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Facile dual-shot measurement of Schmidt number in type-0 and type-2 downconversion
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High-dimensional entangled states have now been identified as excellent candidates towards the enhancement
of the bandwidth of quantum systems. A variety of methods exist that aim to certify and set the bounds to
entanglement. However, rapid and accurate approaches for precise quantification of the dimensions remain
a challenge. Here, we report a facile, rapid and robust approach that quantifies a wide range of the spatial
dimensions of high-dimensional entangled states using an interferometric technique using only two images.
Our process works for a class of pure two-photon states, regardless of its separability and provides a fast and
easy way to accurately measure the spatial Schmidt number which is a quantitative measure of dimensionality of
entanglement. We apply our method to two-photon states generated by spontaneous parametric down-conversion
(SPDC) and show that our results are in excellent agreement with numerical estimates. Since such estimates only
exist for collinear phase matching in SPDC crystals, we also derive a noncollinear phase-matching condition
applicable for type-2 crystals. In these nonlinear crystals, the commonly applied assumption of degenerate
daughter photons no longer holds, leading to deviations from earlier theoretical predictions. Our interferometric
technique provides excellent results for both type-0 and type-2 collinear phase-matching conditions, endorsing
its wide applicability in quantum photonics.
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I. INTRODUCTION

From its inception till today, entanglement remains one
of the most curious aspects of quantum mechanics. It was
first pointed out by Einstein, Podolsky, and Rosen (EPR)
[1] and Schrödinger [2] by showing that some multiparticle
quantum states have global states without meaningful com-
posite states. Bohm [3] reformulated the EPR argument in
terms of a simpler bipartite system of two spin-1/2s using
which Bell proposed his famous inequality [4]. Experimen-
tal violations of this inequality distinguish the predictions
of quantum mechanics and a theory based on local hidden
variables. These experiments [5–8] ruled in the favour of
quantum mechanics. It is curious to note that, while these
experiments were based on two-dimensional Hilbert space
(qubits), the EPR work dealt with continuous variable entan-
glement, that is, high dimensional entanglement. These states
were not studied extensively owing to their complexity. Work
on high-dimensional entanglement picked up momentum with
Werner’s contribution [9] where the first formal definition of
entanglement was provided.

Recently, however, high-dimensional entangled states
have grown popular as they can be readily used to in-
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crease the bandwidth and security bounds for quantum
communication by opening up higher dimensions of Hilbert
space [10]. Several reports have catalogued the benefits of
these high-dimensional spaces by using energy-time, angle-
orbital angular momentum, and transverse momentum-spatial
degrees of freedom [11,12]. Other reports have also shown
how higher dimensions enable information processing that
is robust against noise [13], and optimal quantum cloning
machines [14,15]. They have been employed to enhance the
information transfer rates [16], making them superior to the
qubit alternatives for applications in quantum information
and quantum communication. For a broader introduction to
continuous variable entanglement, we refer to Ref. [17].

An existing challenge in high-dimensional systems is the
absence of a reliable way to certify and quantify the en-
tanglement, especially in the presence of noise [18,19]. It
is known that, in case of high-dimensional entanglement,
certification is comparatively easier than its quantification
[20]. Analogous to the Bell’s inequality whose violation
certifies the presence of qubit entanglement, various in-
equalities exist for continuous variable-correlations. Many
studies have measured EPR-correlations to certify position–
momentum [21–28], angle-orbital angular momentum [29],
radial position–radial momentum [30], quadrature phase-
amplitude [31], and time-energy [32–34] entanglement. There
are a few techniques to quantify the entanglement such as
quantum state tomography [35–39], however, these tech-
niques do not scale well with dimension. Moreover, methods
based on mutually unbiased bases [36,37] only provide
bounds. Next, a few established coincidence-based measure-
ments exist in the field [40–42] that are reported to scale
well, but they incur long experimental duration and loss of
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partner photons, which adversely affect their accuracy. They
also require prior knowledge of the form of the underlying
state. Part of the long runtime in some methods arises from
the raster scanning of single-photon detectors, a process that
can be circumvented by innovative two-dimensional quantum
detection [43–45]. Nonetheless, it is crucial to measure, in
a rapid and facile manner, the dimensions of these states
for fundamental tests of quantum mechanics as well as for
practical applications of quantum information processing pro-
tocols and quantum communication systems. In the former,
the dimension sets the bounds for inequality while in the
latter two, dimensions set the information capacity of the
state as well as the security bounds of the communication
channel.

