribution function
obeys P+−(S) = P−+ = P(S) and the mean spacing is given
by 〈s〉+− = 〈s〉−+ = √

2〈s〉, where P(S) takes the Wigner-
Dyson form in Eq. (15). The power-law scaling of the mean
spacing with and without conditioning on the winding number
is shown in Fig. 6. Numerical fits to a power law agree with the
prediction in Eq. (19). Fitted power-law exponents are consis-
tent with the predicted value ν

1+zν = 1/4 within the error bars.
Numerically, one can further identify the charges of each vor-
tex and measure the probability distributions P++(S), P−−(S),
P+−(S) and P−+(S). Figure 8 shows the histogram of posi-
tively charged topological defects along with the probability
distributions P++(S), P−−(S), and P+−(S). The probability
distribution P−+(S) is not shown as it exhibits a similar be-
havior to P+−(S). The distribution P++(S) = P−−(S) agrees
well with the analytically estimated distributions Eq. (18).
The small deviation of P+−(S) from the analytical estimate
in Eq. (15) is likely due to the small but finite probability
of finding two equally charged vortices nearby. Similarly,
the deviation in P(N+) is a due to finite-size effects, justi-
fied in Fig. 15(a) below, associated with the small number
of positively charged vortices. We have verified that similar
distributions are observed at different final times t ∼ teq.

Figure 6 shows the mean spacing 〈s〉++ and 〈s〉+− cal-
culated at t = t eq as a function of τQ. In the slow quench
regime, each of the average spacings exhibits the universal
scaling with τQ, 〈s〉++ ∝ 〈s〉+− ∝ 〈s〉 ∝ τ

1/4
Q , in agreement

with Eqs. (16) and (19).
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FIG. 8. Histogram of the (a) total number of positively charged
vortices N+, (b) the spacing between the defects P++(s), (c) P−−(s),
and (d) P+−(s) at t = teq for τQ = 90. The solid-red line in (a) rep-
resents the distribution Eq. (13), the dashed-green line in (b) and
(c) denotes the Eq. (18), and in (b)–(d) the solid-blue line corre-
sponds to the distribution (15).

5. Voroni cell-area statistics

Voronoi diagrams are an essential tool in stochastic geom-
etry to characterize spatial patterns of point processes [45].
They are helpful in the visualization and characterization of
topological defects [61]. In particular, they have been used
to analyze the spatial statistics of vortices in two-dimensional
classical fluids, see, e.g., [62,63], and the KZM [57,64,65].

Consider a BEC extended over a domain D (the support
of the density profile) and proliferated with spontaneously
formed vortices at the coordinates {ri}. Given the Euclidean
distance d (r, ri ) = ‖r − ri‖, a Voronoi cell Ri is associated
with the vortex at location ri, by considering the set of points
r that are closer to ri than to any other vortex. Said differently,

Ri = {r ∈ D | d (r, ri ) � d (r, r j ) ∀ j �= i}. (20)

The union of the Voronoi cells provides a partition of the BEC
that tesselates the domain D. Each Voronoi cell has an area
Ai. We focus on the cell area distribution P(A), where A =
Ai/〈Ai〉, and 〈Ai〉 represents the mean cell area. The Voronoi
cell-area distribution of a PPP on the plane is approximately
given by the gamma distribution [66,67]

P(A) = ba

�(a)
Aa−1 exp (−bA), (21)

where among the different known parametrizations, a and b
can be approximately chosen to be 3.6. This estimation is
based on the fact that the average number of edges of the
Voronoi cells is 6, and each hexagon cell has the area Ai =√

3
2 (s/6)2, where s represents the nearest-neighbor distance

[66].
The mean of Voronoi cell area for a hexagon is 〈Ai〉 =√

3
2 〈( s

6 )
2〉. This leads to the universal power-law scaling of the

FIG. 9. Universal stochastic geometry of a newborn BEC.
(a) Voronoi tesselation of a snapshot of the nonequilibrium con-
densate density |�|2, displaying the spontaneously formed vortices.
(b) Voronoi diagram with the corresponding phase θ (r, t ) of the
order parameter. (c) Histogram of the Voronoi cell-area distribu-
tion at t = teq for τQ = 90, in close agreement with the predicted
distribution, Eq. (21), shown as a solid-orange line. (d) The mean
Voronoi cell area 〈Ai〉, depicted in red symbols with error bars, as a
function of τQ and evaluated at t = teq. The solid red line represents
the fit 〈Ai〉 ∝ τ 0.51±0.09

