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Honeybee-like collective decision making in a kilobot swarm
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Drawing inspiration from honeybee swarms’ nest-site selection process, we assess the ability of a kilobot
robot swarm to replicate this captivating example of collective decision making. Honeybees locate the optimal
site for their new nest by aggregating information about potential locations and exchanging it through their
waggle dance. The complexity and elegance of solving this problem rely on two key abilities of scout honey-
bees: self-discovery and imitation, symbolizing independence and interdependence, respectively. We employ
a mathematical model to represent this nest-site selection problem and program our kilobots to follow its
rules. Our experiments demonstrate that the kilobot swarm can collectively reach consensus decisions in a
decentralized manner, akin to honeybees. However, the strength of this consensus depends not only on the
interplay between independence and interdependence but also on critical factors such as swarm density and the
motion of kilobots. These factors enable the formation of a percolated communication network, through which
each robot can receive information beyond its immediate vicinity. By shedding light on this crucial layer of
complexity—the crowding and mobility conditions during the decision making—we emphasize the significance
of factors typically overlooked but essential to living systems and life itself.
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I. INTRODUCTION

Collective decision making is the process by which a group
of agents makes a choice that cannot be directly attributed to
any individual agent but rather to the collective as a whole
[1]. This phenomenon is observed in both natural and ar-
tificial systems, and it is studied across various disciplines,
including sociology, biology, and physics [2,3]. In particular,
social insects have long been recognized for their fascinating
behaviors, and collective decision making is no exception. An
intriguing example of this can be found in the way honeybees
choose their nest sites [4–7]. This specific problem has been
the focus of numerous models of collective decision making
in honeybees [8–13] and serves as an inspiration for our study.

The process of collective decision making can encompass a
virtually infinite number of choices. For instance, in flocking
dynamics, individuals often have to converge on a common
direction of motion [14–18]. In such cases, achieving consen-
sus in favor of an option is the result of a continuous process.
Another category of collective decision making involves a
finite and countable set of choices. Typical models in this cat-
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egory require a group of individuals to collectively determine
the best option out of a set of n available choices [12,19–
22]. Here, the consensus-reaching process becomes a discrete
problem. In real-life scenarios, examples of such decision
making processes include selecting foraging patches, travel
routes or candidates in a democratic election. Within this
countable set of choices, consensus is achieved when a large
majority of individuals in the group favor the same option. The
threshold for what constitutes a “large majority” is typically
defined by the experimenter but generally signifies a cohesive
collective decision with more than 50% agreement among the
individuals [20]. In these collective decision making models,
each option is characterized by attributes that determine its
relative desirability. For instance, in the context of selecting a
potential nesting site for honeybees, these attributes could in-
clude size, distance, and vegetation type. Measures of quality
and cost for each potential option encompass these attributes
[5,19,23]. These two properties can be configured in multiple
ways. The simplest scenario occurs when options’ qualities
and costs are the same for all available options, referred to as
symmetric. In such a scenario, the group faces the challenge of
breaking symmetry when selecting an option, often resulting
from the amplification of random fluctuations [12,23,24]. In
all other scenarios, the decision making process is influenced
by the specific combination of qualities and costs among
different options. For example, in cases where the cost varies
among options, making it asymmetric, but the qualities are
symmetric, the option with the minimum cost is typically
considered the best choice [25]. Conversely, in situations with
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asymmetric qualities but symmetric costs, the option with the
maximum quality tends to be chosen [12,21,26,27].

Opinion dynamics models are proposed and developed to
examine how individuals communicate and make decisions
within groups. These models consist of a group of agents, each
with their own instantaneous opinion or “state.” Individuals
interact with one another and revise their opinions based on
the opinions of others. Among the simplest models used to
study collective decision making are the well-known voter
model [28,29] or the majority rule model [30]. These models
are limited in that they assume that all agents are equally likely
to adopt either opinion. In reality, however, individuals may
have different preferences, beliefs, or biases that can influence
their decision making. To address this limitation, more com-
plex models have been developed that incorporate features
such as stubbornness, partisanship, and heterogeneity [22,31–
34]. These models generally help to understand how opinion
diversity and polarization can arise in groups, and how these
dynamics might be influenced by different factors [35,36]. In
recent years, the collective decision making process observed
among nest-hunting honeybees has triggered the investiga-
tion of numerous collective decision making models. In these
models, agents can adopt a wide variety of individual and
social behaviors [10,13,26,37]. They engage in exploration to
discover options, and once committed, they recruit uncommit-
ted peers. Conversely, they may also retract their commitment
and return to a neutral state or engage in cross-inhibition
against opinions different from their own. Importantly, they
assess the qualities of the different options, which in turn may
modulate each of the aforementioned behaviors [5,38].

Taking inspiration from a simple honeybee-like collective
decision making model [10], our primary focus is to determine
whether autonomous minirobots, specifically kilobots, can
achieve high levels of consensus for the best quality option.
These robots have been extensively used in the field to design
and evaluate decision making models, such as the naming
game [39], as well as other comparable honeybee-inspired
models [27,40,41]. These models adopt different approaches
to modeling the collective decision making process; these
variations and their implications will be elaborated in the
following sections.

As it will emerge from our analysis, the interaction topol-
ogy of agents plays a crucial role in realistic representations
of collective decision making, adding complexity beyond in-
herent opinion dynamics. Recent studies have shown that
scale-free networks offer better accuracy compared to net-
works based on agent proximity [42]. However, agents with
constrained communication capabilities can only generate
limited interaction patterns, restricting the emergence of com-
plex network features such as clustering or small-world
properties. By introducing mobility, agents can enhance their
communication capabilities [43], motivating a quantitative
study of the communication patterns established with this
approach. Our novel aspect resides in exhaustively evaluating
the interplay between the evolution of the group consensus,
under the simple assumptions of our model, and its relation
with the dynamic communication network.

Aside from the general insights we can gain from studying
opinion dynamics with moving individuals, this scenario pos-
sesses the distinctive feature of being closer to the behavior

observed in the social animal world, where a diversity of
intriguing signaling mechanisms have been previously iden-
tified [44]. In particular, crowding and clustering effects stand
out as highly relevant from our study. As they were shown to
be crucial for honeybees in trophallaxis [45], they might also
be decisive in communication and collective decision making.

In the following, we motivate our work inspired by the
honeybees’ house hunting problem in Sec. II, where we also
present the particular discrete opinion-dynamics model under
scrutiny. In Sec. III, we introduce our experimental study
system, a kilobots swarm, and their emulator, KILOMBO. Sec-
tions IV and V present our main results, which combine
experiments on kilobots, numerical results on the KILOMBO

emulator, numerical simulations of the model on specific ge-
ometries, and their comparison to analytical results of the
opinion-dynamics problem. Finally, in Sec. VI, we provide
a discussion of our results and perspectives. Technical details
about the model and the experimental setup are provided in
Appendix A, and additional complementary analysis and data
are included in Appendices C and D.

II. MODELING THE NEST SITE SELECTION
PROBLEM IN HONEYBEES

Honeybees are social insects that reside in large colonies.
The way scout honeybees select new nest sites represents an
interesting example of a collective decision making process
that involves a combination of individual and group behaviors.
In recent years, researchers have made significant progress in
understanding the mechanisms behind this behavior, which is
crucial for the survival and reproduction of honeybee colonies
[7,46,47].

The process of collective decision making in honeybees
has primarily been studied in the species Apis mellifera.
Towards the end of spring, honeybee colonies split, with ap-
proximately two-thirds of the colony leaving the nest along
with the queen in search of a new nesting site. During this
process, a fraction of the swarm scouts the surroundings to
gather information about potential new sites, assessing their
quality based on traits such as size, food availability, or the
degree of concealment [5,46]. When a scout bee discovers
a promising new nesting site, it returns to the swarm and
communicates information about the site fitness and location
to other bees through the intricate waggle dance [19,48].
Doing so, she may recruit other scout bees that remained in
the swarm to also explore—and subsequently advertise—the
same location. The duration of the waggle dance is correlated
with the honeybee’s perception of the site’s quality. A longer
and more animated dance indicates a more suitable nest site,
while a shorter and less dynamic dance corresponds to a less
desirable site [49]. Consequently, high-quality sites receive
longer and more frequent advertising, while low-quality sites
see reduced attention, resulting in an overall increase in the
number of bees visiting and dancing for high-quality sites and
a decrease in those doing so for low-quality ones.

In addition to their quality, each site also has its associated
cost, which represents the likelihood that a scout bee will
discover the site, considering factors such as distance or con-
cealment. This leads to the possibility that some high-quality
options may go unnoticed due to their associated costs. Over
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time, the dances performed by the honeybees tend to converge
on a single site, and once a potential nest site has attracted a
sufficient number of bees, a quorum is formed, ideally in favor
of the best available option. This entire process ensures that
the migrating part of the colony moves together to their new
home [47].

A. Model of a fully connected scout bee network

Several mathematical models of the honeybee nest-site
selection problem have been proposed in the literature
[8–13,26,37,50,51]). In particular, List, Elsholtz, and Seeley
[10] introduced an agent-based model inspired by the de-
cision making process of honeybees. This model integrates
both an individual’s self-discovery of potential nest sites and
the existing interdependencies, which encompass interactions
among bees, leading to imitation and the adoption of sites
presented by other bees. The model explicitly incorporates
various parameters, including the number of sites, site quality,
site self-discovery probabilities, and group interdependence.
Here, we adopt a very similar approach to describe the rules
that govern the behavior of our kilobot robots.