It is now known that measurements based on intensity
detection can provide superior accuracy compared to those
based on coincidence detection. The dimensionality of en-
tanglement is quantified by a parameter called the Schmidt
number [46], defined as the minimum number of indepen-
dent vectors obtained by the Schmidt decomposition of the
density matrix. The Schmidt decomposition in quantum the-
ory is deeply connected to the coherent-mode decomposition
in classical coherence theory [47]. This connection was ex-
ploited to experimentally demonstrate [47] that, for a pure
state, the two-photon spatial Schmidt number can be measured
by implementing intensity measurements on only one of the
photons. However, this technique only works in the highly
entangled state, whose reduced state behaves as a quasi-
homogeneous source. Later, in the context of entanglement
migration [41], it was shown [42] that the dimensionality of
spatial entanglement is inversely proportional to the interfer-
ence visibility of one of the photons. However, they eventually
measured the Schmidt number by a coincidence method be-
cause the visibility of the one-photon interference is very
sensitive to noise and always overestimates the dimensions. In
this work, we establish an inversion-interferometric technique
(interference between a source and its inversion) to measure
the spatial Schmidt number with just two images that is robust
to noise. Such inversion interferometers were proposed in
Ref. [41] and were later deployed [42,48,49] to measure var-
ious quantities such as EPR-correlations and orbital angular
momentum spectra. In this work, using theoretical consider-
ations, we find that the inversion interferometer has further
information encoded in it. Accordingly, we report a way to
extract the spatial Schmidt number based on intensity mea-
surements for two-photon states that are pure, irrespective of
whether the state is separable or entangled. This also includes
slightly entangled states as long as certain conditions, as stated
later, are met.

The rest of the paper is divided into two sections and three
appendices. Section II sets up the theoretical background of
higher dimensional entanglement in the context of transverse
momentum and how Schmidt number encapsulates its mea-
sure. In Sec. II A, we examine the form of the wave function
used in typical SPDC experiments and derive the Schmidt
number for it, while in Sec. II B, we also show why it is
inapplicable for certain wave functions. In Sec. III A, we
elaborate our experimental setup and in Sec. III B, we present
the results.

II. THEORY

In the transverse momentum basis, a general two-photon
pure state |ψ〉 can be expressed as

|ψ〉 =
∫∫

dq1dq2ψ (q1, q2)|q1, q2〉, (1)

where q1 = (k1x, k1y) and q2 = (k2x, k2y ) are the transverse
wave vectors of the daughter photons, |q1, q2〉 is the two-
photon momentum state and ψ (q1, q2) is the two-photon wave
function. If this wave function can be written as ψ (q1, q2) =
u(q1)v(q2), it is separable. If such a separation does not exist,
the state is said to be entangled.

A natural way to characterize the structure of entanglement
of a pure state is via a Schmidt decomposition. For the wave
function in Eq. (1), it is given by

ψ (q1, q2) =
∞∑

n=0

√
βnun(q1)vn(q2). (2)

Here un(q1) and vn(q2) are the Schmidt modes. These are
the eigenmodes of the reduced density matrices of the signal
(first photon) and idler (second photon) respectively with βn

being the corresponding eigenvalues. Since the trace of the
(reduced) density matrix is equal to the sum of its eigenvalues,
we have

∑
n βn = 1.

Even though our state lies in an infinite dimensional Hilbert
space of continuous parameters, the finiteness of the trace
of density matrix ensures that the Schmidt decomposition is
always discrete [50]. Such a decomposition naturally parti-
tions itself to reveal how the photons are paired since if signal
is detected in mode un it immediately implies that the idler
is in the mode vn. Furthermore, the eigenvalues βn provide
a measure of the degree of entanglement as they provide a
weight factor to each mode. If there was only mode n = 1,
the trace condition gives us β1 = 1 and that state is hence
separable. In the maximally entangled case in N dimensions,
we have βn = 1/N . The Schmidt number K defined as K ≡
1/

∑
n β2

n provides an “average” measure of the number of
Schmidt modes involved in the decomposition of Eq. (2).
Unlike the eigenvalues βns, the Schmidt number K is directly
measurable in experiments and thus is a more direct measure
of entanglement.

A. The SPDC wave function and its Schmidt number

A common way to generate such high-dimensional en-
tangled states is via a nonlinear optical process called
spontaneous parametric down-conversion (SPDC). Here, one
pump photon is down-converted to two lower-frequency pho-
tons, named signal and idler. Since the process is parametric, it
conserves energy, momentum and angular momentum which
is the source of entanglement between the daughter photons.
The conservation of energy and momentum imply that,

ωp = ω1 + ω2, kp = k1 + k2,

where ωp is the frequency, kp is the wave vector of the pump
photon and ωi is the frequency and ki is the wave vector of the
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FIG. 1. Momentum conservation between the pump (blue line)
and the nondegenerate daughter (red and magenta lines) photons.

daughter photon(s) with i = 1, 2. For the degenerate case, the
componentwise momentum relation (see Fig. 1) is given by

kp = (k1 + k2) cos(θ ) − �kz, (3)

|q1 − q2|
2

= k1 sin(θ ), (4)

where θ is the angle between pump momentum kp and the
signal or idler (degenerate) momentum vectors k1 and k2.
Under the paraxial approximation, that is for small angle θ ,
we can combine Eqs. (3) and (4) to get

�kz ≈ −|q1 − q2|2
2kp

. (5)

We simplify the form of SPDC wave function under the
following five assumptions.