Q , which is consistent with the prediction in
Eq. (22), where ν = 1/2 and z = 2. The estimation of the Voronoi
cell area excludes the cells with vertices beyond the domain of the
condensate [−L, L] × [−L, L], where L = 15, and use an averaged
over R = 400 different runs.

mean Voronoi cell area in a newborn BEC with the quench
time,

〈Ai〉 =
√

3

72
ξ̂ 2 ∝

(
τQ

τ0

) 2ν
1+zν

. (22)

An instance of a Voronoi space tessellation is shown in
Figs. 9(a) and 9(b) for a fixed t = teq and τQ = 90. We cal-
culated the average number of edges of the Voronoi cells
and found an approximate value 5.7. This value is close to
6, the average number of nearest points predicted by Eu-
ler’s theorem. The area cell distribution agrees well with the
gamma distribution Eq. (21) as shown in Fig. 9(c) and found
a = b ≈ 3.6. We have further verified in the Appendix E, that
the same gamma distribution is obtained by numerically sam-
pling a PPP. In addition, Fig. 9(d) validates the beyond-KZM

universality 〈Ai〉 ∝ τ
2ν

1+zν
Q .

In short, we have verified the universality of the stochas-
tic geometry characterizing spontaneous vortex patterns in
a nonequilibrium BEC formed in finite time. Specifically,
we have shown that the predictions of the PPP-KZM model
accurately account for the spatial statistics in numerical sim-
ulations of the SGPE in a homogeneous BEC, in the absence
of an external trap and with periodic boundary conditions.
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FIG. 10. Kibble-Zurek universality in the response time of the
order parameter in a BEC transition for a trapped condensate.
(a) Norm N as a function of time for different τQ = (20, ..., 130)
(left to right) and R = 1, where red points indicate the crossover
from an exponential to linear growth and the corresponding time
is teq. (b) Collapse of the growth of the BEC quantified by N as a
function of time scale in terms of the freeze-out time t̂ ∝ √

τQ. For
slow quenches (τQ > 20), all the lines collapse to a single line for
t < teq.

IV. UNIVERSAL VORTEX STATISTICS
FOR A TRAPPED CONDENSATE

We next show the robustness of the findings reported in the
preceding sections in the presence of an uniform trap. To this
end, we report numerical experiments for a condensate formed
in the presence of an external potential. In such a setting,
additional annihilation mechanisms are possible, as vortices
may disappear at the edges of the BEC cloud. To validate our
results, we consider a hard-wall potential of the form

V (r) = V0�

(
r2

a2
− 1

)
, (23)

where r = ‖r‖, �(x) is the Heaviside function, and V0 is the
trap strength. A similar potential is used in many cold-atom
experiments [15,17,36–39]. For our numerical simulations,
we fix V0 = 60 � μ. As in the case of the homogeneous
BEC, we begin our numerical experiments with the initial
condition � = 0 and let the system relax for a time t0 = 10
before the beginning of a quench. Figure 10(a) shows the
response time of the order parameter in a BEC transition. The
collapse shown in Fig. 10(b) upon rescaling the evolution time
by

√
τQ confirms the universal scaling law predicted by the

KZM for the freeze-out time t̂ ∝ √
τQ with mean-field criti-

cal exponents ν = 1/2 and z = 2. While a steepening of the
power-law scaling of the defect number with the quench time
is expected in the presence of an extended external confining
potential [25,27], the validity of the standard KZM scaling
indicates that the transition remains effectively homogeneous
in the presence of the box-like trap, i.e., unaffected by the
Inhomogeneous KZM [27]. Figure 11 shows different snap-
shots of the condensate density |�|2 during the Bose-Einstein
condensation. As in the homogeneous case, the newborn BEC
is proliferated by positively and negatively charged vortices
formed at different times of the dynamical process. Unlike in
the homogeneous condensate with periodic boundary condi-
tions, the total vortex charge in the presence of the box-like
trap need not vanish due to the decay of vortices through