The nest-site choice model proposed in Ref. [10] consists
of a swarm of N scout bees that reach consensus and col-
lectively decide on one of the potential nest sites, labeled
1, 2, 3, . . . , k. Each site j has an intrinsic quality q j � 0 that
determines the time a bee spends advertising site j through
the waggle dance. At time t , a bee can either be dancing for
one of the k sites (i.e., promoting it) or not dancing for any
site, indicating that it is still searching for a site, observing
other bees’ dances, or simply resting. Formally, a vector xi,t =
(si,t , di,t ) represents the state of bee i at time t , where si,t = 0
if bee i is not dancing for any site. When a bee is dancing,
si,t = 1, . . . , k, indicating the site the bee is promoting, and
di,t represents the remaining duration of bee i’s waggle dance.
In each discrete time step (which sets the unit of time in the
model), the states of bees are updated in parallel. While a bee
is dancing for a site, its dance duration di,t decreases by one
time unit in each time step until it reaches zero, at which
point the bee stops advertising, and its state returns to the
nondancing value si,t = 0. nondancing bees have a probability
pi,t+1 of starting to dance for site j at time t + 1. When this
occurs, si,t+1 = j, and the duration of the new dance is set
equal to or proportional to the site quality (we have simplified
the original model; for more nuanced details on this step, refer
to Ref. [10]). Here we use d j,t+1 = q j . The probability p j,t+1

estimates the likelihood of a bee finding site j and committing
to advertising it. It is calculated as follows:

p j,t+1 = (1 − λ)π j + λ f j,t . (1)

Here, π j represents the a priori self-discovery probability of
site j, i.e., the success rate of a scout bee targeting an option
in the environment is simply incorporated into the system
through this model parameter. λ denotes the bees’ interde-
pendence, and f j,t represents the proportion of bees already
dancing for site j at time t . As probabilities, the condition∑k

j=0 p j,t+1 = 1 must be satisfied. Similarly, the fractions f j,t

must satisfy a normalization condition
∑k

j=0 f j,t = 1. More-
over, it is important to note that when λ = 0, the probability
transitions are solely determined by π j . Hence, the condition

∑k
j=0 π j � 1 must also be met. This inequality accounts for

the possibility that bees may fail to commit to any site and re-
main neutral for another time step (i.e., p0,t+1 �= 0). The inter-
dependence parameter λ ranges between 0 and 1, determining
the extent to which bees rely on each other to decide to dance
for a site. When λ = 0, the probability of committing to site j
depends solely on the self-discovery probability π j , regardless
of the proportion of bees dancing for it. Conversely, as λ ap-
proaches 1, the probability of committing to site j at time t +
1 becomes almost entirely dependent on the proportion of bees
already dancing for it at time t , denoted as f j,t . In other words,
a higher value of λ means that committing probability relies
more on imitation of other bees. For further details, please
refer to Appendix A 1. The self-discovery probabilities of
available sites π j are chosen in a way that ensures

∑k
j=1 π j <

1, and in general, the sum does not exceed the maximum value
of approximately 0.6, which corresponds to a 60% probability
of independent commitment to any available nest site.

It is worth emphasizing that in this model, every bee can
observe the dancing state of all other bees in the swarm,
regardless of their relative separation. In this regard, the model
developed by List et al. represents a mean-field stochastic
agent-based model. Galla [52] formulated a master equa-
tion for the commitment probabilities within the same model
as presented in Ref. [10]. In this formulation, he replaces the
fixed duration d j = q j of the waggle dances with stop-dancing
rates r j = 1/q j . Following this approach, it is possible to de-
rive a set of nonlinear differential equations that describe the
evolution of the average values 〈 f j,t 〉. These equations closely
align with the results obtained from the original stochastic
model. Furthermore, in the long-time limit, one can ana-
lytically determine the stationary values of 〈 f j,t 〉 using this
mean-field approximation. Appendix A 1 provides a brief de-
scription of this approach. Our model simulations implement
the same stochastic method.

The nonlinear differential equations of this model re-
semble those describing other honeybee-inspired models
[11,12,26,37], which have also been tested using kilobots
[27,40,41]. However, two principal differences result in
distinct behaviors that must be highlighted. First, the com-
mitment probabilities, whether from independent discovery or
recruitment do not explicitly depend on the options’ qualities.
Second, our model does not include cross-inhibition inter-
actions, which are stop signals exchanged between agents
holding different opinions to prompt them to revert to a neutral
state and reassess their opinions.

B. Model of quenched bee configurations

Our analysis will also consider the limiting case of random
static, and generally non fully connected, configurations of
agents, the quenched configuration limit, on which we run
the same collective beelike decision model. In this limit, the
global proportions f j,t of agents in j state appearing in Eq. (1),
as considered in the original model of List et al. [10], are
replaced by local proportions of agents computed from a fixed
list of ‘neighbors’ for each individual i in the group. Lists of
neighbors are computed after introducing a finite communi-
cation radius rint around each agent in a random quenched
configuration to identify other agents in this circular area of
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influence. These lists are calculated only once for each ran-
dom configuration and remain unchanged during the decision
dynamics.

III. EXPERIMENTAL KILOBOT SWARM

In this study, we use a kilobot swarm as our experimental
system for investigating consensus reaching and exploring
the interplay between the two most important factors in
the honeybee-like nest-site selection model proposed by List
et al., i.e., independent discovery and imitation.

kilobots are compact open-source swarm robots, measur-
ing 3.3 cm in diameter and 3.4 cm in height, purpose-built for
the study of collective behavior [53]. Our primary goal is to
experimentally investigate how the introduction of restricted
robot communication capabilities (or local interactions), robot
locomotion, and spatial constraints, impact consensus reach-
ing in comparison to the beelike models introduced in Sec. II.
These minirobots have previously been used to study col-
lective decision making [27,39–41,54,55], pattern formation
[56], morphogenesis [57], space exploration [43,58], collec-
tive transport of objects [59] in different experimental setups,
and morphological computation and decentralized learning
[60].

A. Kilobot’ locomotion, decentralized control,
and information exchange

kilobots feature three slender, metallic legs—one in the
front and two at the back. With calibrated lateral vibrating
motors, they can effectively overcome static friction, enabling
self-propulsion. Moreover, they have the capability to rotate
either clockwise or counter-clockwise by selectively activat-
ing one of the two vibrating motors. kilobots are equipped
with an Arduino controller, memory storage, and an infrared
transmitter and receiver for bidirectional communication.
Within an interaction radius of up to 10 cm, as tested in
complete darkness conditions (see Appendix B), kilobots can
exchange messages with nearby robots, with each message
carrying up to 9 bytes of information. During communication,
the receiving robot assesses the intensity of incoming infrared
light, enabling it to calculate relative distances to neighboring
robots. Due to the observed variability in the measured com-
munication range, we limited kilobots to consider messages
within a 7 cm range. This was done to ensure homogeneity
among the swarm’s communication capabilities.

Each kilobot in the swarm can execute various user-
programmed instructions and functions, with each processing
cycle (or loop iteration) representing a unit of time in their
dynamics. During our experiments, kilobots exist in discrete
states, and their current state is visually conveyed through
RGB LED lights. This makes kilobots an ideal experimental
system for studying collective decision making, combin-
ing decentralized activity, limited communication capabilities
and locomotion—effectively making them “programmable in-
sects.”

We place up to 35 kilobots in a circular arena with a
radius R delimited by rigid walls. Using an azimuthal camera,
we capture the kilobot activity in accordance with the guide-
lines of the nest-site selection model outlined in the previous

section (see also Fig. 1). Further details about the robots tech-
nical features and about the experimental setup are presented
in Appendix A 2.

B. KILOMBO: the kilobot swarm emulator

A useful tool to work alongside physical experiments is
the kilobot-specific simulator software KILOMBO [61]. This
is a C-based simulator that allows the code developed for
simulations to be run also on the physical robots, removing
the slow and error prone step of converting code to a different
platform. In this way, we can also perform simulations using
KILOMBO, to test our experimental setup and to support our
results—and to complement them whenever it has not been
possible to perform further experiments.

IV. CONSENSUS REACHING IN A
BEELIKE KILOBOT SWARM

In this section, we describe, both experimentally and the-
oretically, how the complex decision making problem of
reaching strong consensus for the best-available option is
solved by our beelike kilobot ensemble under different con-
ditions. Essentially, we analyze the temporal dynamics of
the proportion of bees (bots) that either advocate for one
of the possible sites or remain uncommitted. We examine
how these proportions evolve and eventually stabilize, while
also exploring the criteria that signify the attainment of a
consensus in this steady state. We compare our experimental
results and KILOMBO simulations with mean-field theoretical
results finding intriguing resemblances in sufficiently crowded
conditions, or after long enough exploration times, but also
hints towards important divergences in other plausible condi-
tions. By implementing the nest-site selection model within a
physical kilobot system, we gain the capacity to explore the
consequences of more realistic robot interactions and the role
of space and locality on consensus formation.

A. Collective decision making in kilobots

We start by running our experiments in a group of N =
35 kilobots. We deploy the kilobots within a circular arena
of radius R = 20 cm and task them with assuming the role
of scout bees. These kilobots engage in a dynamic process
defined by the List et al. model, as elaborated in Sec. II.
Each kilobot holds an internal state and displays it with a
color LED. Throughout the course of the experiment, kilobots
adjust their internal states based on the probabilities outlined
in Eq. (1), but having only partial and individual informa-
tion of the population of bees advertising each site, fi,t . The
computation of these values takes place after a given time
step, �t , of the decision process relying on the information
that each uncommitted kilobot can gather from its immediate
surroundings.

While the typical outcomes of the List et al. model dy-
namics have been documented in prior research [10,52],
previous investigations have primarily scrutinized these de-
velopments either at the mean-field (fully connected) level
[10,52] or within the context of nearest neighbor interactions
within a square lattice [52]. In contrast, the present approach
involves committed kilobots that move in the circular arena
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FIG. 1. Schematics of the collective decision dynamics under scrutiny. The left column represents the dynamics of the decision model:
at a given instant of time committed bees are advertising their state to convince undecided bees to commit to their option. The time they
spend advertising their option will be directly related to the quality they perceive for that option. As time advances a build up for the better
option is expected since it is benefited from longer advertisement periods. The central column shows a schematic representation of our kilobot
experiments. Each kilobot has a LED that indicates its state, either uncommitted or committed to (and advertising for) site 1 or 2. The
right column displays schematically how the different proportions of bees on each state evolve in time, starting from a totally uncommitted
population.

as persistent random walkers during their engagement in the
advertising phase of the consensus-searching dynamics. This
advertising movement results in a varying number of neigh-
bors that they can communicate with. Such behavior mirrors
that of real bees, which are known to interact with a lim-
ited number of neighbors during activities such as dancing
or observing a waggle dance [62,63]. In order to correctly
quantify the relevance of these factors, we first benchmark the
communication capabilities of individual bots, as reported in
Appendix C.