(i) The pump is monochromatic whose longitudinal mo-
mentum is much greater than the transverse components. This
assumption is approximately achieved experimentally by us-
ing narrowband laser and proper collimation.

(ii) The pump is sufficiently bright so that the downcon-
version events negligibly affect its intensity. Conventional
pump lasers and crystal efficiencies are well-aligned with this
assumption.

(iii) The downconversion is perfectly energy conserving
(�ω = 0) and the daughter photons are degenerate (ω1 =
ω2). This is achieved experimentally by using appropriate
nonlinear crystals, augmented by narrowband filters for the
downconverted beam.

(iv) The pump wavelength is much smaller than the trans-
verse dimensions of the crystal, which is easily achieved in
conventional crystals.

(v) The daughter photons are in the paraxial regime, which
can be ensured using proper pump beam characteristics.

These conditions, particularly the last two, mean that
the downconverted wave function can be partitioned into
ψ (q1, q2) = ψ (q1 + q2)ψ (q1 − q2) [51]. The first term, with
the summed momenta as the argument, arises from the large-
ness condition of the crystal, while the second term originates
from the paraxial approximation.

Finally, following Ref. [51], a Gaussian pump beam
with its waist at the crystal center yields the two-photon
wave function in the momentum space that can be approxi-
mated as

ψ (q1, q2) = Ae−|q1+q2|2/4σ 2
k e−b2|q1−q2|2/4, (6)

where A is the normalization constant, σk is the inverse of
the pump beam waist w0 and b2 = L/3kp, where L is the
crystal length and kp is the pump wave number inside the
crystal. Evidently, the two-photon wave function is a product
of two Gaussians, one in the sum of transverse momenta
and another in their difference. The advantage of this double-
Gaussian (DG) approximation is that its statistical properties,
the marginal, and conditional distributions are easy to com-
pute. Furthermore, for this DG wave function, the Schmidt
modes are the energy eigenfunctions of the 2D isotropic har-
monic oscillator. The Schmidt number K is the inverse sum of
squared probabilities of each eigenmode (by definition) and is
given by [50]

K = 1

4

(
bσk + 1

bσk

)2

. (7)

It is to be noted that our b value differs from Ref. [50] as we
use the momentum matching method introduced in Ref. [51].
This is appropriate as we are working in the momentum space.
Thus, to measure K experimentally, we need to accurately
measure the widths b and σk of our DG wave function.

For ease of calculation of the widths, we define rotated
coordinates q± = (q1 ± q2)/

√
2, with their variances under

the transformed DG wave function labeled σ 2
±. The marginal

σ1 and conditional σ(1|2) for a DG can now be written as

σ 2
1 = σ 2

+ + σ 2
−

2
σ 2

(1|2) = 2σ 2
+σ 2

−
σ 2+ + σ 2−

. (8)

Furthermore, in terms of the rotated coordinates, the fac-
tor bσk = σ+/σ−. In terms of the rotated variances, the 2D
Schmidt number, which due to azimuthal symmetry is the
square of the 1D variant, is given by [51]

K = 1

4

(
σ+
σ−

+ σ−
σ+

)2

=
(

σ 2
+ + σ 2

−
2σ+σ−

)2

=
(

σ 2
+ + σ 2

−
2

)(
σ 2

+ + σ 2
−

2σ 2+σ 2−

)
. (9)

Using Eq. (8) in Eq. (9),

K = σ 2
1

σ 2
(1|2)

. (10)

Thus, under the DG approximation for the wave function,
the Schmidt number is just a ratio between the marginal and
the conditional variance of the wave function, also known
as the Fedorov ratio [52]. It is well-known that for a DG
wave function, the Fedorov ratio and the Schmidt number
become identical at the imaging and Fourier planes of the
crystal center [42]. Thus, in order to measure the dimensions
of our state, we can replace the tedious measurement of b and
σk with the much simpler measurement of the conditional and
marginal variances.