FIG. 11. Snapshots of the nonequilibrium condensate density
|�|2 showing the spontaneously formed vortices in a homogeneous
2D BEC in a trap at different times (t � teq) for τQ = 90. Red and
blue symbols represent positive and negatively charged vortices,
respectively, with N denoting the total vortex number.

the periphery. Nevertheless, due to the hard-wall trap, this
process is minimized by the mesa-like profile of the newborn
BEC, and the primary mechanism of the vortex annihilation
is through antivortex interaction. Figure 12 shows the average
number of the total defects N and mean spacing 〈s〉 calculated
at t = teq as a function of τQ. In the slow quench regime, the
average number of defects exhibits a scaling N ∝ τ−0.43±0.14

Q ,

while the mean spacing scales with τQ as 〈s〉 ∝ τ 0.27±0.05
Q .

The scaling law of N is consistent with the KZM prediction
of the defect density. On the other hand, both these scaling
laws are in good agreement with the predictions in Eqs. (12)
(for q = 1) and (16) beyond the KZM. Moreover, the mean

FIG. 12. BEC formation in a hard-wall trap. (a) The total number
of defects N and (b) the mean spacing 〈s〉, 〈s〉++, and 〈s〉+− in the
trap as a function of τQ produced at t = teq averaged over R = 200
different runs are shown in red symbols with error bars.
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TABLE I. Summary of the results for the vortex spatial statistics and stochastic geometry.

Vortex spatial statistics and stochastic geometry

Name Mean Probability distribution

Vortex distance distribution 〈s〉 = 128
45π

R P2(s) = 4s
πR2

[
arccos

(
s

2R

) − s
2R

√
1 − s2

4R2

]

Vortex spacing distribution 〈s〉 =
√

π

2 ξ̂ ∝ ( τQ

τ0

) ν
1+zν P(S) = P1(S) = π

2 S exp
( − π

4 S2
)

Vortex spacing distribution of kth order 〈s〉 = �

(
1
2 +k

)
�(k) ξ̂ ∝ ( τQ

τ0

) ν
1+zν P(k)(S) = 2

(k−1) ! r2k−1S2k−1e−r2S2
, r = �

(
1
2 +k

)
�(k)

Conditioned vortex-antivortex spacing distributions 〈s〉+− = 〈s〉−+ = √
2πξ̂ ∝ ( τQ

τ0

) ν
1+zν P+−(S) = P−+(S) = P(S)

Conditioned vortex-vortex spacing distributions 〈s〉++ = 〈s〉−− = 3
√

2π

4 ξ̂ ∝ ( τQ

τ0

) ν
1+zν P++(S) = P−−(S) = 2r4S3 exp(−r2S2), r = �

(
5
2

)
Voronoi cell-area statistics 〈Ai〉 =

√
3

72 ξ̂ 2 ∝ ( τQ

τ0

) 2ν
1+zν P(A) = ba

�(a) Aa−1 exp(−bA), A = Ai/〈Ai〉

spacing 〈s〉++ and 〈s〉+−, Eq. (19), are also consistent with the
KZM predictions. Additional simulations reported in the Ap-
pendix F confirm the universal stochastic geometry of vortex
patterns in a trapped newborn BEC.

V. CONCLUSIONS

A continuous phase transition crossed in finite time leads
to the formation of topological defects. Decades of research
have established the validity of the KZM in predicting the
mean density of defects, but are there universal features of
the critical dynamics beyond its scope? A positive answer to
this question has been the subject of a recent series of studies
establishing the universality of the defect number distribution
under the umbrella of beyond-KZM physics in both quantum
[68–72] and classical systems [40–44].