We narrow the focus of our experiments to the case of two
sites: a high-quality site (designated as site 2) and a lower-
quality site (referred to as site 1). The binary decision problem
was chosen as the focus of our study due to its simplicity,
which allows for a clearer understanding of the interplay
between model parameters and the time-varying communica-
tion network. Additionally, our analysis in Ref. [64] revealed
that introducing more than two options does not significantly
impact the final results. At each time step kilobots are either
dancing for site 1, site 2, or not advertising any site. As an
extra feature towards emulating the natural behavior of hon-
eybees, we introduce an explicit difference in the dynamics
of committed and uncommitted kilobots. While kilobots ad-
vertising an option perform a persistent random walk (PRW)
(see details on Appendix A 2), uncommitted kilobots, instead,
come to a halt to wacth other kilobot advertisements. This
feature is partially inspired by the differentiation between
advertising bees, which perform the waggle dance, and un-
committed bees, which adopt a more passive role.

We study both the time evolution and the steady state
of the decision making experiment on our beelike kilobot
system. The proportion of kilobots not advertising a site and

the proportions of kilobots dancing for sites 1 and 2, also
referred to as the dance frequencies f0, f1, and f2, respectively,
are monitored as a function of time until they stabilize and
fluctuate around mean values. The duration required for the
system to attain this steady state varies depending on the
model’s parameters. Generally, large interdependence λ leads
to stronger majorities, while dragging out the evolution up
to that state, as extensively analyzed across various scenar-
ios in our simulations [64]. Moreover, when the competing
sites have similar qualities the swarm takes longer to reach
a consensus. In our experiment, site qualities are fixed to
q1 = 7 and q2 = 10; and thus, advertising times for site 1
and 2 are equal to q1�t and q2�t , respectively. This choice
of qualities allows us to analyze a dispute between the two
available nest-site options without entering into an excessively
time-consuming transient dynamics phase. Note that, as in
real honeybees colonies, the kilobot swarm must make the
decision for the best option within a reasonable time span,
hopefully before their battery power is exhausted.

In addition, our analysis encompasses the evolution under
different levels of interdependence λ and considers two dis-
tinct scenarios for the discovery probabilities: a symmetric
case where π1 = π2 and an asymmetric case where π1 > π2,
favoring the lower-quality site. The specific values of πi, j will
determine the conditions under which the system can achieve
consensus at different levels of interdependence. For example,
in the symmetric case, this relationship is illustrated in Fig. 3.
A comprehensive analysis of this interplay is provided in
Ref. [64].

Figure 2(a) illustrates the dynamics of f0, f1, and f2

over time, for different λ and for both the symmetric and
asymmetric cases. The initial conditions are set as follows:
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FIG. 2. (a) Proportions of kilobots f j dancing for the different states as a function of time. Red, green and blue represent the proportion
of uncommitted ( f0) and dancers for low-quality ( f1) and high-quality ( f2) sites, respectively. (b) Probability density function of f j values in
the stationary state, P( f j ). Plots correspond to symmetric (up, π1 = π2 = 0.3) an asymmetric (bottom, π1 = 0.4, π2 = 0.2) a priori discovery
probabilities, with qualities q1 = 7, q2 = 10 and interdependence parameter values λ = 0, 0.3, 0.6, 0.9 (left to right). Five repetitions of the
experiment for each λ were performed. The data were collected after a transient time interval of 50 time steps, indicated by the vertical gray
dashed line in the temporal evolution plots.

f1(t = 0) = f2(t = 0) � 0.43, and f0(t = 0) � 0.14 (i.e., ap-
proximately 15 kilobots dancing for site 1, 15 dancing for site
2 and 5 uncommitted). Other initial conditions have also been
tested but, as expected, stationary results do not depend on
the particular choice used in the experiments (see Supp. Fig. 1
in [65] for an example in quenched simulations). The time
evolution of each population is jerky and fluctuating. This
behavior is also expected and is an inherent consequence of
the model dynamics, as kilobots promoting a site revert to
an uncommitted state after their dancing period concludes.
Additionally, due to the limited system size, these fluctuations
are particularly noticeable. Nevertheless, systematic behav-
iors can be grasped when examining mean values and full
distributions. Across all values of λ, there exists a transient
phase in which the larger population oscillates between the

three states j, resulting in significant variations in the values
of f j . However, roughly after ∼50 time steps, a steady state
is achieved, and each f j fluctuates around its mean value.
In the scenario with symmetric π values, irrespective of λ,
f2 eventually becomes the dominant population in the steady
state. Moreover, increasing the interdependence parameter λ

amplifies the difference between the proportion of kilobots
dancing for the high-quality site ( f2) and the low-quality site
( f1). Interestingly, when we shift towards asymmetric self-
discovery probabilities (π1 > π2), it is observed that if λ is
not sufficiently large, the steady state can be dominated by f1

or present a stalemate between f1 and f2. However, increasing
λ, the system gains the capability to favor the less accessi-
ble yet higher-quality option 2. This result aligns with other
honeybee-inspired collective decision making models, where
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FIG. 3. [(a) and (b)] Dance frequencies f0 (red), f1 (green), and f2 (blue) as a function of time obtained from numerical simulations
of the stochastic model, and from the numerical integration of the mean-field deterministic equations (smooth superimposed curves in the
same color). (a) Symmetric discovery scenario with probabilities π1 = π2 = 0.3. (b) Asymmetric discovery scenario with probabilities π1 =
0.4 and π2 = 0.2. Other parameters are: N = 35, q1 = 7, q2 = 10, and λ = 0.6. Simulations were averaged over 100 realizations. [(c) and
(d)]Stationary values of f2 (c) and Q (d) in the parameter space (π1,2, λ) obtained from solutions of the deterministic equations of the model.
The black line in (d) corresponds to the theoretical crossover line where Q = 0. Parameters are q1 = 7 and q2 = 10. (e) Consensus crossover
lines or λ thresholds for consensus, λ∗, i.e., Q(λ∗) = 0 as a function of π1,2 (in the symmetric scenario, π1 = π2). Colors represent different
values of the low-quality site q1, while q2 = 10 is maintained constant.
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agents break the symmetry between nonequivalent options
and commit to the highest quality option by enhancing the
strength of social feedback [12,22].

Across all scenarios and parameter sets, there is notable
dispersion in the values of f j , resulting in broad probability
distributions P( f j ) for all three j, as exhibited in Fig. 2(b).
When λ is low, the distributions P( f j ) for all three states tend
to overlap. However, with an increase in λ, the distributions
P( f1) and P( f2) gradually separate from each other, even-
tually exhibiting significantly distinct mean values when the
interdependence is at its highest, λ = 0.9. We quantitatively
confirm this trend by measuring the Jensen-Shanon Diverenge
(JSD) of these probability distributions (see Supp. Fig. 2 in
[65]). Specifically, the JSD tends to increase with λ in the
symmetric discovery scenario, while in the asymmetric dis-
covery case, it exhibits a minimum at λ = 0.3, after which f2

takes the lead.
While our primary focus has been on analyzing the station-

ary average values and their distributions around the mean,
it is also valuable to examine the outcome of the decision
process in more detail. For this purpose, we quantify how
frequently each possible outcome (simple/strong majority for
each option or draw) occurs in the experiments’ stationary
states. These results are displayed in Supp. Fig. 4 in [65],
where the effect of λ becomes more evident. In the symmetric
discovery scenario, the most frequent outcome is a simple
majority for option 2 when λ = 0.0, 0.3. Further increas-
ing the interdependence allows the system to reach strong
consensus (defined in the following section). Similarly, in
the asymmetric discovery scenario, we observe a shift from
mostly reaching a simple majority for the bad option (when
λ = 0) to a strong consensus for the good option (λ � 0.6).
When λ = 0.3, where we observed overlapping histograms, it
is equally likely for option 1 to win by a simple majority as
for option 2.

B. Consensus in numerical and analytical approaches

In the following paragraphs, we proceed with the numer-
ical analysis of the nest-site selection problem within a fully
connected system. Figures 3(a) and 3(b) present the values
of the dance frequencies f0, f1, and f2 as a function of time.
These values are obtained from both stochastic simulations
and the numerical integration of the deterministic mean-field
equations, as detailed in Appendix A 1. The observed curves
are qualitatively similar to the ones displayed by the evolution
of the model in kilobots (as shown in Fig. 2). It is worth
noting that, as for the kilobots, we use q1 = 7 and q2 = 10.
In both studied cases, whether symmetric (π1 = π2 = 0.30)
or asymmetric (π1 = 0.4, π2 = 0.2), with the same value of
λ = 0.6, we observe the high-quality nest site taking the lead
in the steady state.

Simulations of the stochastic model display finite-size
fluctuations around the mean values, whereas the numeri-
cal integration of the analytical solution produces smooth
evolution curves. Notice that the analytical curves do not
accurately represent the transient state at very short times,
but they accurately describe the average stationary value for
each parameter set. This reassuring result allows us to perform
a parametric exploration of the model without the need of
resource-intensive simulations.

Employing the analytical solution, we delve into the ex-
ploration of the parameter space defined by π j and λ. We do
not only asses the stationary dance frequencies f j , but also a
strong majority definition of consensus:

Q = f2 − 2 f1. (2)

This definition implies that there must be twice as many
bees dancing for the high quality site than for the low quality
site for the condition Q > 0 to be met. Consequently, this
represents a large majority consensus, i.e., a majority by a
factor of 2/3 in the case there were no uncommitted bees in
the system.

