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Sedimentation dynamics of triply twisted Möbius bands: Geometry versus topology
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We explore the sedimentation dynamics of triply twisted Möbius bands, each characterized by threefold
rotational symmetry but distinguished by its construction and intrinsic geometrical properties. Three types
of bands are considered: one with vanishing Gaussian curvature, constructed by isometrically deforming flat
rectangular strips through bending without stretching; and two with negative Gaussian curvature, one being
constructed by isometrically deforming helicoids. Experiment on these three types of bands, with a focus on
varying aspect ratios, reveals a singular phenomenon: while the spin directions of bands not derived from
helicoids spin in directions consistent with their inherent chirality, bands derived from helicoids exhibit an
aspect-ratio-dependent spin, pointing to the existence of a critical aspect ratio at which geometric factors
dominate over chiral influences. Supported by numerical simulations and a detailed analysis of the resistance
tensors, we propose the unique response of bands derived from helicoids originates from a complex interaction
among geometry, topology, and hydrodynamics. Two explanations are offered for the chiral transition observed
in bands derived from helicoid. First, this transition may parallel the dynamics of superhelices, for which
competing chiralities influence rotational behavior. Second, the unique geometrical properties of bands derived
from helicoids, coupled with deviations between the rotation axis and the local symmetry axis, may underlie
the observed aspect-ratio-dependent chiral transition. Our study underscores the significant role of geometrical
and topological nuances in determining the behavior of chiral objects suspended in fluids. In addition to offering
transformative potential across diverse fields, it promises advancements in mixing, separation processes, and
innovative passive swimmers.
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I. INTRODUCTION

The hydrodynamics of falling objects has long intrigued
researchers in the field of fluid mechanics, as understanding
the intricate interactions between a body and the fluid through
which it moves is fundamental to various natural and engi-
neered systems. Factors such as body shape, periodic and
oscillatory motions, and complex fluid-structure interactions
play critical roles in this phenomenon [1]. These factors are
particularly important for understanding various phenomena,
including the flight of insects [2], the dispersal mechanisms of
tree seeds [3], meteorological patterns [4], and sediment trans-
port in aquatic environments [5]. Investigating the interactions
between these effects provides insights into the fundamental
principles of fluid dynamics and their practical applications
to natural processes and the improvement of technological
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designs. In the last decade, researchers have successfully
manufactured novel materials with tailored chirality [6–9]
as evidenced by their diverse applications in chiral sensing
[10], separation [11], catalysis [12], and flow-driven rotatory
motors [8,13]. From a theoretical standpoint, understanding
how chiral objects respond to different external physical stim-
uli poses significant challenges. As a result, there has been
considerable interest in studying the hydrodynamic behavior
of chiral objects in fluids. A notable finding from these studies
is the tendency of chiral objects with different handedness to
rotate in opposite directions during sedimentation. This phe-
nomenon has been applied in enantiomer classification and
separation [14–16]. However, the experimental and simulation
evidence we present challenges the notion that this behavior
universally applies to all chiral objects.

In a low Reynolds number regime, a rigid body moving
in an incompressible, viscous liquid experiences hydrody-
namic forces and torques, leading to translation and rotation.
The coupling of these motions depends on the geometry and
topology of the body. For instance, a screwlike rigid body
rotating in a quiescent fluid imparts linear motion relative
to the fluid, generating a force, and simultaneously induces
torque, leading to vortical motion in the liquid [17–23]. Sim-
ilar phenomena are observed in biological structures, where
chirality is linked to form [24]. As the Reynolds number
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increases within the laminar range (say from 102 to 4 × 102),
wake formation and other hydrodynamic effects can give rise
to intricate oscillatory trajectories of the body [1,19]. In shear
flows, helical particles can display a passive drifting motion.
This behavior occurs alongside the well-documented Jeffery
orbits, which are characteristic of elongated particles. The
drifting of helical particles is attributed to effects induced by
their chiral nature [25]. The stability of these trajectories is
intricately linked to the specific geometrical and topological
attributes of the considered body.

Happel and Brenner provided a concise framework for
characterizing the dynamics of an arbitrarily shaped rigid
body moving in a viscous incompressible liquid [26] at low
Reynolds numbers. Given a point o affixed to the body, let vo

be the instantaneous velocity of that point, and let ω be the
instantaneous angular velocity of the body about that point.
The net force f and net hydrodynamic torque τo exerted by
the liquid on the body are then given by[

f

τo

]
= −μR

[
vo

ω

]
, R =

[
K C�

o

Co Ωo

]
, (1)

where μ is the viscosity of the liquid and K, Ωo, and Co are
the translation, rotation, and the coupling dyads. While K is
an intrinsic property determined entirely by the geometry and
topology of the body, Ωo and Co depend also on the choice of
the origin o. The dyads K and Ωo are necessarily symmetric
and positive definite. Although Co is generally asymmet-
ric, the resistance tensor R is consequently symmetric and
positive definite. For a chiral body R encodes its preferred
spinning direction [17,27,28].