In this paper, we have addressed a complementary aspect
regarding the spatial statistics of spontaneously formed topo-
logical defects. In particular, we have focused on the vortex
formation during Bose-Einstein condensation of a Bose gas.
In this context, the average number of defects is well described
as a function of the cooling rate by KZM in the limit of
slow cooling. Vortex number fluctuations are shown to be
universal. The vortex number distribution is well described by
a binomial distribution with a mean predicted by the KZM.
Specifically, numerical simulations of a homogeneous and
trapped condensate lead to a normal vortex number distri-
bution. The dynamics of Bose-Einstein condensation results
in vortex-antivortex pairs, and the winding number of each
vortex is restricted to w = ±1.

The vortex spatial statistics can be described as a PPP
on a plane with KZM density. The vortex distance distribu-
tion normalized to the mean are equivalent to those in the
celebrated disk line picking problem and admit closed-form
analytical expressions in excellent agreement with SGPE sim-
ulations. The vortex spacing distribution is described by a
Wigner-Dyson distribution, when vortices and antivortices are
treated on equal footing. However, when the spacing distri-
bution is conditioned on the topological charge, it changes
from Wigner-Dyson to that of the next-nearest-neighbor-
spacing distribution, i.e., the spacing distribution of second
order. The agreement with the PPP-KZM model extends
beyond two-point correlations and is established for the

kth-nearest-neighbor distribution. Further evidence of the uni-
versal vortex stochastic geometry is provided by considering
the random tessellation of the spontaneous vortex distribu-
tion. The corresponding Voronoi area-cell statistics follows a
universal gamma distribution, with universal mean area-cell
scaling with the quench rate.

Our results, summarized in Table I, establish the univer-
sality of the emergent stochastic geometry of spontaneously
formed point-like topological defects generated across a con-
tinuous phase transition. In doing so, they unveil universal
signatures of the critical dynamics of systems driven across
a phase transition that lie beyond the scope of the KZM.
These predictions are testable in a wide variety of experiments
involving BEC formation, as well as in other scenarios charac-
terized by the spontaneous creation of point-like topological
defects, such as kinks and vortices, e.g., in superfluids, su-
perconductors, quantum fluids of light [73], colloidal systems
[74], and multiferroics [75]. Applications exploiting these
findings can be envisioned, e.g., in the study of turbulence,
structure formation, tribology, and the engineering of func-
tional materials.
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APPENDIX A: PROBABILITY DISTRIBUTION
P(k)(s) FOR kth NEAREST NEIGHBOR

In this Appendix, we compute the probability P(k)(s) of
finding a kth-nearest-neighboring vortex at a distance s from
a reference vortex. It is known that for a Poisson point pro-
cess on a disk of radius R, the kth-nearest-neighbor-spacing
distribution reads [58]

P(k)(s)ds = 2
(λπ )k

(k − 1) !
s2k−1e−λπs2

ds, 0 � s � R, (A1)

where the λ is the intensity, i.e, the number of points in an
area A.
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For N random vortices on a disk of radius R with area A =
πR2, the intensity λ = N

πR2 . Thus, (A1) becomes

P(k)(s)ds = 2NkR−2k 1

(k − 1) !
s2k−1e− N

R2 s2

ds, (A2)

for 0 � s � R. On rescaling s = xR, we get

P(k)(s)ds = 2Nk

(k − 1) !
x2k−1e−Nx2

dx, 0 � x � 1. (A3)

The average value of the kth-order spacing distribution is thus
given by

〈s〉 =
∫ R

0
sP(k)(s)ds (A4)

= N−1/2R
�

(
1
2 + k

)
�(k)

= ξ̂
�

(
1
2 + k

)
�(k)

,

where R = N1/2ξ̂ . For S = s/〈s〉 = xR/〈s〉,

P(k)(S)dS = 2

(k − 1) !
r2kS2k−1e−r2S2

dS, (A5)

where r = �( 1
2 +k)

�(k) .
For k = 1, this kth-neatest-neighbor-spacing distribution

reduces to the prediction put forward in Ref. [59] and takes the
form of the well-known Wigner-Dyson distribution Eq. (15).