In Figs. 3(c) and 3(d), we present the outcome of the de-
cision process in the symmetric scenario, π1 = π2. We asses
both the stationary value of f2 [Fig. 3(c)] and the consensus
Q [Fig. 3(d)]. The exploration of the parameter space is done
by varying the values of the interdependence λ (y axis) for
each value of the self-discovery probabilities π1,2 (x axis)
(a similar parameter space exploration for the asymmetric
scenario is presented in Supp. Fig. 3 in [65]). The color charts
illustrate how these two metrics vary across the parameter
space. We observe a smoothly varying trend indicating that
the proportion of individuals dancing for the high quality site
f2 increases along with the interdependence parameter λ, re-
gardless of the specific value of π1 and π2. This phenomenon
arises from bees placing more reliance on the opinions of their
peers, and as λ increases, it enhances the reinforcement for the
best possible option. Contrarily, when both independent dis-
coveries (π1 = π2) increase simultaneously, there is a relative
decrease in the number of bees dancing for site 2. This means
that as π values increase while keeping λ constant, more
advertisements are motivated by independent discoveries
rather than by opinion sharing. Consequently, when π1 = π2,
f1, the population of bees dancing for site 1 increases at
the expense of site 2, hindering overall consensus. In the
extreme case of π1 = π2 = 0.5, this translates in consensus
never being achieved (i.e., Q < 0) if the interdependence
parameter is lower than ∼0.5. The black line depicted in
Fig. 3(d) corresponds to the strong consensus crossover
Q = 0, computed using the analytical solution. A system with
a set of parameters given by points below this line will never
find strong consensus, but it will do for a set of parameters
given by a point above. In other words, after surpassing a π1,2-
dependent λ threshold, λ∗, the system crosses over to a strong
consensus state, Q > 0, and the strength of this consensus
intensifies with increasing interdependence. The region of
nonconsensus expands as π1,2 values grow, thereby narrowing
the range of interdependence values that lead to consensus.

Certainly, the “critical” line λ∗(π1, π2) is contingent upon
the values of qualities q1 and q2 as well. In Fig. 3(e), we
represent λ∗ as a function of π1 = π2, maintaining a fixed
value of q2 = 10 while exploring different choices of q1. We
observe that when q1 is markedly smaller than q2, partic-
ularly when q1 � q2/2, the region of no strong consensus
basically disappears, i.e., the swarm is able to choose the
high quality site with strong majority, allowing for consensus
even when λ = 0. On the other hand, when q1 increases and
approaches the value of q2, the competition between sites
intensifies. Consequently, a higher value of λ becomes neces-
sary to counteract the influence of the discovery probabilities.
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FIG. 4. Stationary dance frequencies and consensus as a function of interdependence. (a) Average frequencies 〈 f0〉, 〈 f1〉, and 〈 f2〉 and
(b) Average consensus 〈Q〉 as a function of λ for symmetric (up) and asymmetric (bottom) π j for physical kilobots, and for simulations
using KILOMBO, quenched configurations and fully connected networks. Triangles: Mean values from experiments of N = 35 kilobots (5
repetitions per parameter combination). Solid purple line with points: Mean values from KILOMBO simulations with N = 35 bots averaged over
50 repetitions. Shaded area: KILOMBO standard deviation. Dashed orange line: mean values from simulations of the fully connected model with
N = 35 bots averaged over 100 repetitions. Dotted pink line: mean values from quenched configurations with N = 35 bots averaged over 100
repetitions.

For a given λ and π1,2, the quality difference necessary
for the system to achieve consensus is directly proportional
to the mean quality of the options [64], and thus the λ∗
crossover lines depend solely on the options’ relative quality
difference. This observation is in agreement with Weber’s
Law of perception, as reported in previous studies on simi-
lar collective decision making models [11,66]. Unlike these
models, ours does not require incorporation of discovery or
recruitment rates that depend on the options’ qualities to
adhere to this fundamental law. Finally, when the qualities
and discovery probabilities of available options are equal,
both options become equivalent, transforming the decision
problem into a symmetry-breaking task between identical op-
tions. Here, the main distinction from other honeybee-inspired
models [37,41]—the presence or absence of cross-inhibition
interactions—becomes crucial. In scenarios where external
information is continually introduced through independent
commitment transitions, cross-inhibition has been identified
as a vital mechanism for breaking decision deadlocks [27,67].
In contrast, our model system can resolve deadlocks differ-
ently by adapting its behavior upon deadlock detection, either
by halting exploration (effectively setting πα = 0) or by max-
imizing social interactions (i.e., λ = 1). A detailed analysis of
these parameter limits is provided in Ref. [64].

C. Comparison between experiments and simulations

We would like to quantitatively compare the steady-state
averages in kilobots with those obtained from the modeling

approaches. Our goal is to distinguish the emerging properties
of the real system, which involves restricted communication
capabilities, and moving individuals, in comparison to the
fully connected approximations made in mean-field solutions.
To enhance this comparison, we utilize KILOMBO [61], the
kilobot’s emulator, to conduct complementary simulations
under the same experimental conditions. On the other hand,
alongside the fully connected stochastic model simulations,
we also incorporate the steady-state results obtained from
simulations with quenched configurations of bots running the
same collective decision making model.

Figure 4 displays the average stationary values of the dance
frequencies 〈 f0〉, 〈 f1〉, 〈 f2〉, and the consensus 〈Q〉 as func-
tions of the interdependence parameter λ for both symmetric
and asymmetric scenarios defined by the same self-discovery
probabilities πi, and site-quality values q1 = 7 and q2 = 10,
considered previously. Consistently, the primary trend is sim-
ilar across all approaches: at small values of interdependence
λ, the majority of the population gravitates towards the high-
quality site (2) in the symmetric case. Conversely, it aligns
with the low-quality site (1) when asymmetric self-discovery
probabilities favor it. In this case, there is no consensus for
the higher quality option, and Q assumes negative values. As
λ increases, 〈 f1〉 decreases while 〈 f2〉 increases for both the
symmetric and asymmetric scenarios. Moreover, 〈 f1〉 and 〈 f2〉
exhibit similar functional trends but in opposite directions,
resulting in the stationary value of 〈 f0〉 remaining nearly in-
dependent of λ. When examining the stationary average of
the strong consensus parameter 〈Q〉, we observe a smooth
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transition from nonconsensus to consensus as λ varies. This
is rather a crossover more than a phase transition, but it can
be precisely identified. Notably, in scenarios with symmetric
discovery probabilities, consensus is achieved at smaller λ

values compared to asymmetric scenarios. This is because
there is less introduction of independent discoveries for the
low-quality site, leading to less misleading information that
needs to be discarded through communication.

Now, let’s delve into a quantitative comparison of the
different approaches, going beyond the observed consistency
in the data. First, it is noteworthy that the stationary values
obtained from physical kilobots closely match those from
KILOMBO simulations, even within the standard deviation (rep-
resented by shaded areas). This alignment underscores the
reliability of the emulator in complementing real measure-
ments. More remarkably, both experimental and emulator
results closely align with the mean-field results. This coinci-
dence might be less expected, and we will discuss the reasons
behind it for the chosen set of parameters. These findings
suggest that mobile kilobots, as they interact with their local
environment, can effectively sample the system’s state and
transmit information throughout, almost as if they were fully
connected, achieving collective decision making comparable
to mean-field fully connected individuals. We will test this
hypothesis in the next section. However, it’s worth noting that
this agreement is not perfect. While 〈 f j〉 and 〈Q〉 values are
nearly identical for all approaches at low values of λ, some
differences become noticeable after an interdependence value
of approximately λ ∼ 0.5. In this range, quenched config-
urations exhibit higher 〈 f1〉 and lower 〈 f2〉 values than the
fully connected system. Furthermore, for high λ we observe
a broader scattering of the experimental results, especially
in the asymmetric discovery scenario. As a consequence of
these variations, we observe a lower consensus value com-
pared to the fully connected case. In the asymmetric scenario,
particularly for high interdependence (λ � 0.7), quenched
simulations show a crossover to consensus at a substantially
higher value of λ compared to the fully connected case.
Additionally, experiments exhibit significant fluctuations in
stationary consensus, with some realizations failing to achieve
consensus or closely resembling the quenched results.

In summary, in a high enough interdependent system, the
experimental results displayed in Fig. 4 demonstrate that
mobile individuals, such as kilobots moving in space and
integrating information over time, are capable of achieving
high consensus values comparable to fully connected systems.
The exact threshold depends on model parameters such as
quality differences and self-discovery probabilities. Quenched
configurations, characterized by fixed neighbor lists for inter-
actions, help us assess the importance of kilobots’ movement
and mixing under experimental conditions. Despite the lim-
ited communication range of kilobots, our hypothesis is that
their mobility enables information to spread in a manner that
the outcome of the decision making problem becomes similar
to mean-field results. However, in quenched configurations
conditions, local consensus for the low-quality option may
emerge, diminishing the chances of attaining strong consen-
sus for the best-quality option. In agreement with Raoufi
et al. [55], we observe that the network structure signifi-
cantly influences the accuracy of the final decision. A greater

communication range results in a better-connected network,
characterized by a higher average degree, leading to improved
accuracy. Furthermore, by varying the weighting factor of
social interactions, i.e., the interdependence parameter, we
recognize its significance in collective decision making pro-
cesses with limited communication.

V. INFORMATION SPREADING IN THE KILOBOT SWARM

In this section, we provide a more detailed analysis of
the information spreading taking place in our kilobot swarm
as they play the beelike decision making process. Various
models of state-contagion dynamics have been explored us-
ing self-propelled particles [68–71]. The relationship between
agents’ states, their mobility, and packing fraction gives rise to
different physical phenomena. For instance, motility-induced
phase separation occurs at low densities [71], while segrega-
tion between agents with opposing opinions is observed in
[70]. We take a simpler approach by considering a model
that does not include correlations between movement patterns
and the underlying opinion dynamics. Instead, our aim is
to investigate under which circumstances consensus reaching
in motile physical kilobots can be almost as effective as in
an idealized mean-field-like communicating system. This is
achieved by allowing them to gather local information over a
limited temporal window.

When analyzing the data presented in Fig. 4, and observing
the consistency between the fully connected approach and
the results obtained from kilobots (both experimental and
emulated) across a wide range of values for λ, our primary
hypothesis centers around the crucial role played by the kilo-
bot density and the kilobot motion in allowing them to form
a connected communication network [39,42,43]. Through a
percolated communication network, each kilobot can receive
information beyond its immediate surroundings, set by the in-
frared sensor capabilities, and spread it throughout the system.