Chiral bodies generally exhibit more complex behaviors
than their achiral counterparts, owing to induced hydrody-
namic interactions that arise from their handedness. The
impact of these chiral characteristics has been explored
through various theoretical and experimental studies [29]. As
the Reynolds number increases, additional inertial effects can
lead to more complex dynamics due to wake formation ren-
dering the behavior of chiral objects even more intricate [1].

II. MATERIALS AND METHODS

A. Construction of triply twisted Möbius bands

A Möbius band is an emblematic chiral structure that can
be made by connecting the ends of a strip after applying
an odd number of twists. Here, we examine three distinct
families of triply twisted, threefold symmetric Möbius bands,
investigating the variability of their intrinsic chiral response
within each family based on two dimensionless parameters:
a notion of aspect ratio that we define subsequently and the
Archimedes number Ar (the ratio of gravitational forces to
viscous forces). Möbius bands can be constructed in various
ways. One approach includes bending a rectangular strip of
length L and width w into a sequence of three helical sec-
tions linked by planar segments [30], as illustrated in Fig. 1.
Any such band is developable, meaning that it can be iso-
metrically flattened without stretching, contraction, folding,
or tearing. We use D to denote the family of ruled triply
twisted Möbius bands constructed in this way. We also con-
sider rotoidal bands, constructed by uniformly translating a

line segment of length w along a circle with a radius of L/2π ,
while simultaneously rotating it at a twist rate of ωtwist =
±3π/L [31], as illustrated in Fig. 1. To ensure the resulting
surface remains free from self-intersections, we require that
w < L/π . These bands belong to the family denoted as R
as illustrated in Fig. 1. We also consider a class of ruled,
triply twisted, threefold symmetric Möbius bands which arise
as the limiting surfaces of closed kinematic chains known
as Möbius kaleidocycles, similar to the binormal-scroll (B)
bands [32]. These Möbius bands are isometric deformations
of helicoids [33], exclusively attainable through bending and
twisting, without involving any stretching or contraction.
While each Möbius band considered has the same topology
and has threefold rotational symmetry, each family of Möbius
bands has distinct features, which we describe in the next two
paragraphs.

The dynamics of a rigid body sedimenting in a liquid
are significantly influenced by the angles at which the liquid
strikes the body. It is therefore important to consider the
projected area in the direction of the motion and curvature of
the sedimenting body as pivotal factors. While maintaining a
fixed aspect ratio, the projected area can differ across the three
families of bands considered. To enable a meaningful compar-
ison, we introduce the projected radius R, which corresponds
to the radius of the circle inscribing the projected midline of
a band as observed in Fig. 1 [see also Supplemental Material
(SM) [34], Fig. 2]. The projected midline takes the form of
a triangular loop for bands of type D, a circle for bands of
type R, and what resembles a Reuleaux for bands of type B,
as illustrated in Fig. 1 and SM [34], Fig. 3. We consider it
noteworthy that for a constant R, bands of type D are more
compact than bands of type B with the same aspect ratio,
whereas bands of type B are notably more compact than R
counterparts with the same aspect ratio. In a broader sense,
bands of type R can achieve higher aspect ratios because
their circular midlines provide more internal space within the
loop. Conversely, bands of type D and B are expected to have
smaller aspect ratios owing to their relatively confined inner
available space. Considering the curvature characteristics of
the bands, bands of type B and D differ due to disparities in
the rates at which their rulings rotate around their midlines.
Specifically, bands of type D exhibit zero Gaussian curvature
(K = 0) and comprise three straight segments where rotation
rates are null. In contrast, bands of type B and R share negative
Gaussian curvature (K < 0) attributed to the constant twist of
the generatrix, which we denote by ωtwist (8.0941/L [32] and
3π/(L) for bands of type B and R, respectively). We speculate
that bands of type B amalgamate select geometrical properties
from bands of type D and R in novel ways, underpinning their
behavior during sedimentation. Moreover, these distinctions
influence the resistance tensor of bands of type B, leading to
intricate chiral transitions in their hydrodynamic response.

B. Sedimentation studies

We conducted comprehensive sedimentation studies, en-
compassing both experimental and numerical investigations,
focusing on triply twisted bands. These threefold symmet-
ric bands are characterized by their projected radius R,
width w, and mass density ρs. Sedimentation occurred in an
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FIG. 1. Triply twisted, threefold symmetric Möbius bands and their construction. Bands of type D (developable) are constructed by bending
a rectangular strip of length L and width w around three cylinders of radius r, and angle α between them. The principal curvatures k1 and k2

are also shown for the different sections of the band. Bands of type rotoidal R (rotoidal) are constructed by moving a line segment, from its
middle point, around a circle of radius L/2π while turning it perpendicular to the movement at a rate twist of ωtwist = 3π/L. Construction of
bands of type B (binormal scroll) are created by isometrically bending a helicoid, as explained in Ref. [33]. Consequently, the length of curves
S1b and S2b on the helicoid remains unchanged after forming the triply twisted Möbius band. The midline of each type of bands is presented in
yellow.