For a d ball, a systematic derivation can be done from the
probability distribution

P(k)(s)ds = Q(s)R(s)g(s)ds, (A6)

where

g(s) =
(

N − k

1

)
Sd−1(s)

Vd (R)
, (A7)

R(s) =
(

N − 1

k − 1

)(
Vd (s)

Vd (R)

)k−1

, (A8)

Q(s) =
(

1 − Vd (s)

Vd (R)

)N−k−1

, (A9)

with the volume Vd (x) and surface Sd−1(x) being defined as

Vd (x) = πd/2

�
(

d
2 + 1

)xd , Sd−1(x) = 2πd/2

�
(

d
2

) xd−1, (A10)

in terms of the Gamma function �(x).
Thus, P(k)(s) has different contributions. Out of N vortices,

one is taken as a reference, k − 1 out of the remaining N − 1
are chosen as the first neighbors in the interval (0, s) with
probability R(s), the kth neighbor is chosen out of the remain-
ing N − k vortices at a spacing between s and s + ds with
probability g(s), with all other vortices are found further away
with probability Q(s). For large N , this leads to the equation

P(k)(S)dS = d

(k − 1) !
rdkSdk−1e−rd Sd

dS, (A11)

where r = �( 1
d +k)

�(k) .

FIG. 13. (a) Random points on a domain [−15, 15] × [−15, 15].
(b) Histogram of the spacing between the defects for a fixed N total
number of random points. (c) Histogram of the total number of ran-
dom points N obtained from a Poisson point process for R = 10000
different initial conditions and (d) the corresponding histogram of
the spacing between the defects, where the solid blue line in (b) and
(d) represents the distribution Eq. (15). The solid-red line in (c) de-
notes the distribution Eq. (13).

APPENDIX B: DISTRIBUTION OF POISSON
POINT PROCESS

This Appendix compares the probability distribution ob-
tained from a PPP for a fixed N and varying N . Figure 13
shows the corresponding histogram obtained from R =
10000 different initial conditions for fixed and varying total
number N of random points generated on a domain of size
[−15, 15] × [−15, 15]. The difference in the spatial statistics
with fixed and varying N is minimal due to the interdependent
Poisson process for each N . Moreover, the probability distri-
bution P(s) matches well with the Wigner-Dyson distribution,
Eq. (15).

APPENDIX C: CONFIDENCE BANDS AND ESTIMATION
FOR PROBABILITY DISTRIBUTION OF SPATIAL

STATISTICS

Figure 14 shows the probability distributions of (a) the
distance s between two defects, (b) the Voronoi cell-area dis-
tribution, (c) the spacing between topological defects S for
varying N , and (d) and the same for fixed N at t = teq for
τQ = 90 of a homogeneous condensate with confidence inter-
vals. The blue-solid lines represent the nonparametric density
estimate (smoothed kernel) and blue-dashed lines denote
bootstrap-created confidence bands. The results show that
kernel densities match the analytical estimate (dot-dashed-red
lines) well.

We additionally compare the analytical and numerical es-
timates of various probability distributions for conditioned
vortices by representing the distributions with the inclusion of
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FIG. 14. Probability density function of (a) distance s between
two defects, (b) the Voronoi cell area distribution, (c) spacing be-
tween topological defects S for varying N , and (d) the same for
fixed N at t = teq for τQ = 90 of a homogeneous condensate. The
thick-blue-solid line represents the numerical estimates, and the red
dot-dashed line denotes the corresponding analytical estimates. The
dashed-blue lines represent the confidence interval.

confidence bands as shown in Fig. 15. We see the qualitative
matching between numerically calculated kernel densities and
the analytical estimate (dot-dashed-red lines).

FIG. 15. Histogram of the (a) total number of positively charged
vortices N+, (b) the spacing between the defects P++(s), (c) P−−(s),
and (d) P+−(s) at t = teq for τQ = 90. The dot-dashed-red line in
(a) represents the distribution Eq. (13), the same in (b) and (c) de-
notes the Eq. (18), and in (b)–(d) corresponds to the distribution (15).
The thick-blue-solid line represents the numerical estimates, and the
dashed-blue lines represent the confidence interval.