We investigate the occurrence of this percolation transition
in the kilobot intercommunication network, to understand its
relation with consensus formation. This intercommunication
network can be represented as a complex network [72,73],
where nodes correspond to kilobots, and where two nodes
are connected by an edge if the corresponding kilobots are
within an Euclidean distance smaller than their interaction
radius. Since infrared communication in kilobots is approx-
imately isotropic, the network is undirected, meaning that
if bot i interacts with bot j, bot j would also interact with
bot i. Consequently, these networks are based on proximity.
Although they do not have the information transfer advantages
of long-range networks with scale-free degree distributions
[42], the kilobots’ mobility enhances their communication
and consensus reaching capabilities [43]. Due to the agents’
mobility, this proximity network is time-varying (see Supp.
Fig. 6 in [65] and video 4).

In Ref. [39], the authors used kilobots and the naming
game to explore the importance of percolating communica-
tion networks. However, despite involving moving robots,
the percolation threshold discussed there was related to in-
stantaneous interactions between robots. Here, we consider
time-integrated networks that result from information ex-
changes occurring within a short temporal window �t while
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our robots move. This is why our percolation threshold η∗
includes a movement’ component over this temporal window.
Our percolation analysis demonstrates that at robot densities
well below the instantaneous percolation threshold, where
information percolation would not occur in corresponding
static configurations and thus strong consensus would not be
achieved, the movement of agents over the time interval �t
facilitates consensus formation.

We therefore characterize the percolation transition in the
kilobot communication network examining standard quan-
tities such as the mean communication cluster size, the
emergence of a giant component, the cluster size distributions,
or the average connectivity, as a function of the kilobots com-
munication radius and their advertising time window (some
details and complementary analysis are left for Appendix D).
Finally, we study how this transition impacts the outcome of
the decision making problem.

A. Communicating clusters of kilobots

Leveraging numerous spatial configurations generated in
KILOMBO simulations, we examine the cluster structure within
the kilobot communication network. A cluster is defined as a
connected component in which nodes can be reached from
one another via continuous paths of adjacent edges [72]. In
computational terms, a kilobot is considered part of the same
communication cluster as a focal kilobot if it resides within
a circular region centered on the focal kilobot with a radius
of rint, denoting the effective interaction radius. This recursive
process identifies all clusters and their sizes in each spatial
configuration.

The mean-cluster size, denoted as 〈S〉, is a key parameter
in the analysis of cluster structures. It shares similarities with
transport coefficients like magnetic susceptibility and specific
heat and plays a crucial role in the geometrical percolation
process [74]. This quantity measures the fluctuations within
the cluster size distribution and aids in detecting a continu-
ous percolation transition, where the communication network
shifts from having only small isolated clusters of kilobots to
forming a large, connected communicating component. The
percolation transition occurs as a function of the interaction
radius rint at a fixed kilobot density, or as a function of density
for fixed values of rint. Both quantities can be combined into
a single control parameter η = Nr2

int/R2, which measures the
effective area covered by kilobots. Note that we are referring
to an effective communication area rather than to the physical
area occupied by the kilobot swarm. Thus the percolation
transition takes place at a threshold value η∗ of this control
parameter.

The mean-cluster size is defined as [74]

〈S〉 =
∑′ s2n(s)∑′ sn(s)

, (3)

where, n(s) represents the number of clusters of size s, i.e.,
composed of s kilobots, and summations �′ exclude the
giant componentof the network, Smax, which is the largest
cluster observed in a given configuration. In finite systems,
〈S〉 exhibits a characteristic peak, instead of diverging, at the
percolation threshold [72,74].

Figure 5 displays the mean-cluster size and average giant
component obtained from KILOMBO simulations of kilobots
as they execute PRW trajectories. Specifically, we calculate
the mean-cluster size characterizing their communication net-
work integrated over the exploratory, or advertising, time
window �t . This integration considers the total number of
communication contacts accumulated over the time step �t .
We examine the communicating clusters for various time
windows �t = 0, 400, and 800 (measured in kilobot’s loop
iterations) or equivalently, for �t = 0, 4.12, and 8.24 sec-
onds, and for two different system sizes, with N = 35 and
492 kilobots. At this point, we want to increase the system
size while maintaining a constant kilobot density, so the arena
size is adjusted to keep a constant value of n = N/πR2 =
0.028 bots/cm2. Later on, we will also vary the kilobot den-
sity for completeness.

The mean-cluster size 〈S〉 varies with the interaction radius
rint, as shown in Fig. 5(a), exhibiting a peak at a thresh-
old radius denoted by r∗

int. For comparison and consistency
check, we have included a clustering analysis for random
quenched configurations of kilobots using the same sizes and
density conditions. Notice that indeed the data corresponding
to �t = 0 (instantaneous snapshots) closely resemble the re-
sults obtained from the quenched configurations. The small
discrepancies are due to the existence of short range spa-
tial correlations in configurations obtained from the kilobots’
dynamics, which includes collisions. Such correlations are
absent in the quenched configurations.

The threshold radius r∗
int undergoes a notable shift towards

smaller values as �t increases. Larger values of �t corre-
spond to increasing intercommunication opportunities due to
the kilobot’s advertising dynamics (see Appendix C), and
therefore to higher number of contacts in the communication
network. Thus a larger �t translates into a reduced percolation
threshold radius, beyond which a giant communication com-
ponent forms. Figure 5(b) shows the average size of the giant
component as a function of rint for the same values of �t . As
the giant component approaches saturation, the communica-
tion network has percolated. In particular, after an advertising
time window of �t = 800 loops (8.24 s) in the experimental
system with N = 35 kilobots, the percolation threshold shifts
from approximately 6.5 ± 0.1 cm to r∗

int = 3.75 ± 0.25 cm,
very close to the minimum distance between a kilobot pair
(re � 3.3 cm) due to excluded volume interactions (see Supp.
Fig. 5 in [65]).

Interestingly, at the finite-size percolation threshold, the
normalized distribution P(s) = n(s)/ntot of cluster sizes ex-
hibits a power-law decay, P(s) ∼ s−τ , persisting up to a cutoff
value that depends on system size. This scaling behavior
is shown in Fig. 6, where we observe a fair consistency
with an exponent value τ � 2.055 expected for continuous
percolation in D = 2 [74]. Beyond the cutoff, the decay
becomes usually much steeper. A percolation analysis based
on physical contact between particles is reported in Ref. [69],
where motile particles interact in order to synchronize their
internal oscillators. In that study, physical percolation occurs
at higher packing fractions, leading to significant many-body
interactions in the system. As a result, they obtain a slightly
smaller exponent for the power-law decay of the cluster size
distribution at the percolation transition, τ � 1.7. It would be
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FIG. 5. (a) Mean-cluster size 〈S〉 and (b) average giant component normalized by the system size 〈Smax〉/N as a function of the interaction
radius rint for KILOMBO configurations integrated over different time steps �t = 0, 400, and 800 kilobot loop iterations, and for random
quenched configurations. The left panel shows the results for N = 35 kilobots, while the right panel shows results for N = 492 kilobots and
the same number density n = 0.028 bots/cm2.

intriguing to explore whether a similar exponent emerges in
our experiments under similar crowding conditions. However,
such analysis is currently beyond the scope of the present
work.

In summary, increasing values of �t yield lower perco-
lation threshold values for the pairwise interaction radius,
as a result of the kilobot exploratory dynamics. By moving,
bots increase their average number of communication contacts
favoring the widespread of information through the system.
Given that in the experimental set-up discussed in the previous
section we have N = 35 kilobots with an approximate infrared
communication radius of 7 cm, exploring their neighborhood
for a time window of �t = 800 loops (�t = 8.24 s), we can
conclude that the kilobot dynamics is effectively generating a
percolating infrared communication network, which enables
information exchange at the system-wide scale, or as in a fully
connected mean-field like scenario.

B. Crowding effects in consensus reaching

Once we understand the importance of communication
among seemingly sparse and distant individuals, while they
integrate remote sensing over a short temporal window as
they disperse in space, we can return to the study of the

main collective decision making observables in less favorable
conditions. In particular, it is now evident that the quantitative
values of the dance frequencies, including uncommitted indi-
viduals ( f0) and those promoting specific sites ( f1, f2), as well
as the consensus parameter Q, will depend on the swarm’s
effective crowding.

In this section, we explore how the number density of kilo-
bots n = N/πR2, their communication distance rint, and their
sensing time �t influence the consensus outcome, considering
different values of the interdependence parameter λ. Even-
tually, the dimensionless control parameter η = Nr2

int/R2,
measuring the effective area covered by kilobots, will deter-
mine the formation and strength of consensus as a function of
the beelike model parameters λ, q, and π .

To illustrate crowding effects, we start by systematically
analyzing the influence of the communication range rint on
the decision making process in the quenched configuration
approximation. Figure 7 displays the stationary values of the
dance frequencies f0, f1, and f2 as a function of the inter-
dependence parameter λ. The data are presented for various
values of the interaction radius rint ∈ [3, 12] cm, represented
by different colored curves. We fix the number density of
kilobots to n = 0.028 bots/cm2, nest-site qualities q1 = 7 and
q2 = 10, and independent discovery probabilities π1 = π2 =
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FIG. 6. Probability distribution of cluster sizes P(s) at the per-
colation transition for KILOMBO and quenched kilobot simulations.
The plot shows results for two system sizes with N = 35 and N =
492 and the same kilobot number density n = 0.028 bots/cm2. For
N = 35, the corresponding percolation thresholds are r∗

int � 3.8 cm
(KILOMBO configurations integrated over �t = 800 loops), �5.5 cm
(KILOMBO configurations integrated over �t = 400 loops), � 7.0 cm
(instantaneous KILOMBO configurations with �t = 0), and � 6.4 cm
(random quenched configurations). For N = 492, one finds r∗

int �
4.3 cm (KILOMBO configurations integrated over �t = 800 loops),
�4.8 cm (KILOMBO configurations integrated over �t = 400 loops),
� 6.0 cm (instantaneous KILOMBO configurations with �t = 0), and
� 6.5 cm (random quenched configurations). The gray dashed-line
corresponds to a power law decay with an exponent τ = 187/91
characterizing the cluster distribution in 2D continuous percolation.
It emphasizes the compatibility of our results with a percolation
transition.