incompressible, viscous liquid with mass density ρ and shear
viscosity μ. The width w of the bands varied among different
cases to explore the effects of aspect ratio. In Fig. 2, we pro-
vide an illustration of the sedimentation setup and the various
motions experienced by the bands during the experiments.
Our experimental studies used three-dimensional (3D)-printed
polystyrene bands, each with R = 1 cm, sedimenting in water.
See Supplemental Material [34] for samples of stl files used
to print the bands. Further details on the experimental setup
can be found in the Appendix A. In this context, the forces
influencing the bands include the force due to gravity, the
buoyancy force, and the drag force. As each band descends,
it eventually reaches a terminal velocity vz, measured with
respect to a reference frame located at the top of the container.
Additionally, they exhibit an angular velocity, ωcm, relative
to a moving frame fixed on the center of mass of each band
and aligned with a suitably chosen frame of reference deter-
mined by the container. The instantaneous orientation of a
band can be described by an orthonormal vector triad, with
each vector originating from the center of mass of the band.
Assuming that the vector connecting a marker F to the center
of mass is aligned with one of the vectors in the triad lying
on the x-y plane as shown in Fig. 2, the angles φ and �

can be used to determine the angular velocity ωcm = φ̇ and
the tumbling angle �. The existence of tumbling can induce
differences with the actual value of φ. However, since the
variations observed in � are consistently small it provides a

good approximation to the rotational velocity. The sign for
spinning direction or chiral response is designated as positive
(+) when the band rotates counterclockwise, as observed from
a top-down perspective. We define the term chiral transition as
a change in spinning direction for bands in the same family
when the aspect ratio of the bands change. We also define
the geometric or intrinsic chirality of the bands based on the
direction of twist (wtwist). For further clarification, please refer
to SM [34], Fig. 1, which includes an illustrative example
contrasting two different enantiomers derived from the same
midline.

To facilitate a comparative study of the influence of aspect
ratio w/R across the three types of Möbius bands, we intro-
duce the parameter χ = w/wmax, with wmax representing the
width (w) when the edges touch at the center (details provided
in SM [34], Fig. 2). Bands of type R, characterized by higher
attainable aspect ratios w/R, exhibit the maximum surface
area among the bands investigated. For bands of type B and
R, χ varies within the range 0.1 � χ � 1. In comparison,
the construction of bands of type D involves two additional
parameters: the radius r of the three cylinders about which the
curved sections of the band are wrapped, and the angle α be-
tween these cylinders [30], as illustrated in Fig. 1. To stream-
line our investigation, we set χ = 0.6 and χ = 0.8 for bands
of type D while allowing for variations of the cylinders angle.

A rigid object sedimenting in a fluid can be characterized in
terms of three parameters [1], (i) the density ratio (ρ − ρs)/ρ
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(b)

(a)

FIG. 2. Schematic of experimental setup to study the sedimenta-
tion of triply twisted Möbius bands. (a) In the base of a water tank
with a square cross-sectional area, a mirror is positioned. The camera
in front of the water tank allows us to directly observe the movement
of Möbius bands in the (x, z) plane during sedimentation. The mirror
at the bottom of the tank allows us to observe the movements of
the bands in the (x, y) plane as sketched in the bottom-view inset.
(b) The Möbius band rotates at angular velocity ωcm = φ̇ and tumble
at angle �. φ is the angle formed by the red axis and the projection in
the (x, y) plane of the line segment connecting the center of gravity
of the band and the position of the marker “F”. The red, green, and
blue axis are parallel to the x, y, and z axis, respectively, and pass
through the center of mass of the band.

between the object and the fluid; (ii) a set of geometrical
parameters that defines the anisotropy of the body; and (iii)
the Archimedes number Ar = ρ(ρ − ρs)gR3/μ2. In our study,
the density ratio is fixed by the material of the bands and the
fluid, and the aspect ratio χ provides a simplifying notion of
a geometrical parameter. In our experiments, the Archimedes
number, determined by the fluid properties, bands size and
density, is on the order to 95000. We additionally estimate the
translational Reynolds number (Re = vzρR/μ) and the signed
rotational Reynolds number (Rer = ωcmρR2/μ) to provide
a quantitative indication of the inertial regime of the bands
during sedimentation. We must highlight that Re varies with
χ , as its value for any given band depends on its terminal
velocity, which is determined by the equilibrium between the
gravitational forces and the drag forces. Thus, in presenting
our findings, for each family of bands we use the translational

Reynolds number relative to the Reynolds number of the
bands with highest aspect ratio Re/Remax. This to indicate
the relative velocity of a band with respect to the maximum
velocity observed for a family of bands. Additionally, we use
the ratio Rer/Re of the rotational to translational Reynolds
numbers, to indicate the coupling between the translational
and angular velocity of the bands. Re/Remax and Rer/Re
allow us to track relative variations for each band, as well as
comparing those variations with the simulation results.