Recently, it was shown that the correlation width of a
biphoton state ψ (q1, q2) can be extracted from inversion in-
terferometry [49]. The cross term of an interference, given by
the one-photon cross-spectral density function is

W (q1, q′
1) =

∫∫
ψ∗(q1, q2)ψ (q′

1, q2)dq2.
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Whenever ψ obeys

ψ∗(q1, q2)ψ (−q1, q2) ∝ |ψ (q1, q2 = 0)ψ (q1 = 0, q2)|2,
(11)

the conditional momentum probability distribution P(q1|q2 =
0) is related to the cross-spectral density as follows [49]:

W (q1,−q1) ∝ P(q1|q2 = 0). (12)

This implies that the conditional distribution has the same
width as the cross-spectral density. To obtain the width σ(1|2)

of P(q1|q2 = 0), we can measure the width f of W (q1,−q1).
Thus we can finally rewrite Eq. (10) in our context as

K =
(

σ

f

)2

(13)

since in our case the marginal distribution is the downcon-
verted beam, σ is just the width of the beam (we have dropped
the inconsequential index) and the width of the conditional
as we saw in Eq. (12) is the (fringe) width f of the cross-
spectral density. Although we derived the Schmidt number
at the momentum plane, the ratio of widths in Eq. (10) is
also the inverse visibility of the interferometer, as clarified in
Appendix A. This implies that the ratio is equal to the Schmidt
number at all locations and not just the momentum/position
plane. Since our method relies on fringe width rather than
fringe visibility, it is insusceptible to noise, loss of partner
photon, unequal polarization, or unequal intensities from the
two arms of OEMZI making it robust. The error in the product
of the position and momentum frame fringe widths of a mixed
state when compared to a pure state has been shown to scale
linearly with the fraction of mixedness of the state [49].

B. Type-2 SPDC wave function

Our theory in the previous section makes the implicit as-
sumption that the two downconverted photons are degenerate.
This implies perfect phase matching for which the wave func-
tion is easy to compute. We now use the general momentum
conservation to derive a more appropriate wave function. The
momentum conservation componentwise, is given by

kp = k1 cos θ1 + k2 cos θ2 + �kz + kpp, (14)

|q1 − q2| = k1 sin θ1 + k2 sin θ2, (15)

where kpp = 2π/	 is the contribution coming from periodic
poling with a period of 	. Under the small angle approxi-
mation we can rewrite Eq. (14) in terms of the wavelengths
λi as

�kz

2π
=

(
np

λp
− n1

λ1
− n2

λ2
− 1

	

)
+ n1θ

2
1

2λ1
+ n2θ

2
2

2λ2
,

where ni are the refractive indices along the appropriate
daughter photon’s polarization vector. We note that the first
term of the above equation is independent of the angle, i.e.,
the transverse momenta, while the subsequent part has two
different angles as the daughter photons are no longer degen-
erate. The angle independent part is known as the collinear
phase mismatch as it leads to noncollinear downconversion.
The phase mismatch factor is non-negligible for a type-2
downconversion. Owing to its birefringence, the contribution

FIG. 2. Numerically calculated (left) and experimentally mea-
sured (right) type-2 wave function projected in the transverse y
momentum and the spectral basis. The temperature of the crystal
(length 30 mm) is set to 40 ◦C to ensure maximum degeneracy. Each
plot is made up of two curves, the positively curved ordinary signal
and the negatively curved extraordinary idler. The horizontal spread
in the experimental figure comes from nonzero bandwidth of the
pump.

from unequal refractive indices experienced by the daughter
photons leads to a broader bandwidth. Further comments on
the structure of this wave function are given in Appendixes B
and C.

Now using Eq. (15) under the small angle approximation,
our above equation further simplifies to

�kz

2π
=

(
np

λp
−n1

λ1
−n2

λ2
− 1

	

)
+

(
λ1

n1
+λ2

n2

) |q1 − q2|2
32π2

. (16)

Thus a more accurate SPDC wave function would be one
where the argument of the second Gaussian in Eq. (6) is
replaced with the right hand side of Eq. (16). The numer-
ically simulated reduced type-2 wave function expressed in
the transverse y momentum and wavelength basis is depicted
in the left image of Fig. 2, while the corresponding ex-
perimental measurement is depicted on the right. We use a
10 nm bandwidth filter function corresponding to the filter
used experimentally. Since the phase-mismatch is minimum
at a crystal temperature of 40 ◦C, the simulation and experi-
ment are run at that temperature. The temperature-dependent
refractive index as a function of wavelength is taken from [53].