0.3 to match the experimental conditions. For comparison, we
also include the expected stationary values in the mean-field
approximation, represented by dotted-dashed lines, as well
as the limiting case where bots remain completely isolated,
a trivial limit of the decision making process that one can
easily work-out analytically, shown as black dashed lines.

The dependency of these zero-interaction curves on λ arises
from the fact that increasing λ limits self-discovery [as one
can deduce from Eq. (1)] without any information exchange
taking place.

For the largest interaction radius, the stationary values of f j

tend towards the mean-field predictions. As discussed previ-
ously, beyond an interaction radius of approximately 6.5 cm,
we have a percolating communication network that allows
information exchange among nearly all bots in the system.
Consequently, for all interaction radii greater than this thresh-
old (r∗

int � 6.5), the f j curves roughly match the mean-field
results, and completely stabilize around rint ∼ 10 cm. Con-
versely, as the interaction radius decreases from r∗

int, the f j

values significantly deviate from mean-field predictions, par-
ticularly for higher values of the interdependence parameter
λ, when communication capabilities become crucial. When
rint � 3 cm, due to excluded volume effects, there are no bots
within the intercommunication distance (since each bot has a
diameter of 3.3 cm, touching robots cannot interact), and the
stationary values of f j follow the isolated kilobots limit.

When λ = 0, the value of the interaction radius becomes
irrelevant, and all curves converge to the same point, known
analytically from the mean-field approximation solution of the
model. The same analysis can be carried out by fixing an
interaction radius rint and changing the number of bots N in
a fixed-size arena. The final outcome will be the same, as it is
shown in Fig. 8.

Figure 7 reveals an interesting phenomenon occurring at
low rint: for high values of λ, the values of f1 exceed the
zero-interaction limit bound. This is because in small isolated
clusters present in such quenched configurations, at high val-
ues of λ, one opinion may dominate for long periods without
the other entering into the discussion, thus being overrepre-
sented. Both populations are influenced by this effect, but it
is more noticeable for f1 as it is expected to diminish when
rint increases, while f2 is expected to grow. This overshooting
effect occurs at the expense of the uncommitted population;
hence, the pronounced decrease of f0 for low rint and high λ

can be attributed to this phenomenon.

FIG. 7. Stationary proportions of bots dancing for the different sites as a function of the interdependence parameter λ for different values
of the communication radius rint . Color curves correspond to simulations of the model on random quenched configurations. Dot-dashed lines
show the result of the mean-field approximation, and dashed lines display the limit case of isolated bots, i.e., rint = 0.
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FIG. 8. Stationary dance frequency for the high quality site 〈 f2〉 (top) and consensus parameter 〈Q〉 (bottom) as a function of the crowding
control variables N , rint , and η. (a) and (b) show results obtained from (i) different ensemble sizes N and a fixed value of rint = 6.5 cm
(dashed-dot lines with dot symbols), (ii) from different interaction radii rint and a constant number of N = 35 bots (continuous lines with
Y-shaped symbols), both in the quenched position approximation; (c) and (d) show results obtained from (iii) KILOMBO simulations (crosses)
varying N and (iv) kilobot experiments for different ensemble sizes, N = 10, 15, 20, 25, 35 (square symbols). All simulations/experiments
have been conducted for three contrasting values of the parameter λ = 0.3, 0.6, 0.9 (blue, green, and orange lines, respectively). (e) and (f)
show the stationary values depicted in (a), (b) and (c), (d), now as a function of the percolation parameter η rescaled by the corresponding
percolation threshold η∗.

Finally, we investigate the impact of crowding on mobile
PRW kilobots at different densities by changing the number
of bots N ∈ [5, 35] in the same arena of radius R = 20 cm.
Based on the analysis presented in the previous section and
in Fig. 7, we anticipate that kilobots, with the ability to
move and to gather information over a temporal period �t ,
will achieve better communication and consequently higher
consensus levels compared to quenched configurations in the
same conditions.

Figure 8 provides a comparison of stationary averaged
values of f2 and Q in experiments, KILOMBO simulations,
and simulations using random quenched configurations. We
consider three contrasting values of the interdependence pa-
rameter λ in the symmetric probability discovery scenario. In
Figs. 8(a) and 8(b), we show the impact of working with dif-
ferent kilobot numbers N or restraining their communication
radius rint. Plots 8(a) and 8(b) show the comparison between
varying N or rint in the quenched approximation. Furthermore,
plots 8(c) and 8(d) show experimental results for varying
number N of kilobots contrasted with KILOMBO simulations.
In all cases the average values of f2 and Q increase gradually
with N until they reach a plateau for N > N∗ ∼ 30 kilobots.

The plateau values lie very close to the asymptotic mean-field
results for each value of λ = 0.3, 0.6, and 0.9. This means
that even for lower number densities than the ones considered
in the experiments shown in Sec. IV (where N = 35), the
system seems to be able to perceive global information about
dancing frequencies and to achieve consensus values very
similar to mean-field results. This is, again, a signature of
the formation of a percolating communication network as a
function of kilobot density. On the contrary, the consensus
parameter for very small ensemble sizes is below zero for
the three contrasting values of the interdependence parameter
considered, and thus strong consensus for the best quality
option is not achieved in such poorly communicated swarms.

Within error bars, the stationary values of f2 and Q ob-
tained from experiments with N ∈ [5, 35] kilobots match
those from KILOMBO simulations. Furthermore, moving kilo-
bots achieve higher levels of consensus than quenched
configurations with the same number of robots. This is par-
ticularly evident for small groups of kilobots and high enough
values of interdependence. We have seen that the PRW motion
of kilobots enhances the transmission of information and,
thus, shifts the percolation transition towards smaller values of

033149-14



HONEYBEE-LIKE COLLECTIVE DECISION MAKING … PHYSICAL REVIEW RESEARCH 6, 033149 (2024)

the coverage parameter η, by either decreasing the threshold
value of r∗

int or, equivalently, by reducing the number N∗ of
kilobots required to observe the percolation transition. This
shift can be clearly seen by comparing Figs. 8(a), 8(b) and
8(c), 8(d), for both experimental and KILOMBO simulation
results of moving kilobots that establish new contacts over a
given time window of �t = 800 loops.

In Figs. 8(e) and 8(f), the same data are now represented in
terms of the dimensionless control parameter η = Nr2

int/R2,
measuring the effective area covered by kilobots, rescaled by
the corresponding percolation threshold η∗ calculated in each
case. Despite the rescaling by η∗ yields qualitatively similar
dependencies on the control parameter for all the cases con-
sidered, moving kilobots slightly outperform the consensus
reached in quenched conditions at high values of interde-
pendence. This is probably due to the existence of enhanced
spatial correlations below the percolation transition. Such cor-
relations appear as a result of their characteristic dynamics,
which includes the possibility of exhibiting collisions and
jams and, therefore, the formation of slightly larger clusters.
This fact improves the formation of strong consensus for the
best quality site around the percolation transition, when λ is
high enough, as large clusters chiefly vote for the same option,
enhancing f2 while hindering f1.

Overall, these results underscore the significance of infor-
mation spreading facilitated by agents’ mobility, interaction
time, and interdependence. They highlight the capability of
robot swarms to achieve consensus successfully even under
less-than-ideal conditions. Identifying the percolation tran-
sition allows us to pinpoint the specific combination of
parameters that lead to nearly mean-field performance. In
contrast to Ref. [39], our study relies on mobility networks
integrated over a short temporal communication window,
emphasizing that agents’ mobility and communication capa-
bilities within this timeframe play a pivotal role in fostering
strong consensus in natural systems.

To conclude this section, we would like to mention that
the percolation threshold is affected by finite size effects. In
particular, the percolation correlation length for finite systems
can only attain a maximum value

ξmax ∼ (η∗(N ) − η∗
∞)−ν ∼ N1/d f , (4)

where ν = 4/3 and d f = 91/48 are the critical exponents for
the correlation length and the fractal dimension [74], respec-
tively, for continuous percolation in D = 2. Therefore, for the
percolation threshold, one expects that

η∗(N ) ∼ η∗
∞ + CN

− 1
νd f , (5)

where C is an arbitrary constant. From this expression, we ex-
pect that the percolation radius for different kilobot densities
scales as

(r∗
int (N ))2 ∼ (

r∗∞
int

)2 + C′N
−( 1

νd f
+1)

(6)

with (r∗∞
int )2 ∼ 0. Indeed, in the case of quenched configura-

tions we obtain r∗2
int ∼ N−1.21, while in the case of kilobots

we obtain r∗2
int ∼ N−1.26 (see Supp. Fig. 5 in [65]). These

exponents, although slightly smaller than the continuous per-
colation expectation, are another indicator of a percolation
process taking place in the communication network.

VI. DISCUSSION

We have investigated the problem of the nest-site selection
process of honeybee swarms using kilobots, i.e., minimal-
ist robots that can mimic their consensus-reaching behavior.
kilobots engage in a honeybee-like collective decision model
while they move in the experimental arena, and we analyze
how adding space and local interactions affects consensus
reaching in (a simplified variant of) the model proposed by
List and coworkers in 2009 [10]. In order to rationalize our
experimental results, we use an analytical approach, obtained
from the deterministic differential equations governing the
dynamics in the mean-field approximation [52,64], as well
as numerical simulations in both fully connected and random
quenched kilobot configurations. Furthermore, we comple-
ment the limited statistics of our experiments with simulations
using the KILOMBO emulator of the kilobot dynamics.