III. RESULTS AND DISCUSSION

A. Sedimentation of Möbius bands

Prior research on screwlike objects has demonstrated that
their sedimenting behavior varies with orientation [23], result-
ing in helical trajectories and orbits of various types. However,
in our research on triply twisted, threefold symmetric Möbius
bands, we found that their behavior showed no significant
dependence on initial orientation. Our observations reveal
that these bands align almost horizontally regardless of their
starting position, suggesting a preferred orientation during
sedimentation [35]. For values of χ > 0.6, tumbling motion
can induce periodic variations in the alignment of the bands.
However, their orientation always varies around the x-y plane
(see Fig. 2). For relatively small values of χ , the tumbling
disappear and each band considered showed a unique pref-
erential horizontal orientation. Such behavior is in line with
the presence of a stable dominant mode in the translational
response of the bands. Similar horizontal stabilization has
been observed in the dynamics of rigid [20] and flexible [21]
knotted loops.

In our experimental observations, bands of type R achieved
Reynolds numbers within the range 250 � Re � 300, owing
to their relatively higher terminal velocities. In contrast, bands
of types D and B achieved Reynolds numbers in the lower
range of 50 � Re � 250 due to their comparatively lower
terminal velocities. Supporting videos show the sedimentation
of sample bands of each type with various aspect ratios. No-
tably, bands of type D exhibited more pronounced tumbling
compared to bands of type B and R. However, the variations
in the tumbling angle � decreases as the angle α between the
cylinders used for constructing the bands increases. Increasing
α yields wider inner channels, stabilizing the flow within the
folds of the bands. It is important to highlight that triply
twisted bands possess an additional characteristic dimension
associated with their vein (or internal opening). Bands of
type D have narrower spaces between folds in comparison to
bands of type R and B, resulting in higher shear rates interior
to their undulations. Consequently, inertial instabilities are
responsible for the pronounced tumbling motion as bands
of type D sediment [1]. Unlike bands of type D, bands of
type R exhibit more stable rotation during sedimentation, with
tumbling observed as χ approaches unity. We hypothesize the
petal-like structures of bands of type R offer greater resistance
than other types of bands in this study, contributing to their
stable rotation.

We consistently observe rotational motion during the sed-
imentation of each family of chiral bands. Specifically, each
band of type D spins in the direction opposite to its twist
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(b) (c)

(a)

FIG. 3. Experimental data on the sedimentation of triply twisted Möbius bands. (a) Mirrored-bottom images at equally spaced time
intervals of D (developable), R (rotoidal), and B (binomial scroll) type Möbius bands during sedimentation, and for various aspect ratios
χ . χ is defined as the ratio w/wmax where w is the band’s width, and wmax is the maximum band’s width before self-intersection. The arrows
indicate the direction of rotation. The spinning direction in mirrored-bottom view coincides with the spinning from the top view. Bands of type
D and B constructed with negative twist (ωtwist), whereas bands of type R positive. (b) Ratio of translational Reynold number Re to maximum
translational Reynold number Remax as a function of χ for bands of type D (circles), R (squares), and B (triangles). The Remax is the Reynold
number at χ = 1. (c) Ratio of rotational Reynolds number Rer to Re for bands of type D, R, and B. The colors of the bands were edited to
coincide with the colors in Fig. 1, and the markers on the bands are color enhanced to facilitate their visualization.

orientation [sgn(spin) = − sgn(ωtwist )]. Conversely, each
band of type R spins in the same direction as its twist
[sgn(ωcm) = sgn(ωtwist )] To illustrate the different spinning
directions between bands of type D and R, we present ex-
perimental results in Fig. 3(a). In the case of bands of type
D, those with negative twists undergo a counterclockwise
spinning, while bands of type R, which have a positive twist,
exhibit positive rotational direction. Bands of type B, which
have a negative twist, exhibit two different spinning directions
(from counterclockwise to clockwise), or a chiral-response
switch, as their aspect ratio increases. Snapshots of B bands
with negative twists and representative choices of χ are pro-
vided in Fig. 3(a). Videos comprising the snapshots in Fig. 3
are provided as Supplemental Material [34]. The chiral transi-
tion occurs within a narrow window of χ values, and implies
the existence of a critical value χcrit ≈ 0.8 where spinning is
nearly suppressed (ωcm � 0). At χ = χcrit, energy dissipation
is primarily linked to predominantly vertical translation and
possible vortex formation. In Figs. 3(b) and 3(c), we present
the impact of the parameter χ on the ratios Re/Remax and
Rer/Re for the different types of bands. Notably, bands of type
R show a nearly monotonic increase in the ratio Re/Remax,

while bands of type B exhibit a transition where the ratio
experiment a large increase, from approximately 0.8–1, be-
tween 0.7 < χ < 0.9, that coincide with the value of χ for
the chiral-response switch. Overall, bands of type B behave
like bands of type R for χ � χcrit, while resembling bands of
type D for χ � χcrit.

