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Laser-plasma ion beam booster based on hollow-channel magnetic vortex acceleration
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Laser-driven ion acceleration provides ultrashort, high-charge, low-emittance beams, which are desirable for
a wide range of high-impact applications. Yet after decades of research, a significant increase in maximum ion
energy is still needed. This paper introduces a quality-preserving staging concept for ultraintense ion bunches that
is seamlessly applicable from the nonrelativistic plasma source to the relativistic regime. Full three-dimensional
particle-in-cell simulations prove robustness and capture of a high-charge proton bunch, suitable for readily
available and near-term laser facilities.
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I. INTRODUCTION

A. Laser-driven ion acceleration

Laser-driven ion acceleration provides unique particle
bunches of very high charge (�100 pC), large current (>kA),
and ultralow emittance (�10 nm) on very compact accel-
eration footprints [1–6]. Such high-intensity ion beams can
have a significant impact on advancing both fundamental
and applied research applications in physics, industry, and
society, ranging from next-generation hadron colliders or neu-
trino factories [7,8], drivers for inertial fusion energy [9,10],
radiotherapy [11–16], nuclear physics [17], warm-dense mat-
ter research [18,19], secondary radiation generation [20,21]
for material research and security applications, and possibly
even radiation hardness of spacecraft [22,23]. However, af-
ter decades of research, the demonstrated maximum particle
energy, between 60 and 150 MeV for protons [24–28], still
remains short of desired ranges for many of the mentioned
pivotal applications.

With state-of-the-art petawatt (PW) laser facilities [29,30]
that can deliver high-intensity laser pulses reaching 1023

W/cm2 [31], laser-ion acceleration remains an indirect pro-
cess due to the high mass of ions. The laser pulse interacts
primarily with plasma electrons, creating a localized (<µm)
charge separation that imposes a strong (>TV/m) electric
field, orders of magnitude higher than achievable in estab-
lished cyclotrons and radio-frequency accelerators, which
then facilitates the acceleration. Depending on the laser in-
tensity and contrast [2,25,32], target density, thickness, and
composition, a specific laser-ion acceleration mechanism
might dominate [1–3,33]. In these mechanisms, the maximum
ion energy scales with laser intensity on target, for some
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even linearly, while demanding high control of temporal laser
contrast [33]. Yet, increasing laser power is a multidecade-
long undertaking, and significant advances initially reduce
laser repetition rate and temporal laser contrast, and increase
facility cost and footprint [29,30].

In this paper, we propose a solution to the longstand-
ing challenge of achieving relativistic ion energies from a
laser-plasma accelerator, the first quality-preserving, self-
consistently modeled concept of ion staging. This concept for
staging boosts particle energies from the subrelativistic over
arbitrary energy levels to the relativistic regime. Staging was
already demonstrated in the plasma acceleration of electrons
[34,35] and is a candidate for next-generation electron-
positron colliders for high-energy physics and light sources
[36]. In contrast to staged electron acceleration, where the ini-
tial laser-plasma source readily provides relativistic particles,
ions need to be accelerated in multiple stages while under-
going significant velocity changes. In this paper, we present
an ultracompact stage with quasistatic fields of a specifically
designed laser-driven plasma element [see Fig. 1 for a three-
dimensional (3D) visualization] and show that repeated injec-
tion into stages of the same compact design boosts ion energy
progressively from nonrelativistic to relativistic values.

B. Magnetic vortex acceleration

This paper explores staging via a laser-target setup previ-
ously used for magnetic vortex acceleration (MVA) [37–39].
Realizing MVA involves the interaction of an intense laser
pulse with a near-critical density (NCD), ne ≈ ncr, plasma
target of several tens of micrometer thickness [40–42]. Here,
ne and ncr = meω

2/4πe2 are the plasma density and critical
plasma density, e and me are electron charge and mass, and ω

is the central laser pulse frequency. The ponderomotive force
of the laser pulse generates a plasma channel, first in electron
density, then in ion density. During its propagation through
the channel, the laser pulse causes a strong electron current in
the forward direction, which later starts to pinch, creating an
electron and ion filament along the laser propagation axis. As
the laser, electrons, and ions exit the target from the back side,
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FIG. 1. Volumetric rendering of the electron density ne at the exit
of the plasma booster stage with selected bunch protons colored by
kinetic energy (arrows).

strong electric (∼TV/m) and magnetic fields (∼104 T) are
generated there, arising from the forward-accelerated electron
filament and cold return currents in the channel walls. This
produces a high-flux ion beam of ultrashort time structure and
with nanocoulombs of charge [37,38].