The wave function is made of two curves (Fig. 2). The one
on the left corresponds to the idler and the right one corre-
sponds to signal. Since the system is azimuthally symmetric,
we can rotate Fig. 2 about the q = 0 axis to get the full mo-
mentum wave function in the cylindrical coordinates (q, λ). If
the signal is found at a certain (q, λ), then the idler is found at
(−q, λ′). We note that the difference in the daughter photon’s
wavelengths |λ − λ′| increases with the transverse momentum
q. Thus, we find that, in the momentum space, the type-2
SPDC beam is not just made up of a single structure. It has a
degenerate central disk surrounded by nondegenerate rings of
various radii and this nondegeneracy increases radially. Such
a structure of the wave function has been mentioned earlier
in terms of a phase mismatch factor [54], but its wavelength
dependence is hitherto unstudied.

Since the theory in Sec. II A only works for degenerate
daughter photons, it is only applicable to the central section of
the general wave function (see Fig. 2), we need to filter out
the degenerate center either spectrally or spatially. The former
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FIG. 3. Experimental setup for the measurement of Schmidt number using an odd-even Mach-Zehnder interferometer (OEMZI). Li: lens
with focal length fi, PPKTP: periodically poled potassium titanyl phosphate, TS: translation stage, IF: interference bandpass filter around
810 nm, BS: beamsplitter, EMCCD: electron multiplying charge coupled device, and BD: beam dump, M: mirror. The red circle with “R” in
it indicates the flipping of the beam which happens an odd (even) number of times in the lower (upper) path. The translation stage enables
movement between the minima and the maxima settings of the OEMZI.

corresponds to a vertical slice in Fig. 2, while the latter implies
a horizontal slice. This can be implemented experimentally
by passing the SPDC light through a narrow bandwidth filter
or a small-radius aperture, respectively. Appendix C provides
further comments on the properties of this wave function.

III. EXPERIMENT AND RESULTS

A. Experimental setup

The goal of the experiment is to measure both f and σ in
an interferometric method that is quick, reliable and robust. At
the heart of the setup (Fig. 3) is a Mach-Zehnder interferom-
eter that is modified to have an even number of reflections
on one arm and an odd number in the other arm. We call
this the odd-even Mach-Zehnder interferometer, or OEMZI.
The lower arm of OEMZI has a total of three reflections at
the output of BS2 (namely, from BS1, M4, and M5), while
the upper arm has four reflections (from M1, M2, M3, and
BS2). The mismatch in the parity of reflections ensures that
the output of the OEMZI corresponds to the interference of
the wave with its inversion in the x axis. This provides a direct
measurement of W (q1,−q1) required in Eq. (12).

As seen in Fig. 3, a horizontally polarized Gaussian pump
beam (λp = 405 nm) is made incident on a periodically
poled potassium titanyl phosphate (PPKTP) crystal (thickness
5 mm). The beam waist 1/σk is set by lens L1. We use dif-
ferent lenses L1 with varying focal lengths to achieve various
σk . Two different crystals (type-0 and type-2) were used to
produce the two-photon SPDC states under collinear phase
matching in separate experiments. The interference filter (IF)
blocks the residual pump. The lens L2 (focal length 5 cm)
maps the Fourier plane of the crystal center in its back fo-
cal plane. This plane is then imaged by the lens L3 (focal
length 15cm) onto the EMCCD in a 2f-2f configuration. The
beamsplitters BS and mirrors M form the OEMZI. A 3 nm

bandpass filter IF2 centered at 810 nm blocks all unwanted
light from entering the EMCCD and ensures that only the col-
linear downconverted photons make it through. For the phase
difference δ between the two arms of the OEMZI, the output
intensity Iδ

out(kx, ky), as measured by the EMCCD, is given by
[48]

Iδ
out(kx, ky) = ηeI (kx, ky) + ηoI (−kx, ky)

+2
√

ηeηoW (kx, ky,−kx, ky) cos δ.

Here ηeI (kx, ky) and ηoI (kx, ky) denote the intensities ob-
served at the EMCCD plane from the two arms of the OEMZI.
The two ηs are the scaling factors of the two arms governed
by reflectivity of each surface in the respective paths.

We record our OEMZI output at the minima (δ = π ) and
maxima (δ = 0) by moving the piezo-controlled translational
stage TS with a step size of about 25 nm. We repeat the above
procedure for various beam waists at the crystal center by
changing the focal length f1 of lens L1.