The problem of reaching consensus decisions in a decen-
tralized manner, i.e., the need of targeting the best among
many available options when many agents participate in
the decision process and none of them exerts particular
influence—displays great complexity and beauty and relies
on information pooling and on communication. In our ex-
periments, self-discovery and imitation, i.e., independence
and interdependence, are both essential ingredients in col-
lective decision making. Despite the differences between our
studied model and other honeybee-inspired models such as
[11,12,26,37], we similarly highlight the importance of social
interactions in collective decision making processes. We find
that high levels of interaction enable the swarm to more accu-
rately identify the highest-quality option, especially when the
qualities of options are close or when discovery probabilities
(uncorrelated with site qualities, unlike the aforementioned
works) are large. The primary distinction between our model
and others in the literature is the absence of cross-inhibition
[27,67]. As a result, if symmetry breaking is required to
resolve deadlocks, it can be achieved through a simple adap-
tation in behavior—specifically, by ceasing exploration. For
an extensive analysis of the parameter space and dynamics of
symmetry breaking, refer to Ref. [64]. Finally, in line with re-
cent studies that also use decentralized robot swarms [27,39–
41,54], we have demonstrated that kilobot swarms are capable
of reaching such a complex consensus decisions collectively
in a decentralized manner even in far from ideal conditions.

The resulting quantitative strength of the final consensus
depends not only on the prescriptions of independence and in-
terdependence characterizing the underlying opinion dynam-
ics but also on the resulting communication network produced
by the agents’ mobility. This approach allows us to extend
previous studies on swarm decision making, which have
already considered the topology of interactions [39,42,55],
by explicitly examining the time-varying and time-integrated
communication network along with its percolation transition.
We have observed that, within the bounded decision making
space, the temporal window during which agents can inter-
act, in addition to the communication range and bot density,
controls the percolation of the communication network. At
percolation, our data for cluster size distributions, as well as
for the finite-size scaling of the percolation threshold itself,
are consistent with standard continuous percolation critical
exponents in two dimensions. Besides underscoring mobility
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as a crucial factor in order to foster consensus within a poorly
swarm [39] (i.e., below an static percolation threshold), our
approach acknowledges the significance of agents’ mobil-
ity within a short temporal communication window in real,
natural or robotic, systems for identifying a dynamic com-
munication percolation threshold. Specifically, the interaction
patterns generated by mobility reduce the necessary interac-
tion range or system density compared to static networks.

Thus we have concluded that an effective communica-
tion coverage, which integrates communication range, agent
density, and motility, controls the transition, enhancing the
effective information transfer of a network based on prox-
imity interactions rather than on long-range scale-free degree
distributed interactions [42]. This facilitates the achievement
of consensus in the model dynamics. Without the communi-
cation coverage reaching a critical threshold, the consensus
is poor or nonexistent, and high enough interdependence, or
imitation, turns out to be crucial for building up strong con-
sensus for the best-available option in poorly communicating
swarms. This is even more the case in asymmetric scenarios
where self-discovery favors suboptimal options.

Our study contributes to the understanding of the com-
plexity of decentralized decision making by interacting
and moving agents, establishing the main variables to pay
attention at. Simultaneously, it raises a warning on the inter-
pretation of simple agents models solved at the mean-field
level or simulated in static regular grids. This is especially
relevant when considering the limited communication capa-
bilities of real systems, such as the social insects that inspire
our research.

It is important to note that our analysis assumes a
temporally invariant scenario, where options, discovery prob-
abilities, and qualities remain constant. However, it would be
interesting to investigate alternative scenarios where agents
encounter a changing environment, such as options with fluc-
tuating qualities or the appearance of new options. In such
cases, a more constrained topology of interaction may prove
to be a beneficial asset for the swarm, as observed in recent
studies (e.g., Refs. [54,75]).

We believe that the swarm robotics approach, whether
through conducting real experiments or simulations with re-
alistic emulators, is better suited for studying the capabilities
of complex real systems. This is because it allows for the
introduction of imperfect, yet to some extent uncontrollable,
motion, communication, and synchronization capacities. By
extensively describing their advantages and limitations, their
capabilities and uncertainties, we give a recipe on how to
address them as a swarm when playing a democratic game.
Alongside the literature on collective decision making in
robotic swarms, we hope that our work will encourage further
analysis from a physics perspective on minirobots as pro-
grammable social matter.
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APPENDIX A: METHODS

1. Deterministic solutions of the mean-field model

In Ref. [52], T. Galla provided an analytical approach to
List et al. model using a simple alteration of the original
model. As mentioned in the main text, Galla replaces the state
variables (si,t , di,t ) by si,t , and introduces a dance abandon-
ment rate r j for each site such that 〈r j〉 ∼ q−1

j . Following the
mathematical details provided in Ref. [52], one can arrive to
a set of deterministic differential equations that describe the
time evolution of the system. For each site j = 1, . . . , k:

〈 ḟ j,t 〉 = (1 − ρ(t ))[(1 − λ)π j + λ〈 f j,t 〉] − r j〈 f j,t 〉, (A1)

where ρ(t ) = ∑k
α=1〈 fα,t 〉. Equation (A1) can be numerically

integrated for any fixed choice of parameters. Nevertheless,
an expression for the stationary points of these equations can
be found as the solution of k coupled quadratic equations,
obtained by setting 〈 ḟ j,t 〉 = 0,

f ∗
j =

[
r j

1 − ρ∗ − λ

]−1

(1 − λ)π j j = 1, . . . , k. (A2)

In order to solve this system of equations that unavoidably
depends on the stationary value 1 − ρ∗ = f ∗

0 , one can com-
bine the k equations to solve first a closed equation for f ∗

0 :

f ∗
0 = 1 − (1 − λ)

k∑
j=1

[
r j

f ∗
0

− λ

]−1

π j . (A3)

Equation (A3) has k + 1 roots that can be found by solving
the equation numerically or by rearranging it as a (k + 1)th
degree polynomial in f0. Some of these roots lead to
unphysical solutions with f ∗

0 > 1. From the remaining valid
solutions with f ∗

0 � 0, only one leads to valid ( f ∗
j � 1) and

linearly stable solutions for the rest of dance frequencies.
Stochastic simulations and the integration of Eq. (A1) confirm
the stability of this result.

The extreme cases λ = 0 and λ → 1 have simpler so-
lutions. First, setting λ = 0 in Eq. (A3) leads to a simpler
solution,

f ∗
0 = 1

1 + ∑k
m=1 πmqm

, (A4)

that we can use to compute the result for the rest of the dancing
frequencies. Using Eq. (A2), we obtain

f ∗
j = π jq j

1 + ∑k
j=m πmqm

. (A5)
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FIG. 9. (a) Kilobots experimental setup. (b) kilobots dynamics
as described in Sec. II (see videos 2 and 3 in Supp. Mat. [65]).
Each kilobot is covered by a custom 3D-printed case than enhances
visual on the led light and allows for tracking. (c) A single frame
showcasing a group of 35 kilobots, each identified by their colored
light, dancing for site one (green), site two (blue), or not dancing for
any site (red). (d) The frame in (c) processed using the KILOCOUNTER

software.

When λ → 1, due to the extreme reliance on interdependence,
the site with a greater quality will be finally dominating the
whole system, leaving no agents committed to the other sites
and only a small quantity of uncommitted agents. Assuming
that qk > qk−1 > . . . > q1, we can impose that f ∗

1 = · · · =
f ∗
k−1 = 0, and using Eq. (A2), we find the following stationary

solution:

f ∗
0 = rk, f ∗

1 = · · · = f ∗
k−1 = 0, f ∗

k = 1 − rk. (A6)

This result is validated by simulations, or after solving the
deterministic equations at high values of λ. A linear stability
analysis confirms that this solution is the only stable solution
in the limit λ → 1 [64].

2. Kilobots experimental setup

Kilobots have been instrumental in collective behavior re-
search [53]. Kilobots execute user-programmed functions in
loops, and the loop duration varies based on the complexity
of the operations. In our case, kilobots perform a persistent
random walk while gathering information, estimating pop-
ulation frequencies, computing transition probabilities, and
indicating their commitment state during each loop. For our
experiments, we set up a workspace with kilobots moving on
a glass surface held 15 cm above a whiteboard melamine base.
On the melamine base, we place a central kilobot that acts as
a beacon to enhance synchronization of the kilobots’ internal
clocks, alongside two additional kilobots that amplify the
beacon signal. Our typical setup is illustrated in Fig. 9(a)—see
also video 2 in Supp. Mat. [65]. Synchronization is important

TABLE I. Number of realizations of the kilobot experiments for
each experimental condition defined by N and λ.

�������λ

N
10 15 20 25 35

0.3 10 6 5 5 5
0.6 10 7 5 5 5
0.9 10 5 5 5 5

to coordinate concurrent processes, such as those involved in
the collective decision model.

Our kilobots operate on a persistent random walk (PRW)
dynamics, characterized by straight motion segments with
durations that follow an exponential distribution, averaging
around ∼3.8 seconds. Upon completing each straight move-
ment, the kilobots randomly choose to turn left or right. To
prevent clustering at the arena’s borders, the PRW includes
discrete wide turning angles, enabling the kilobots to turn
away from the border more effectively. The kilobots randomly
select between short turns and long turns, with equal probabil-
ities.

Groups of 10 to 35 kilobots move as PRWs in a circular
arena with a 20 cm radius. After transmitting and receiving
messages, and gathering information from their local envi-
ronment, during a time step �t , typically 800 loop iterations
or approximately 8.24 seconds, kilobots update their state
according to the model dynamics, and consequently “dance
for” either site 1 (low quality), site 2 (high quality), or for
no site, displaying such individual state in their LED (red for
nondancing, green if dancing for site 1, and blue if dancing
for site 2).

To prevent our group of kilobots from clustering at the
wall of the circular observation area, their random dynamics
was configured with discrete wide turning angles to promote
quicker turning away from the border. Turning times consist of
approximately ∼2.8 seconds (125◦) or ∼5.8 seconds (251◦),
and their moving forward states last approximately ∼3.8 sec-
onds. To better identify the kilobots’ states, we covered each
kilobot with a custom 3D-printed black casing, leaving only
the LED light visible, as seen in Fig. 9(b).