For MVA, the electric fields created at the rear side of
the plasma channel both accelerate and focus the ions. Ion
acceleration from near-critical density plasmas has been stud-
ied in multiple experiments [27,43–48], and MVA was found
to be robust against laser contrast and incidence angle vari-
ations in numerical modeling studies [39]. The near-critical
density regime of MVA, readily reached with high-repetition
rate targets [27,49], relaxes the requirements for microscopic
fabrication precision needed. Particularly attractive for energy
boosting is that upon laser irradiation no potential barrier
is created at the target front side, which would decelerate
particles [50–53].

C. Related work

Existing theoretical work on boosting the energy of laser-
driven ion beams can be classified into different categories:
first, energy boosting from a cascade of acceleration mecha-
nisms, using a single laser pulse and composite target [54–57]
or multiple targets [58,59], and second, energy boosting using
multiple laser pulses on a single target [60–63]. The first
approach is limited by the available laser energy, and the sec-
ond is sensitive to control of the spatiotemporal laser-plasma
interaction. The third category is proposing to avoid these
limitations, energy boosting with multiple laser pulses and
staged targets [50,52,64,65], so far with limited exploration
of performance with intense beams or preservation of impor-
tant beam moments, besides gaining energy. Consequently, no
experimental studies exist so far.

II. METHODS

A. Booster stage design

Here, MVA is studied as a scalable mechanism for boost-
ing an ultraintense, high-charge beam that is implementable

FIG. 2. Fields of the booster stage, loaded with a 200 pC proton
bunch. The stage center is at z = 0 µm. (a) Electron density ne in
red, reference plane at the accelerating bucket zab = 15 µm (black
vertical line), and beam density nbunch in purple located behind the
exit of the stage. (b) Accelerating electric field Ez, and (c) focusing
electric field Ey, all shown as the beam reaches zab. Dashed gray lines
mark the outline of the initial electron density of the hollow channel.

with high-repetition rate stages [27,49,66]. We investigate and
propose a robust, quality-preserving variation of MVA as a
plasma booster, which is insensitive to the accepted ion beam
velocities, and systematically evaluate temporal and spatial
acceptance tolerances. Critical for staging into subsequent
high-β (normalized ion velocity β = v/c) acceleration stages,
our approach can conserve the high charge and the ultralow
emittance of laser-plasma generated beams. The presented
booster also accepts substantial energy spreads.

However, there is a significant distinction between a typical
MVA target and the one proposed here, visualized in Fig. 2. In
MVA, the accelerated ions originate from a central filament,
which is formed from the background ions under the action of
the pinched electron current. Those ions mainly come from
a small region at the back of the target near the channel
axis. Thus, in order to suppress additional low-energy ion
injection from the booster stage itself, an NCD target with
a preformed hollow region is chosen (dashed lines in Fig. 2)
[67–70].

Typically, MVA relies on the intense laser pulse self-
channeling in an NCD plasma [37,38,71]. The balance of the
ponderomotive push by the laser and the Coulomb attraction
between the displaced electrons and remaining ions determine
the radius of such a channel. In the case of an NCD plasma
with a preformed channel of radius rh [for simplicity we
simulate a density step function ne(r < rh) = 0], the radius of
the self-generated channel Rch and the amplitude of the laser
field ach in the channel can be determined using the same line
of reasoning:

π2

λ2

(
R2

ch − r2
h

) = ach(rh)
ncr

ne
, (1)

π2R2
ch

λ2
a2

ch = 2P

KPc
. (2)
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Here, ach(rh) = ach[J0(κrh) − J2(κrh)], which comes from
the solution of the wave equation in the waveguide [37],
J0 and J2 are the Bessel functions, and κ = 1.84/Rch. Pc =
8πε0m2

ec5/e2 = 17 GW is a characteristic power for relativis-
tic self-focusing, λ and P are the laser wavelength and power,
respectively, and K = 1/13.5 is a geometric factor. In the case
rh = 0, these two equations reduce to the results of Ref. [71].
For the parameters used below, the radius of the channel is
Rch = 2.1 µm, which is only 5% smaller than in the case of a
homogeneous NCD plasma.

As mentioned above, the accelerating and focusing fields
at the back of the target are due to the strong electron current
flowing through the channel, following the laser pulse. The
peak value of the magnetic field generated by such a cur-
rent scales as Bch ∼ neR3

ch. Thus, the main difference in field
strength between homogeneous and hollow targets is caused
by a factor (1 − r2

h/R2
ch ) difference of electrons available in

the channel.