The dynamics of triply twisted Möbius bands are similar
to those observed in rigid and flexible knotted loops [20,21],
that possess equivalent chirality and nonorientability features.
Like the Möbius bands considered in the present work, sed-
imenting knotted loops exhibit preferential alignment and
spinning rotation correlated with the handedness of the knot.
The remarkable difference observed for bands of type B is the
existence of two distinct rotational modes for bands with the
same handedness. A transition in chiral response akin to that
observed in bands of type B has also been documented for
superhelical structures [36]. A superhelix is composed of a
helix with a short pitch configured along an axis that itself
forms a helix of the opposite handedness but larger pitch,
referred to as the axial helix. In such composite structures, the
directional rotations of each helical component are in conflict.
If the amplitude or wave number of the axial helix is minimal,
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the dynamics of the superhelix are predominantly influenced
by the handedness of the component with the shorter pitch.
Conversely, at larger amplitudes or wave numbers, the rota-
tional behavior of the superhelix aligns with the handedness
of the axial helix. Notably, superhelices exhibit a crossover
in their dynamical response at a specific amplitude and wave
number threshold, at which the structure ceases to rotate [36].
This phenomenon closely resembles our discovery of a critical
aspect ratio for bands of type B. Beyond this ratio, not only
do such bands stop rotating, but there is also a reversal in the
direction in which they rotate.

To simulate the sedimentation behavior of the bands, we
use dissipative particle dynamics (DPD) [37,38]. Compu-
tationally, the angular velocity of the simulated bands is
computed from the evolution of the eigenvector associated
with the largest eigenvalue of the gyration tensor. A detailed
description of the DPD methodology is provided in the Ap-
pendix B. Simulation studies validate the presence of a chiral
transition for bands of type B (see videos in Supplemental
Material [34]), in agreement with our experimental findings.
The simulation results also validate axial alignment and spin-
ning direction in bands of this type, as illustrated in Fig. 4(a).
However, it is noteworthy that the critical aspect ratio at which
the chiral transition occurs shifts to χ ≈ 0.68 in simulations
from χ ≈ 0.78 in experiments [see Fig. 4(b)]. It is important
to acknowledge that DPD simulations provide a qualitative
description of the dynamics of the bands in a fluid regime
that is closer to the regime of our experimental conditions.
However, certain effects observed in the experiments, such
as tumbling, as well as the discrepancy in Reynolds numbers
between bands of type R and B, are not fully replicated in the
computational test. The Reynolds number in the experiments
ranged from 50–400, whereas for DPD the Reynolds number
ranged from 5–25. These discrepancies arise due to inherent
limitations of DPD in explicitly enforcing no-slip bound-
ary conditions and in accounting for effects associated with
Schmidt number variations. Although the numerical model
has limitations, it still manages to replicate the chiral response
and its transition observed in experiments. This underscores
the dominant influence of shape-related characteristics on
sedimentation dynamics, even in the presence of substantial
inertial effects.

For simple objects, such as spheres [39], it has been pre-
viously observed that instabilities and wake formation can
readily occur in the range of Reynolds numbers (50 � Re �
400) that we considered. Therefore, for chiral particles, the
emergence of instabilities may have an important effect due
to complex interactions between the fluid and the structural
features of the particle [25]. It has been noted that a chiral ob-
ject can display asymmetric bistability in its orientation, with
the orientation determined by the flow conditions. To enhance
our understanding of the impact of the chiral switch exhibited
by bands of type B on the fluid, a series of experiments were
conducted by initially coating the bands with a fluorescein-
salt solution, allowing for the visualization of the fluid flow
induced by the sedimenting bands. It is important to empha-
size that a comprehensive understanding of fluid-induced drag
would require experimental consideration of the scale of wake
structures. This would include examining aspects such as the
circulation, magnitude of vorticity, and momentum deficit.

(a)

(b)

(c)

FIG. 4. Simulation data on the sedimentation of triply twisted
Möbius bands. (a) Top-view images of bands of types B and R
during sedimentation at equally spaced time intervals, and for two
representative values of the ratio χ = w/wmax, where w represents
the width of a band and wmax is the maximum value of w that
can be achieved without self-intersection. (b) Ratio of the rotational
Reynolds number Rer to the translational Reynold number Re as
a function of the aspect ratio χ . (c) Rer/Re as a function of the
Archimedes number Ar for a constant value of χ = 0.68.