APPENDIX D: PROBABILITY DISTRIBUTIONS
P++ AND P+−

In this Appendix, we compare the total vortex spacing
distribution P(s) with the probability distributions P++(s) and
P+−(s) that involve conditioning on the winding number (cir-
culation) of the vortices.

Let g(s)ds be the conditional probability of finding a vortex
on a disk in the interval [s, s + ds] given that there is a vortex
at the origin s = 0. The maximum radius of the disk (d = 2)
is R. The total probability of finding any of the N − 1 vortices
as the nearest neighbor at a distance s from the origin is

P(s)ds = Q(s)g(s)ds, (D1)

with the normalization condition
∫ R

0 P(s)ds = 1, where Q(s)
represents the probability of finding the remaining N − 2 vor-
tices further away. In this case, the charges of vortices are not
considered. Additionally,

g(s)ds =
(

N − 1

1

)
Sd−1(s)

Vd (R)
ds (D2)

and

Q(s) =
(

1 − Vd (s)

Vd (R)

)N−2

. (D3)

1. Probability distribution P+−(S)

We next focus on the spacing distribution conditioned on
the winding number w = ±1. Consider that the reference
point is a w = +1 vortex. Then, the probability of finding a
w = −1 vortex becomes

P+−(s)ds = Q(s)g(s)ds, (D4)

where

g(s)ds =
(

N/2

1

)
Sd−1(s)

Vd (R)
ds, (D5)

Q(s) =
(

1 − Vd (s)

Vd (R)

) N
2 −1

, (D6)

where we note we do not condition the location of the other
vortices with w = +1. We next use the rescaled variable X =
s/R. We relate R with the correlation length out of equilibrium
ξ̂ with the expression R = N1/d ξ̂ = N1/dξ0( τQ

τ0
)

ν
1+zν [59]. In

terms of this new variable X , P+−(s)ds reads

P+−(s)ds = d
N

2
X d−1(1 − X d )

N
2 −1dX, (D7)

where Sd−1(s)
Vd (R) = d

R X d−1 and Vd (s)
Vd (R) = X d . Equation (D7) is nor-

malized, i.e.,

∫ R

0
P+−(s)ds =

∫ 1

0
P(X )dX = 1. (D8)
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In the large N limit

P+−(s)ds = d
N

2
X d−1 exp

(
−N

2
X d

)
dX, (D9)

and the mean spacing

〈s〉+− =
∫ R

0
sP+−(s)ds

= d ξ̂
N1+1/d

2

∫ 1

0
X d exp

(
−N

2
X d

)
dX

= 2
1
d ξ̂ �

(
1 + 1

d

)
. (D10)

We thus find that the spacing with and without conditioning
on the topological charge are related as

〈s〉+− = 2
1
d 〈s〉, (D11)

as expected from dimensional analysis.
We next normalize the distance s with respect to the mean

〈s〉+−. In the scaled variable S = s/〈s〉+−,

X = S〈s〉+−/R = r

(
2

N

) 1
d

S, (D12)

where r = �(1 + 1
d ). As a function of the spacing normalized

to the mean, the vortex-antivortex spacing distribution reads

P+−(S)dS = drdSd−1 exp(−rd Sd )dS. (D13)

Hence,

P+−(S) = P−+(S) = drd Sd−1 exp(−rdSd ). (D14)

2. Probability distribution P++(S)

Let us now consider that the reference point is a w = +1
vortex. Then, the probability of finding the nearest-neighbor
vortex with w = +1 becomes

P++(s)ds = Q(s)g(s)ds. (D15)

In the PPP-KZM model, all configurations with an arbitrary
number of antivortices between the nearest-neighbor w = +1
vortices should be taken into account and summed over. This
is equivalent to no conditioning on the location of the N/2
antivortices with w = −1, resulting in (D15). However, such
prediction does not describe the numerically simulated data.

In what follows, we deviate from the strict PPP-KZM
model and find an approximated estimate of P++(s) that ac-
curately describes the numerics. This approximation builds on
the fact that the interactions between any pair of defects are at-
tractive or repulsive depending on whether they have opposite
or equal sign winding numbers. It is these interactions that are
not taken into account in the PPP-KZM model. As a result,
two oppositely charged vortices are likely to be closer than
two equally charged vortices.