B. Simulation setup

For the study of the booster concept, three-dimensional
electromagnetic particle-in-cell simulations with the code
WarpX [72,73] are performed, using parameters readily avail-
able at existing PW laser facilities such as the BELLA iP2
beamline [74]. The laser pulse in all simulations discussed in
this paper has 9.6 J of energy on target (Gaussian, central
laser mode), a normalized amplitude of a0 = 42, a central
wavelength of 815 nm, a duration of 29.8 fs, a beam waist
of 2.12 µm, and is linearly polarized (in x).

The booster stage targets are each 28 µm in length, with a
density of 2ncr and preformed channel radius of rh = 1.5 µm.
The hollow channel prevents interactions between the ion
beam and the plasma within rh, which would otherwise impact
the beam quality. The laser pulse waist is larger than the
preformed channel, so as to drive a strong channel current
at radius Rch for acceleration at the stage rear. The laser-
target interaction pulls electrons off the channel wall and
creates a forward-propagating electron filament on the chan-
nel axis, as in regular MVA (see Fig. 2). When the laser
pulse and the electron filament pass the target rear, MVA-
typical accelerating and focusing fields are created, forming
an “accelerating bucket.” The ion beam experiences optimal
acceleration before the electron filament disperses and field
strengths subside. It is temporally phase matched to the peak
field in space zab and time.

III. RESULTS

A. Single-particle acceptance

Before exploring the collective boost of a high-charge
bunch, the properties of the hollow MVA stage in terms
of longitudinal and transverse single-particle acceptance are
studied. Characterizing the proton phase space that can be
energy boosted, noninteracting protons are varied in ini-
tial position and momentum space and tracked through the
electromagnetic fields of the self-consistently modeled laser-
driven plasma stage.

FIG. 3. Longitudinal beam acceptance. Average energy gain for
tracked beam particles vs their starting energy and arrival time off-
set with respect to the laser maximum at zab = 15 µm. The laser
maximum is behind (before) the particle beam for negative (pos-
itive) times. Yellow horizontal lines mark design energies for five
consecutive stages (S1–S5) to boost a beam from 80 to 380 MeV
starting energy. The inset zooms into a region around stage S1 (black
rectangle) where contour lines mark levels of constant energy gain.

1. Longitudinal acceptance

Figure 3 shows the longitudinal bunch acceptance, a mea-
sure for accepted bunch length and temporal jitter between
bunch particles and laser pulse with respect to a reference
plane at zab. Since the incoming ion beam is nonrelativistic
for early stages, it is timed to enter the plasma stage before the
laser pulse and is overtaken by it during the course of the prop-
agation. Tracked particles were initially uniformly distributed
within 0 � r0 � 0.25 µm and without transverse momentum.

As long as the particle bunch arrives with or after the laser
maximum in the accelerating bucket, for a large tolerance
of over 200 fs, an energy boost between 30 and 80 MeV is
observed. Particles that arrive outside this window are deceler-
ated by less than 15 MeV. In Fig. 3, five possible consecutive
stages are marked from 80 to 380 MeV. The inset shows a
zoomed detail for stage 1, with a “flattened” region of uniform
acceleration for intense beams of up to 15 fs in duration.

2. Transverse acceptance

Figure 4 shows the correlation of transverse normalized
momenta with radial position for beam acceptance into the
booster stage. For each stage S1–S5 in Fig. 3, protons were
tracked for a range of transverse initial conditions, and initial
longitudinal momenta corresponding to their marked energies,
respectively.

Every bunch initially measured 2 µm in length and
4 µm in diameter, was uniformly distributed and centered
around a z position corresponding to the delay expected to
deliver the highest-energy boost. Transverse momenta were
also uniformly distributed. A fraction of particles traversed
the background plasma in the channel wall region to check
that the transverse acceptance is not limited by the chan-
nel aperture, e.g., due to laser-plasma interaction dynamics.
Accommodating the cylindrical channel symmetry, we show
the normalized radial momentum pr/pz versus radial distance
r, where pr = (p2

x + p2
y )1/2. For Fig. 4, particles had initial
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FIG. 4. Transverse beam acceptance. Top: Average energy gain
�E of tracked particles with respect to initial radial distance r and
initial normalized transverse momentum pr/pz,0. Bottom: Maximum
accepted normalized transverse emittance in nm. Values are for
minimum energy gains �E of 30, 40, 50, and 60 MeV per stage,
respectively.

azimuthal momenta pθ /mc smaller than 0.02. As before, the
total energy gain is color coded. Spaced at every 10 MeV,
contour lines mark a constant energy gain between 0 and
90 MeV. Slightly diverging particles on axis are still accepted
by the stage. With growing radial distance only focused, con-
verging particles (negative normalized radial momentum) are
still accepted. Interestingly, for beams with initial energies
larger than 130 MeV, particles with a specific position-angle
relation not aligned with the central propagation axis gain the
highest energies in the stages S2–S5.