However, conducting such in-depth analyses falls outside the
purview of our current investigation. In Fig. 5, we present the
lateral and bottom views of two sedimenting bands of type
B with different aspect ratio, χ < χcrit and χ > χcrit (see also
videos in SM [34]). For clarity, the lateral images have been
filtered and color enhanced. Notably, the wakes generated by
the bands with χ = 0.74 and χ = 0.78 exhibit a different
shape. The relative size of the wake is highlighted with blue
solid lines in Fig. 5. Specifically, the wake width produced by
the band at χ = 0.78 is more compact (≈5R) in comparison to
that generated at χ = 0.74 (≈7R). This observation indicates
that at χ = 0.78, the band causes less disruption to the fluid,
whereas a modest change in the aspect ratio to χ = 0.74 re-
sults in significant energy dissipation and vorticity generation
in the wake. Overall, even a minor change in the aspect ratio
of the band seems sufficient to induce modifications in the
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FIG. 5. Sedimentation of fluorescein-tinted triply twisted Möbius bands in water. Side view of the sedimentation of bands of type B with
aspect ratio χ = 0.78 and χ = 0.74, which exhibit negative and positive angular speed (ωcm), respectively, and for increasing instants t1, t2,
and t3 of time. χ is defined as w/wmax where w is the band width and wmax is the maximum band width before self-intersection. Inside images
correspond to mirrored-bottom view of the same Möbius bands at times t1, t2, and t3. The wake created by the bands spans over a distance
several times larger than the projected radius R. Blue-solid lines indicate the maximum size of the wake. The original images were taken with a
black background to enhance the contrast with the green fluorescein. Postprocessing of the images was necessary to obtain a white background
with gray scale wake.

fluid-induced drag, which, combined with inertial effects, can
drive changes in the chiral response of a sedimenting band of
type B.

B. Hydrodynamic resistance tensor

Generally, the hydrodynamic resistance tensor of an ob-
ject depends on its geometry. However, objects with similar
geometrical features need not have identical hydrodynamic

resistance tensors [29]. Thus, despite the common symmetri-
cal features of the triply twisted bands investigated, variations
in the hydrodynamic resistance can serve as an indicator of
the chiral switch observed for bands of type B. To further
elucidate whether the chiral switch for bands of type B can
be readily identified based on changes in their hydrodynamic
drag, we use the rigid multiblob methodology [40] to cal-
culate the resistance tensor R for all three types of bands
with various aspect ratios at Re ≈ 0. Determination of the
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FIG. 6. Variation of the components in the resistance tensor R with respect to the aspect ratio χ of the bands. Ratio of: (a) translational
tensor components parallel K‖ to perpendicular K⊥, (b) rotational tensor components parallel Ω‖

o to perpendicular Ω⊥
o , and *c) coupling tensor

components parallel C‖
o to perpendicular C⊥

o as a function of χ . The components are parallel or perpendicular to the gravitational force.

resistance tensor offers a direct way to identify intrinsic chi-
rality [17]. Without loss of generality, we present results for
bands with negative chirality. For the computations, we take
the centroid of the band to be located at the origin o of an
orthonormal basis, {ex, ey, ez}, chosen such that ez is paral-
lel to the vector of the gravitational force (and the axis of
rotation). In Figs. 6(a)–6(c), we present the components of
the translational, rotational, and coupling dyads K, Ωo, and
Co, respectively, as a function of χ . To highlight disparities
in the computed values of the drag along different directions
axis, we used the ratio of the components K, Ωo, and Co

parallel (‖) and perpendicular (⊥) to ez. For instance, for the
translational tensor, K‖ = ez · K · ez, whereas K⊥ = ex · K ·
ex. Notably, the ratio K‖/K⊥ exhibits a monotonic decrease
for bands of type B and R as χ increases, while the rotational
ratio Ω‖

o/Ω⊥
o shows a moderate variation with mean values of

approximately 1.23 for bands of type B and at approximately
1.26 for bands of type D. Overall, for large values of χ , bands
of type B and R exhibit similar hydrodynamic resistance.
Figure 6(c) provides deeper insight into the behavior of triply
twisted bands. The opposite sign in the components that char-
acterize the coupling resistance (C‖

o/C⊥
o < 0) indicate that

the chirality in the parallel and perpendicular directions are
different. For chiral bodies, the mobility matrix M = R−1

characterizes the direction in which that body rotates through
the chirality matrix Ch = C/(χR) [27,28] where C and R
are the coupling and rotation dyads of the mobility matrix
M, respectively. Granted that Ch is expressed relative to
a basis {e1, e2, e3} defined by the eigenvectors of R, with
corresponding eigenvalues enumerated in ascending order,
R1 � R2 � R3, the diagonal elements of Ch are expressed
as Chi = Cii/(χRi ), i = 1, 2, 3. The inset plot in Fig. 6(c)
present the values of Ch3 as a function of χ for each family of
bands. In general, Ch monotonically decreases as χ increases
and does not evidence the characteristic transition observed
experimentally. Among the three types of bands considered,
the eigenvalues of Ch have the largest magnitudes for bands

of type R and the smallest magnitudes for bands of the type
D. For bands of type B, the eigenvalues of Ch fall in be-
tween those of types R and D, suggesting a hydrodynamic
response that is likely a transitional state between the pro-
nounced characteristics of bands of type R and the subdued
features of bands of type D. Despite the insights provided by
the resistance tensor R at low Reynolds numbers, accurately
discerning the observed chiral response for bands of type B
poses a formidable challenge. The transition between the two
distinct spinning directions exhibited by bands of type B is
influenced by multiple factors, such as the balances of forces
and moments, the alignment of the band, and the onset of
inertial instabilities. These complexities highlight the need for
further investigations and a comprehensive understanding of
the underlying dynamics.