Among all the possible configurations of the N/2 antivor-
tices, we find that the numerical data is consistent with the
configuration in which an antivortex is located between the
two nearest-neighbor vortices used to define P++(s). Said dif-
ferently, we focus on the configuration with a w = −1 defect

in [0, s]. Accordingly, we estimate P++(s) as

P++(s)ds = Q(s)R(s)g(s)ds, (D16)

where

R(s) =
(

N/2

1

)
Vd (s)

Vd (R)
, (D17)

g(s) =
(

N/2 − 1

1

)
Sd−1(s)

Vd (R)
, (D18)

Q(s) =
(

1 − Vd (s)

Vd (R)

) N
2 −2

. (D19)

We now use the rescaled variable X = s/R = s/(N1/d ξ̂ ),
where ξ̂ = ξ0( τQ

τ0
)

ν
1+zν . In this variable Sd−1(s)

Vd (R) = d
R X d−1 and

Vd (s)
Vd (R) = X d . This leads to the relation

P++(s)ds = d
N

2

(
N

2
− 1

)
X 2d−1(1 − X d )

N
2 −2dX, (D20)

fulfilling the normalization condition∫ R

0
P++(s)ds =

∫ 1

0
P(X )dX = 1. (D21)

In the large-N limit,

P++(s)ds = d
N2

4
X 2d−1 exp

(
−N

2
X d

)
dX. (D22)

The corresponding mean spacing reads

〈s〉++ =
∫ R

0
sP++(s)ds

= d ξ̂N2+1/d
∫ 1

0
X 2d exp (−NX d )dX

= 2
1
d ξ̂ �

(
2 + 1

d

)
. (D23)

We note that 〈s〉++ is related to the unconditioned spacing 〈s〉
as

〈s〉++ = 3 × 2
1−d

d 〈s〉. (D24)

In terms of S = s/〈s〉++, one finds

X = S〈s〉++/R = r

(
2

N

) 1
d

S, (D25)

FIG. 16. (a) Voronoi diagram of random points on a domain
[−15, 15] × [−15, 15] and (b) histogram of the Voronoi cell area,
where the solid-orange line represents the distribution, Eq. (21).
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FIG. 17. Histogram of the (a) distance s between two defects, (b) total number of defects N , (c) the spacing between topological defects S
for fixed N , and (d) the Voronoi cell area distribution at t = teq for τQ = 90 of a trapped condensate. The solid-black line in (a) represents the
distribution Eq. (14). The solid red, blue, and orange lines in (b), (c), and (d) denote the Eqs. (13), (15), and (21), respectively.

where r = �(2 + 1
d ). Using the spacing normalized to the

mean,

P++(S)dS = dr2d S2d−1 exp(−rdSd )dS, (D26)

and thus

P++(S) = P−−(S) = dr2d S2d−1 exp(−rd Sd ). (D27)

APPENDIX E: DISTRIBUTION OF VORONOI CELL AREA
OF A POISSON POINT PROCESS

In this Appendix, we compare the probability distribution
of Voronoi cell area obtained from a numerically generated
PPP with the analytically estimated probability distribution
P(A) given in Eq. (21). Figure 16 shows the Voronoi diagram

of random points generated on a domain D = [−15, 15] ×
[−15, 15] and the histogram of Voronoi cell area Ai. We find
an excellent agreement between that theoretically estimated
probability distribution, Eq. (21), and that of a PPP.

APPENDIX F: HISTOGRAM OF DEFECTS AND SPATIAL
STATISTICS FOR A TRAPPED CONDENSATE

Figure 17(a) shows the histogram of the distance s between
two defects at t = teq for τQ = 90. Panels (b) and (c) show the
histogram of the total number of defects N and the spacing
between topological defects S for a fixed N , respectively. As
in the case of a homogeneous condensate, the vortex spatial
statistics agree well with the respective analytical estimations.
Finally, in Fig. 17(d), we show that the histogram of the
Voronoi cell area distribution of a trapped condensate also
follows the relation Eq. (21).
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