Calculated from the phase-space regions contained in the
respective contours in Fig. 4, the table lists the maximum
accepted transverse emittances for each stage and selected
minimum energy boosts: For a beam with a Kapchinskij-
Vladimirskij (KV) distribution [75], one can estimate this
maximum accepted emittance by dividing the phase-space
area by 2π (instead of 4π , due to the projection of phase
space to radial distance instead of the transverse position) and
multiplying by p0,z/mc. For boosts between 30 and 50 MeV,
all stages accept a bunch with normalized emittance up to
23–44 nm. The accepted emittance is sufficient for bunches
of MVA sources (<20 nm) and even increases acceptance for
higher input energies.

B. Self-consistent, high-charge acceleration

Including all collective effects of the energy-boosted beam,
Figs. 1, 2, and 5 present a fully self-consistent electromagnetic
3D WarpX simulation with an ultraintense (19.3 kA), high-
charge (200 pC), narrowly focused proton bunch. Informed
by Figs. 3 and 4, bunch parameters are a transverse KV
distribution, uniform in time, and a Gaussian, sub-relativistic
of 80 ± 5 MeV (energy spread σE = 5.1%). In practice, the
200 pC of charge could be energy selected from a wider
spectrum of a present day PW laser ion source and ideally

FIG. 5. Energy spectrum of a 200 pC proton beam before (blue)
and after (orange) the MVA booster element. The inset shows the
initial electron density distribution (red shaded area) of the stage
in the x−z and y−z half planes. Furthermore, gray lines show the
evolution of transverse root mean square beam sizes σx (dashed) and
σy (dotted, mirrored downwards) along the longitudinal coordinate.
Blue lines show the evolution of normalized transverse emittance ex

(dashed) and ey (dotted), respectively.

transported via an apochromatic beamline [76–78]. It is as-
sumed that the bunch has been phase-space rotated in a similar
fashion as described by Busold et al. [79].

The inset of Fig. 5 presents the bunch envelope and
emittance evolution. Performed beam-loaded 3D simulations
showed that emittance growth from a space charge and subse-
quent channel-wall interaction occur in the second half of the
channel (z > 0). Mitigating this effect, the proton beam focal
position was adjusted from zab at the target rear to zf = 3 µm,
exploiting that the beam is pinched in the strong laser-induced
fields of the plasma channel (gray lines).

Fixing the transverse bunch size in focus (2σx,y = 1 µm)
and choosing the transverse emittance to be between results
from Hakimi et al. [39] and the maximum accepted emit-
tance from Fig. 4, namely ex = ey = 20 nm, results in the
Courant-Snyder (Twiss) parameters at the initialization plane
at 〈z〉0 = −17.3 µm: βx,0 = βy,0 = 74.2 µm, αx,0 = αy,0 =
3.62, and γx, f = γy, f = 190 000 m−1 via the beam envelope
equations [80] for a drift.

The central bunch energy is boosted in the stage by
50 MeV, as predicted by tracking simulations in Fig. 3. No
bunch charge is lost during the acceleration process. The
energy spread grew from 5% to 7%. After the first booster
stage, the emittance has grown by only 3.5 nm. These results
are well within range for the above predicted coupling require-
ments to higher-energy stages and provide the opportunity for
future research on design optimizations for energy boosting to
multiple stages.

IV. SUMMARY AND CONCLUSIONS

In summary, a self-consistently modeled scheme is pre-
sented for boosting the energy of ultra-intense ion bunches
of arbitrary β: Staging can overcome the limits of achiev-
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able beam energy in a single laser-plasma interaction, which
currently impedes the impact of laser-driven ion acceleration.
Central for a staging approach, 3D simulations confirm the
conservation of charge, energy spread, and emittance. Addi-
tionally, the same laser-plasma stage can be used for a scalable
range of input velocities, facilitating the coupling of multiple
stages via the control of the temporal delay between laser
pulse and boosted ion bunch. Benefiting from the combined
strong acceleration and focusing fields in magnetic vortex
acceleration (tens of MV/µm), a hollow target is suitable
as a robust plasma booster stage. Source and booster laser-
plasma parameter ranges are realistic for state-of-the-art and
upcoming laser facilities around the world [74,81], motivating
experimental validation and implementation for applications.
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