A partial explanation for the observed chiral-response tran-
sition for bands type B might be linked to their construction
method; these bands are obtained by isometrically deform-
ing a helicoid. Previous studies have shown that spirals do
not spin the same way if they are not spinning around their
central spiral axis [29]. As the rotation of a band of type B
during sedimentation occurs along a rotation axis that does
not align locally with the bent image of the helicoidal axis
(axis along which an helicoid is constructed), the influence
of off-helicoidal-axis rotation might be sensitive to the aspect
ratio of the band.

As the transition in chiral response for bands of type B is
influenced not only by the band’s characteristic size χ but
also by alterations in the flow regime, we explore deeper
into this phenomenon through additional numerical DPD in-
vestigations. For this purpose, we focus on bands of type B
with positive twist near the critical aspect ratio, χ = 0.68
[prior to the chiral switch in our DPD model sgn(spin) =
− sgn(ωtwist )], and manipulate the values of Ar by adding an
external force applied to the band [see Fig. 4(c)]. We observe
that for this constant value of χ , the band present a chiral
transition at Ar ≈ 250 000, suggesting the existence of a chiral
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transition for different aspect ratios of bands of type B as the
Ar number changes.

IV. CONCLUSIONS AND OUTLOOK

Our study challenges a generally accepted concept for the
sedimentation of chiral objects—namely, the chirality of an
object determines its spinning direction during sedimentation.
Specifically, despite sharing identical topology and intrinsic
chirality, triply twisted Möbius bands with threefold rotational
symmetry can exhibit divergent chiral responses attributed to
their unique curvatures. Our exploration of bands of type bi-
normal scroll (bands of type B) uncovers a nuanced interplay
of torques and forces that evolve with changing aspect ratios,
modulated by the influence of inertial effects. This intricate
relationship results in a distinctive transition in the spinning
direction of the band; a phenomenon absent in other triply
twisted bands. Computational simulations robustly confirm
these experimental insights, further elucidating the intricate
interdependence between gravitational and viscous forces and
the critical aspect ratio dictating the transition.

We hypothesize that the chiral transition observed for
bands of type B stems from its geometrical properties re-
sembling superhelices. This resemblance arises from its
construction, which starts from helicoids that are isometrically
deformed to form the bands. The way bands of type B rotate
during sedimentation—specifically, around a symmetry axis
that generally differs from the original helicoidal axis—could
indicate a reduction in their chiral response. Furthermore, the
sudden change in the response of the bands, similar to reach-
ing a critical aspect ratio, is consistent with phenomena seen
in superhelical structures. This similarity hints at the existence
of two conflicting chiral forces within bands of type B.

Our finding that the spinning direction of bands with a
given chirality depends on the aspect ratio suggests broader
implications. These results signal promising prospects in
designing responsive materials and microswimmers without
self-propulsion, harnessing the potential for hydrodynami-
cally driven chiral-response switching. This opens avenues
for creating deployable objects such as responsive materials
and microswimmers, capable of dynamic rotational responses.
It also invites exploration into analogous entities possess-
ing comparable attributes. Additionally, it introduces the
intriguing concept of hydrodynamically responsive chirality
in objects featuring nonzero coupling tensors. Furthermore,
our study underscores the limitations of relying solely on in-
trinsic chirality to characterize the dynamics of chiral particles
in fluids, especially in the presence of inertial instabilities.
This highlights the necessity for further exploration into the
intricate network of emergent hydrodynamic interactions.

In closing, our study contributes novel insights to the capti-
vating domain of chiral hydrodynamics, blending fundamen-
tal understanding with tangible applications. By providing
new insights into the hydrodynamic intricacies of chiral ob-
jects, our work can pave the way for innovative technologies
and devices endowed with unique attributes. As the scientific
narrative of chiral hydrodynamics continues to evolve, our
findings are poised to stimulate further discoveries, facilitate
groundbreaking applications, and enrich our grasp of intricate
fluid dynamics.
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APPENDIX A: EXPERIMENTAL SEDIMENTATION

To conduct our sedimentation studies, we utilized
polystyrene bands with a density of 1.17 g/cm3 in water at
room temperature. These bands were 3D printed using the
OBJET 500 from STRATASYS company, and were placed
in a container with dimensions of 0.20 × 0.20 × 0.60 m3.
To identify the direction of the spin, the bands were marked
with the letter F or G. We used two cameras, an Ultrahigh-
Speed Camera (v2512) and a High-speed camera (Phantom
Miro LC-120), to record the falling of the objects at a rate
of 100 frames per second. The cameras were equipped with
Nikon AFS 60 mm f/2.8G and Sigma 24-70 mm f2.8 lenses
and were positioned two meters away from the sedimentation
container. The cameras were aligned to capture 0.4 m of the
vertical trajectory, while three different markers were placed
in the sedimentation container at 10 cm, 25 cm, and 40 cm
from the bottom to facilitate trajectory analysis. To record the
rotation of the bands, we placed a tilted mirror at the bottom
of the container with an angle of 45◦. The marks (F or G) in
sedimenting bands pointed in the sedimentation direction for
observation through the mirror, and their spinning direction
coincides with top-view observation. The vertical distortion
from the center of the field of view up to the edges was
±1.5 cm, while the horizontal distortion was � 0.4 cm. The
3D-printed bands were constructed with a positive twist, re-
sulting in a positive spin of their intrinsic chirality. The width
of the band was varied in different experiments to investigate
the effect of the aspect ratio, while their projected radius
and thickness were kept constant at 10 mm and 0.8 mm,
respectively. The Reynolds numbers evaluated ranged from
50–350. To extract the position of the bands from the recorded
images, we used the distribution of the pixels to track the
position of the center of mass of the band in each camera and
constructed the three-dimensional trajectories.