We recorded the kilobots dynamics and LED states using a
digital camera with a spatial resolution of 1920 × 1080 pixels
and a temporal resolution of 25 frames per second. Each
recording session lasts typically 30 minutes. To automatically
count the number of kilobots dancing for each site, we ex-
tract images at each time step �t , and we make use of the
KILOCOUNTER software, specifically developed for our work
[76]. Kilocounter identifies and counts colored blobs in these
recordings, allowing us to analyze kilobot behavior, as shown
in Figs. 9(c) and 9(d). To facilitate the tracking, videos are
recorded in a dark setting (see video 3 [65] for an snapshot of
the experiments).

Table I sums up the amount of experiments conducted for
each condition, defined by the system size N and the inter-
dependence parameter λ. Due to the time consuming process
of conducting the experiments, the number of realizations is
limited.

033149-17



MARCH-PONS, MÚGICA, FERRERO, AND MIGUEL PHYSICAL REVIEW RESEARCH 6, 033149 (2024)

FIG. 10. (a) Representation of the experimental conditions under which we tested the kilobots’ ability to sense their surroundings up to
an approximate distance of 3 kilobot diameters (approx. 10 cm). (b) Mean number of kilobots seen by a central kilobot as a function of time.
Different kilobots, identified by their bot ID, where used in the test.

APPENDIX B: KILOBOT COMMUNICATION
CAPABILITIES WITHIN THE EXPERIMENTAL SETUP

In the methods section, we outlined that the kilobot experi-
ments were conducted under complete darkness to facilitate
tracking of the LED lights for subsequent analysis of the
system state. We briefly asses the communication capabilities
of the kilobots under these conditions.

Physical kilobots are typically designed to interact within
a range of 7 to 10 cm, as noted in previous studies [53].
However, Valentini et al. observed a communication range
of up to 20 cm for two isolated kilobots when placed on a
glass surface under light conditions [40]. We confirmed this
observation by conducting the same test.

Under more crowded conditions and in complete darkness,
we have studied how a central kilobot can sense the number of
kilobots in its surroundings up to an approximate distance of 3
kilobot diameters, or approximately 10 cm. Figure 10 depicts
the experimental setup (A) and results for different kilobots
(B). We observe that in the long run, kilobots are able to sense
their entire surroundings, consisting of 29 other kilobots. In
the following section, we further study the kilobots com-
munication capabilities while performing the same dynamic
behavior as in the collective decision making experiments.

APPENDIX C: KILOBOTS DETECTED
OVER A TIME-STEP

In the study of opinion dynamics, understanding how in-
dividuals interact to make decisions is crucial. kilobots gather
information from their neighbors and then act accordingly. We
want to know how many other bots are detected by a kilobot
during a time step.

We thus implement an algorithm for a bot to communicate,
at each time step, the number of bots seen over the previous
time step. We will run this algorithm on uncommitted, non-
dancing bots, while the dancing bots (promoting either site 1
or site 2) perform PRWs. First, we check that the maximum
number of kilobots detected by an uncommitted bot (during a
time step �t = 800 loops) is around 15, in the 20 cm arena
with 35 kilobots running the nest-site selection model. We

restrict the count to bots seen within an interaction radius of
∼7 cm, about 2 kilobots’ body lengths. This is possible by
filtering for the infrared signal intensity. We then divide the
number of bots detected during a time step �t in four inter-
vals, and assign each interval a color: red (0–3 bots), green
(4–7 bots), blue (8–11 bots) and white (12–15 bots). At each
time step, uncommitted bots flush their LEDs according to this
color code, and we count the numbers with the KILOCOUNTER

software. We perform five repetitions of 210 time steps (about
30 minutes each) to gather statistics (over ∼20 000 counts)
(see video 1 [65] for a demonstration of the experiment).

Figure 11 shows in a boxplot the ratio Dn,m, which repre-
sents the proportion of kilobots detecting from n to m neighbor
kilobots during �t . Most kilobots only detect 0–3 other bots,
or 4–7, during a time step. In other words, undecided bots
detect on average 2.92 ± 2.50 bots during each �t .

Additionally, we used the KILOMBO simulator, confirming
that the number of kilobots detected per �t was consistent
with our experimental results. Figure 12(a) shows the dis-
tribution of bots detected by a focal kilobot i in �t , Bi,�t .

FIG. 11. Kilobots detected over a time step �t in experiments.
The boxplots show the proportion of kilobots detecting from n to m
neighbors for four different (n, m) ranges.
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FIG. 12. Kilobots detected during a time step �t in KILOMBO. (a) Probability distribution, Bi,�t , of kilobots detected by a focal kilobot i in
a time step �t . (b) Same as A in a logarithmic scale and for different number N of kilobots in the arena. (c) Average ratio of kilobots dancing
for site j detected by a focal kilobot i in a time step �t , f (i)

j , as a function of the number N of kilobots in the arena, for three different values
of λ.

Uncommitted bots in KILOMBO detected a mean of 2.91 ±
1.35 bots. With the reassurance that KILOMBO fairly mim-
ics quantitatively the real system, we also analyze how the
number of bots seen vary when varying the kilobot density.
Figure 12(b) shows the distribution Bi,�t as the number of
kilobots N goes from N = 5 until N = 35. As N increases,
curves shift towards the right but, in all cases, the average Bi,�t

remains below 5.
The emulator also provides more detailed information

about the proportions of detected bots that were dancing
for each site. We analyze the ratio of kilobots seen by
the focal kilobot i separating those dancing for each avail-
able site j, f (i)

j , during �t for three contrasting values of
the interdependence parameter λ. In Fig. 12(c), we repre-
sent the average 〈 f (i)

j 〉 for j = 1, 2 as N is increased, for

λ = 0.3, 0.6, and 0.9. We observe that the 〈 f (i)
j 〉 increase

gradually with N until they reach a plateau for a group of
approximately 30 kilobots. As we discuss in the main text,
this feature corroborates the existence of a percolating com-
munication network.

APPENDIX D: COMPLEMENTARY ANALYSIS OF THE
COMMUNICATION NETWORK

1. Finite-size scaling in quenched configurations

Here we provide a complementary finite-size scaling
analysis of communicating cluster formation in quenched
configurations of bots randomly located on a circular arena.
In Fig. 13(a), we plot the mean-cluster size 〈S〉 for different
system sizes, preserving the same number density N/πR2 =
0.028 bots/cm2, as a function of the communication radius
rint, which characterizes the maximum extent of message
transmission, and thus of information exchange, through in-
frared sensors among physical kilobots. We can identify the
critical percolation interaction radius at around r∗

int = 6.5 ±
0.2 cm.

Continuous percolation threshold values for two dimen-
sional discs of effective radius rint in a square box of linear
dimension L with periodic boundary conditions are found in
the literature [77]. The critical filling factor in that particular
geometry is η∗ = Nπr2

int/L2 � 1.128, or equivalently, r∗
int =

(L2η∗/(Nπ ))1/2. Assuming a similar scaling behavior in our

033149-19



MARCH-PONS, MÚGICA, FERRERO, AND MIGUEL PHYSICAL REVIEW RESEARCH 6, 033149 (2024)

FIG. 13. (a) Mean-cluster size and (b) Average giant component as a function of the communication radius rint for quenched configurations
on different system sizes that preserve the same number density. Cluster sizes were averaged over 1000 configurations per system size.

case, with a fixed rigid circular wall, would yield a smaller
threshold radius of approximately 3.59 cm, indicating that
both our circular geometry and fixed boundary conditions give
rise to packing and size effects that cannot be neglected in
the quantitative determination of this nonuniversal threshold
value. On the other hand, such effects should not be relevant
regarding the behavior of critical exponents.

In Fig. 13(b), we represent the average size of the giant
component (the largest connected cluster in the system) as
a function of the interaction radius rint. This quantity attains
its maximum value, comparable to the system size, after the
percolation threshold. As the maximum value of the mean-
cluster size, the size of the giant component at the percolation
threshold scales as a power law of the system size.

FIG. 14. (Top) Degree distribution P(k) at the percolation threshold r∗
int . Data obtained from KILOMBO simulations integrating over different

time steps, �t = 0, 400, 800 loop iterations and for 1000 quenched bot configurations. (Bottom) Degree distributions obtained for different
interaction radius rint and a fixed value of �t = 800 loop iterations. Left panels correspond to N = 35, and right panels to N = 495.
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FIG. 15. Average degree 〈k〉 of the communication network as a function of rint . Results are obtained from KILOMBO simulations integrating
over different time steps �t = 0, 400, 800 loop iterations and for 1000 quenched configurations. (Left) N = 35. (Right) N = 495.

2. Communication network degree distribution

In network theory, a node’s degree k represents its number
of connections with other nodes, while the degree distribution
P(k) indicates the probability of a randomly chosen node
having degree k [72]. Both degree and degree distribution
are crucial for understanding dynamic processes on networks,
such as information spread in the kilobots’ infrared commu-
nication network.

Figure 14 illustrates the degree distribution observed for
the communication network built-up in KILOMBO simulations
after integrating over various exploratory time steps (�t). Two
different system sizes with the same kilobot number density
are considered. The bell-shaped curves roughly resemble a
Poisson distribution (P(k) = e−λ λk

k! ), where λ represents the
average degree 〈k〉.

Additionally, we compute the average degree (〈k〉) of the
communication network integrated over different �t values

in KILOMBO simulations and for quenched random configura-
tions, and the same system sizes (N = 35 and 492).

Figure 15 shows 〈k〉 as a function of rint for the same
time windows. Increasing �t and/or interaction radius rint

results in higher values of 〈k〉, which eventually overcome
the threshold average degree 〈k〉∗ = 1 required for the pres-
ence of a giant component in this network according to
the celebrated Molloy and Reed criterion [78]. These find-
ings align with a network interpretation of the percolation
transition.

For the smaller system (N = 35), quenched kilobot con-
figurations exhibit a slightly larger average degree compared
to single snapshots of KILOMBO simulations (�t = 0), po-
tentially due to the accumulation of some bots at the arena
wall. This effect diminishes for the larger system size,
yielding similar 〈k〉 values for both quenched and �t = 0
configurations.
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