Further, we measure the beam waist of our pump for the
different f1s by imaging the propagating beam at various
distances. The widths w(z) (defined as the radius at which the
intensity falls by 1/e2) at each location z is extracted from a
2D Gaussian fit of the corresponding image. The waist w0 is
then evaluated by fitting these widths w(z) of the pump with
the formula for a propagating Gaussian given by [55]

w(z) = w0

√
1 +

(
zλp

πw2
0n

)2

, (17)

where λp is the pump wavelength and n is the refractive
index of the medium (air in our case). More details on this
measurement are presented in Appendix D.
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FIG. 4. Image formed on the EMCCD with 3 nm bandwidth filter as IF2 when the OEMZI is set to record (a) the minima (δ = π ) and
(b) the maxima (δ = 0). (c) The difference between (a) and (b). (d) The sum of (a) and (b). (e) The measured distribution P(k1x|k2x = 0)
by averaging (c) along y axis (blue dots) and its fit (orange curve). (f) The measured P(kx ) by averaging (d) along y axis (blue dots) and its
fit (orange curve). Here the estimated Schmidt number is 21.1 ± 0.6 and L1 has a focal length of 15 cm. The fitting error for the widths is
unreported as it is significantly less than the pixel width.

B. Results and discussions

Figure 4 shows the output of our OEMZI at the two
extreme settings, the maxima at δ = π and the minima
at δ = 0. The difference between the two provides us the
fringe W (kx, ky,−kx, ky), while the sum of the two outputs
retrieves the downconverted beam. In order to obtain the one-
dimensional version of W (kx, ky,−kx, ky), we average over
the ky values and obtain the marginal W (kx,−kx ), whose
width yields the fringe width f . The 1D marginal probability
distribution is similarly obtained from the averaging of the
sum of the two settings of OEMZI, whose width is σ . The
Schmidt number K is then calculated using Eq. (13). This is
the central result of this work. Since this technique allows
the measurement of K in a matter of few seconds from two
images, it alleviates several issues that affect longer methods.
For instance, practical factors such as the long-term stability
of the laser power and its spectrum, the long-term temperature
stability of the crystal are not stringent requirements for our
method as they are for coincidence methods.

To test the validity of our method, we compare between the
Schmidt numbers calculated from Eqs. (7) and (13). In Eq. (7),
K is related to two factors, the pump beam waist w0 and the
parameter b. We note that this parameter b depends only on
the crystal properties (length L and refractive index nc) and
the pump wavelength and hence remains constant throughout
our experiment. The relation is given by

b =
√

Lλp

6πnc
. (18)

The measured beam propagation w(z) is shown in Fig. 5. The
propagation follows Eq. (17) which is fit to the beam widths to
obtain w0 and its location. Using these data, we not only have
the waist size but also have an estimate on where to place the
lens to obtain the beam waist at the crystal center.

By having experimentally measured K and w0, we can fit a
K versus w0 graph using Eq. (7) (as seen in Fig. 6) to obtain
an experimental estimate of b. We see that the estimated value
of b is within about 5% of the theoretically calculated b value

FIG. 5. The estimated pump sizes (w, orange dots) as the beam
propagates are calculated by fitting 2D Gaussians on images taken of
the pump as at various locations (see Appendix D). The w of the 2D
fit as a function of distance is fitted to Eq. (17) (blue line) to estimate
the minimum beam waist w0 and its precise location.
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FIG. 6. Experimentally evaluated Schmidt numbers (blue dots) as calculated from Eq. (13). The orange curve shows the fit by a function
given by Eq. (7) with b as the fit parameter. The theoretical curve (green dashed) given by Eq. (7) with b calculated for our experimental
parameters for (a) type-0 and (b) type-2 PPKTP using Eq. (18). The fit covariance �b = 0.002.

for the type-0 crystal and within 2.4% in case of type-2. The
error in the final two points is higher than the rest as f was
approaching the resolution limit of our camera (16 microns).
This can easily be avoided by magnifying the image. This
establishes that we have developed a new, quick and reliable
technique to measure the Schmidt number regardless of the
type of the downconverting crystal.

IV. CONCLUSION

In conclusion, we have demonstrated a method to rapidly
measure a wide range of two-photon spatial Schmidt number
at any location. Our method is based on intensity measure-
ments, providing two orders of magnitude speedup compared
to coincidence detection. Our technique works for pure
two-photon states generated by SPDC, regardless of its sep-
arability as long as the condition of Eq. (11) holds. We
have experimentally demonstrated its functioning for Schmidt
numbers from 3 to 85 for a pure two-photon state produced
by collinear phase-matching SPDC and have gotten excel-
lent agreements with the theoretical estimates. Therefore we
expect our work to have implications for a wide range of ex-
periments and technology set to take advantage of continuous
variables for quantum information applications. Furthermore,
we have derived a phase-matching condition for type-2 crys-
tals which shows the nonapplicability of the current theory to
estimate the Schmidt number. We anticipate a correction to
the way the beam width of SPDC is calculated will fix the
discrepancy.
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APPENDIX A: RELATION BETWEEN THE RATIO
OF WIDTHS AND THE VISIBILITY OF INTERFERENCE

It was pointed out in Ref. [42] that the Schmidt number is
inversely proportional to the output of their inversion interfer-
ometer as

K = P+ + P−
P+ − P−

, (A1)

where P± is the (conditional) count rate at the
constructive/destructive port of the interferometer. In the
context of OEMZI, this corresponds to the inverse total
visibility of the interference.