To extract the linear and angular velocity of the bands
we analysed the images obtained every 60 frames per sec-
ond. Each image was divided into two regions to recover the
lateral and bottom view reflected in the mirror. The image
segmentation was then conducted in each of the projections
to retrieve the band’s pixel count and distribution. Trajectories
were reconstructed from the position of the mean distribution
of the pixels at each frame. We used the letter marker on the
bands to estimate their angular velocity around the vertical
axis of a reference frame with the origin at the center of mass
of the band.

APPENDIX B: DISSIPATIVE PARTICLE DYNAMICS
SEDIMENTATION SIMULATIONS

We modeled the sedimentation of the bands using the
dissipative particle dynamics method (DPD) [37]. DPD is
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a particle-based method that consistently captures hydrody-
namic effects, and has been widely used to study soft matter
in different fields [41,42]. In DPD, we discretized the triply
twisted bands using a single layer of Np soft beads rigidly
connected, whereas the fluid is discretized using individually
interacting particles. A sketch of the discretized version of
the different type of bands is presented in SM [34], Fig. 4.
See also SM [34], for the point coordinates of the discretized
bands. During the simulations, the force between the fluid and
the beads of the bands was computed, and the position and
velocity of the center of mass of the band were updated due
to the net force acting on it. The position of the Np beads of
the bands was updated following the rigid-body dynamics. To
conduct these simulations we used the DPD distribution im-
plemented in LAMMPS [43], as well as the rigid-body motion
setting available there. For a detailed description of the DPD
method the reader is referred to SM [34]. The visualization
of the DPD simulation results was done using the software
OVITO [44].

Sedimentation simulations were conducted in elongated
boxes with sizes Lx = 12R, Ly = 12R, and Lz = 180R. All the
simulations used periodic boundary conditions on the x and y
axis, whereas reflecting walls are used on the z axis. The size
Lx and Ly were defined to avoid the effects of the periodic
boundary condition. The center of mass XO of bands was
initially located at the top of the box at [0.5Lx, 0.5Ly, 0.9Lz].
The bands were subjected to an external force fg on the
−z direction. Due to the nonperiodicity in z, the results of
the simulations were analyzed using trajectories in the range
0.8Lz > XO > 0.1Lz, to neglect wall effects.

The interaction parameter of the DPD conservative poten-
tial was set as abb = aff = 25.0, where bb and ff correspond
to interactions between band-band and fluid-fluid beads, re-
spectively. The interaction parameter between band and fluid
beads (bf) was set as abf = 65.0 to ensured no-penetration

boundary condition at the surface of the bands. Addition-
ally, the distance between the beads forming the bands was
0.75rc < rbb < rc, where rc is the DPD cutoff radius. These
values ensure the control of the density fluctuations across
the box and satisfactorily avoid the passing of fluid particles
across the band’s domains. Additionally, to minimize resolu-
tion effects due to the relative size between the band and the
discrete size of the fluid, all the bands were constructed such
that the width w of the band has to be larger than 5rc, and the
band radius R > 10rc. Nonslip boundary conditions were not
explicitly accounted for using the standard DPD methodology,
therefore, the simulations cannot be considered strictly no-slip
or slip. Simulations were conducted at kBT = 1, m = 1, rc =
1, ρn = 3. At the fluid conditions used in our simulations, the
viscosity of DPD can be approximated as 0.866 in reduced
units [45].

APPENDIX C: RESISTANCE TENSOR CALCULATION

We used the rigid multiblob (RMB) methodology [40] to
estimate numerically the resistance tensor R for the different
bands at zero Reynolds number. RMB has been success-
fully applied to study the hydrodynamic behavior of rigid
objects with complex morphologies [46,47]. In the RMB ap-
proach, only the set of Np beads was considered, whereas
hydrodynamic interactions with the solvent were accounted
for analytically. To compute R, we used the discretization
adopted for the DPD simulations. However, the beads were
treated as rigid bodies (instead of the soft DPD beads),
with a hydrodynamic radius rRMB = rbb/2. The hydrody-
namic interactions between beads were represented using the
generalized Rotne-Prager-Yamakawa tensor for an unbounded
region [40,48]. For further details concerning the implemen-
tation of the RMB, the reader is referred to Ref. [40].
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