The marginal distribution of Fig. 4 is given by a Gaussian
with a width σ while the fringe is given by a Gaussian with a
width f . Thus the (y-averaged) output of OEMZI at minima
is the difference of the two Gaussians and their sum is the
maxima. Using the fact that the area of a Gaussian of width σ

is given by
√

πσ , the total intensity at the minima is
√

πσ −√
π f and the total intensity at the maxima is

√
πσ + √

π f
thus the inverse visibility is given by

1

V
= (

√
πσ + √

π f ) + (
√

πσ − √
π f )

(
√

πσ + √
π f ) − (

√
πσ − √

π f )
= σ

f
. (A2)

Once more, invoking azimuthal symmetry we finally get
the 2D Schmidt number as the square of the inverse visibility
to get an expression equivalent to Eq. (13):

K = 1

V 2
=

(
σ

f

)2

. (A3)

Since the ratio of the widths of the beam and the fringe is
just the inverse visibility, it implies that at any plane in the
propagation gives us the Schmidt number which can be seen
in Fig. 7.

APPENDIX B: TYPE-2 WITH 10 nm FILTER

Here, we discuss the consequences of the nondegenerate
light contaminating the measurement. We performed a set
of experiments with a type-2 crystal using a 10 nm band-
width filter. Figure 8, arranged similar to Fig. 4, elucidates
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FIG. 7. The normalized Schmidt number measured (blue curve)
by OEMZI at various locations along the propagation. The mo-
mentum plane (orange point) is where we conducted the main
experiment. The flatness indicates that OEMZI measures the Schmidt
number at any location.

the results. We observed that the downconverted beam shape
shown in Fig. 8(f) approximated a top-hat function rather
than a Gaussian. This renders the DG approximation invalid.
Furthermore, the apparent width of the beam turns out to be
about double of the theoretical estimate given by b, which
was accurately reproduced in the narrowband experiments
of Fig. 4. This discrepancy led to the overestimation of the
Schmidt number as compared to the theoretical predictions.

Our experimental estimate for the b parameter was off by a
substantial amount, precisely, 61%. Since the theory predicted
a much smaller beam diameter, the source of this discrepancy

was in the beam size. While deriving the wave function,
we had made the assumption that the SPDC photons were
degenerate. Upon recalculation (shown in Sec. II B) without
the degeneracy condition, the phase-matching conditions gave
rise to a sinc2(A + Bq2

−) rather than the expected sinc2(q2
−).

The extra A (collinear phase mismatch) causes noncollinear
contributions leading to a larger beam size.

The maximas of the wave function of the form sinc2 with
Eq. (16) as its argument, obey the following transcendental
equation:

tan(�kz ) = �kz. (B1)

The above equation leads to two equal maxima for the wave
function whenever the argument of the tan function is negative
at q− = 0. This implies that whenever the following inequality
holds:

np

λp
− 1

	
<

n1

λ1
+ n2

λ2
⇒ np − n2

λp
− 1

	
<

n1 − n2

λ1
, (B2)

we get a ring-like emission for those wavelength pairs, as
shown in Fig. 10. For all the wavelength pairs where the
inequality is violated, we get an approximate Gaussian-like
emission. In the above inequality, we have made use of energy
conservation to rewrite λ2 in terms of λp and λ1. The final
EMCCD image is an accumulation of all such wavelength
pairs that build up to the top-hat beam seen in Fig. 8.

To test our hypothesis on type-2 conversion, we used a
sharper 3 nm bandwidth filter, thereby restricting the possible
wavelength pairs reaching the EMCCD to those that do not
violate the Ineq. (B2). This allows the wave function be well
approximated by a double-Gaussian. The experiment with

FIG. 8. Image formed on the EMCCD with 10 nm bandwidth filter as IF2 when the OEMZI is set to record (a) the minima (δ = π ) and
(b) the maxima (δ = 0). (c) The difference between (a) and (b). (d) The sum of (a) and (b). (e) The measured P(q1|q2 = 0) by averaging
(c) along y axis (blue dots) and its fit (orange curve). (f) The measured P(q1) by averaging (d) along y axis (blue dots) and its fit (orange curve).
Noncollinear contributions from the nondegenerate SPDC results in severe deviations from the Gaussian fit. Here L1 has a focal length of
30 cm.
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FIG. 9. Experimentally evaluated Schmidt numbers (blue dots)
as calculated from Eq. (13) using a 10 nm bandwidth filter. The
orange curve shows the fit by the function given by Eq. (7) with b
as the fit parameter. The theoretical curve (green dashed) given by
Eq. (7) with b calculated for our experimental parameters for type-2
PPKTP using Eq. (18).

sharper filters revealed that the discrepancy of 61% between
theory and experiment (Fig. 9) was significantly reduced to
<2% as seen in Fig. 6.

Interestingly, one can see from Fig. 9 that even though the
experimental curve is very off from the theoretical one, the
form of Eq. (7) (the orange curve in Fig. 9) fits the data quite
well. We anticipate that this discrepancy will be resolved by a
better theoretical estimate of the beam size σ . It is interesting
to see that even though the closed form of the Schmidt number
in Eq. (7) was derived for the simplistic case of a DG, it still
captures the essential functional form of the states created and

FIG. 10. Type-2 crystal for certain wavelength pairs. The blue
curve is when the daughter photons have excess momentum [Ineq.
(B2) holds] showing the ring structure. The green curve is when Ineq.
(B2) is violated which shows an approximate Gaussian structure. The
orange curve shows the critical stage where Ineq. (B2) becomes an
equality.

FIG. 11. Type-2 wave function generated at a temperature of
(a) 30 ◦C and (b) 70 ◦C. The separation between the signal and idler
curves increase with increasing temperature. The granularity is an
artefact of the low sampling rate

measured in laboratories. This likely originates from the in-
herent azimuthal symmetry of beams that leads to a quadratic
relation.

APPENDIX C: MEASUREMENT
OF THE SPATIOSPECTRAL PROPERTIES

OF THE WAVE FUNCTION

Since our experimental beam width for type-2 crystal in
the momentum space was much wider than the theoretical es-
timate, we wanted to experimentally study its spatio-spectral
properties. We measure the spatio-spectrogram of the SPDC
(Fig. 2) using a slit and a grating. This corresponds to pro-
jecting the wave function from Sec. II B in the transverse
momentum and wavelength basis.

To see the Ineq. (B2) manifest itself in the spatiospec-
trum, consider two wavelength slices in Fig. 2. One near the
degenerate center of 810 nm and another at the off-centre
805/815 nm. For the off-centre slice, the wave function has
finite contributions only from two small diametrically oppo-
site regions around q = ±0.3 µm−1. This is when the Ineq.
(B2) is violated and corresponds to the blue curve with two
peaks in Fig. 10. This ringlike structure gets smaller and
smaller the closer our slice gets to the central wavelength. The
critical condition (orange curve in Fig. 10) is achieved when
the signal and idler curves just touch each other at the central
wavelength.

We also studied the temperature dependence of the spatio-
spectral property. We see that the focus of the two curves
shifted with temperature, bring them closer/farther as can be
seen in Figs. 11(a) and 11(b). We found that for temperatures
greater than 40 ◦C (which is the optimal temperature to get
the most degenerate pairs from our crystal) the two curves
stop overlapping and get separated. At these temperatures, the
SPDC beam looks like a ring and is deemed noncollinear.
What our spatiospectral exploration showed us is that there
are significant noncollinear contributions even at the optimal
temperature and that a sharp spectral filter is needed to filter
out only the central degenerate collinear portion.

APPENDIX D: BEAM WAIST MEASUREMENT

As seen from the theoretical considerations above, an accu-
rate measurement of the beam waist is quite important as our
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FIG. 12. Images of the pump beam taken 10 cm apart as it propagates in free space after a 10 cm focal length lens. Each image comprises
150 × 150 pixels with pixel size of 3.6 µm.

theoretical estimate for the Schmidt number depends on it in
the form given by Eq. (7). For lower values in our experiment
(∼25 µm), a direct imaging of the waist is prone to errors
since our pixel size was 3.7 µm. Alternately, one could build
a magnified imaging system, which however, would require
measuring three parameters accurately, the focal length of
the lens, the image and object distances. Therefore we used
a fitting subroutine on a multiposition measurement of the
focus.

The fact that we spatially filter our pump means that the
pump follows a Gaussian beam propagation and thus the
waist w at any location is given by Eq. (17) which is a

two-parameter function. Thus, we can image our pump beam
at various locations as it propagates (see Fig. 12) and use
Eq. (17) to fit it for a better estimate of not just the beam waist
but also the waist location.

Accordingly, a 2D Gaussian is first fit to each image and
its standard deviation along the horizontal axis (since our
OEMZI flips only this axis) is taken as the estimate of the
beam waist w at that location z. The curve of these estimated
waists as a function of the propagation distance is shown in
Fig. 5 which is fit by the function given by Eq. (17). The
minimum represented by this curve is given by the fitting
parameter.
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