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Charge separation at liquid interfaces
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We present a theory for phase-separated liquid coacervates with salt, taking into account spatial heterogeneities
and interfacial profiles. We find that charged layers of alternating sign can form around the interface while the
bulk phases remain approximately charge neutral. We show that the salt concentration regulates the number of
layers and the amplitude of the layer’s charge density and electrostatic potential. Such charged layers can either
repel or attract single-charged molecules diffusing across the interface. Our theory could be relevant for artificial
systems and biomolecular condensates in cells. Our work suggests that interfaces of biomolecular condensates
could mediate charge-specific transport similar to membrane-bound compartments.
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I. INTRODUCTION

Spatial organization of macromolecules is essential for
regulating cellular processes. Most biochemical processes in-
volve charged macromolecules like DNA, RNA, and proteins
that are immersed in a multicomponent, aqueous electrolyte
solution containing various salt ions. These biomolecules
assemble into specific compartments that provide unique
environments to perform certain tasks [1,2]. Moreover, com-
partmentalization of prebiotic components and chemical
reactions was also proposed as a selection mechanism at the
origin of life [3–6].

Compartments in cells can either be membrane-bound,
or membrane-less liquid droplets that can disperse and
reform for varying conditions in cells [7–9]. Such intracel-
lular droplets are called biomolecular condensates and often
form via liquid-liquid phase separation [1,2,10,11]. Many
biomolecular condensates in cells contain negatively charged
RNA and positively charged proteins [12], suggesting coac-
ervation as a mechanism underlying their formation [13]. In-
deed, in vitro experiments show that condensate properties are
strongly affected by salt concentration [14–16]. Coacervates
are liquid droplets composed of charged macromolecules and
counterions interacting via electrostatic interactions. In phys-
ical chemistry, they are classified into two categories [17]:
simple coacervates formed by a single type of macroion and
its counterions, and complex coacervates due to electrostatic
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interactions between oppositely charged macroions. Coac-
ervation as a mechanism to spatially organize and select
molecules was already proposed at the beginning of the 20th
century as an organizing principle for the molecular origin of
life [3,4].

A first theoretical model for coacervates was proposed by
Overbeek and Voorn [18]. Within this model, phase separation
results from a competition between the mixing entropy and
the electrostatic interactions between the oppositely charged
molecules, which is described using the Debye-Hückel ap-
proximation in the Poisson-Boltzmann equation treating ions
as dilute components. However, when coacervates form,
charged macromolecules and salt ions are in general nondilute
and interactions among all charged components are essential,
in particular at physiological conditions. Interactions were
shown to indeed affect the distribution of macroions close
to charged surfaces [19,20]. Most theories on electrolytes
study flat and colloidal charged surfaces that are solid [21,22].
In contrast, coacervates provide phase boundaries separating
liquid phases that are soft and permeable.

Recent experimental studies show that coacervate phase
boundaries give rise to rich physical behavior [14,23–27].
Condensates can carry a surface charge and thus move in
an applied electric field due to electrophoresis [24,26–28].
The surface charge and the associated ζ potential were also
recognized as one of the factors determining droplet stability
[26]. Not only that, the interfacial tension of protein droplets
depends on salinity as well as on the Donnan potential differ-
ence that exists between two coexisting phases [14,29]. Such
studies indeed highlight the importance of electrostatics and
interfaces in phase-separated, coacervate systems. Recently,
Zhang and Wang have proposed a theory that can explain the
origin of interfacial charges in asymmetric complex coacer-
vates [30]. This work closely parallels the concepts provided
by Onuki [31] for partitioning of diluted salt with asymmetries
in Born solvation energies across phases in binary mixtures.
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FIG. 1. Schematics of the considered phase-separated electrolyte
mixtures. Macromolecule-rich phases (phase I) can form in an ini-
tially homogeneous saline solution with macromolecules (big green
circles). Macromolecules are depicted to be positively charged,
with counterions being anions. Dissociation of salts also generate
co/counterions. Charges can separate with a charge density that
deviates from electroneutrality, particularly around the interface (in-
dicated by the color gradients).

In this work we present a theoretical framework similar to
Refs. [30–32] and apply it to nondilute mixtures composed
of charged macromolecules and salt ions capable of form-
ing coexisting phases, i.e., a coacervate phase-separated from
a dilute phase. We account for the mean-field electrostatic
interactions among all charged components and study the
concentration profiles of components in each phase and in the
interfacial domain. Our key finding is that charge separation
occurs at the interface, while each phase is approximately
charge neutral (see an illustration in Fig. 1), both for symmet-
ric and asymmetric complex coacervates as well as for simple
coacervates. The corresponding electrostatic potential shows
a nonmonotonic behavior with attractive wells and repulsive
barriers. Strikingly, the electrostatic potential can also give
rise to multiple layers of alternating charges. This implies that
charged molecules may exhibit a complex transition kinetics
through coacervate interfaces. We also present an analytical
calculation to investigate the charge oscillations in the bulk
phases and identify competing length scales of different phys-
ical origins that lead to such oscillatory profiles.

II. ELECTROTHERMODYNAMICS
OF PHASE SEPARATION

We consider an electrolyte mixture composed of charged
macromolecules and counterions that can phase separate into
a macromolecule-rich and a macromolecule-poor phase; see
Fig. 1 for an illustration. Each component, i = 1, ..., M, can
carry a molecular charge qie, with e denoting the positive
elementary charge. Here we consider constant charge for each
component and for simplicity do not account for chemical
processes leading to charge regulation [33–35]. Moreover,
the electrolyte mixture is considered to be incompressible,
corresponding to constant molecular volumes νi. Incom-
pressibility implies that the condition

∑M
i=1 νini(x) = 1 holds

locally, where ni(x) denotes the concentration field of compo-
nent i at position x. At constant temperature and pressure, this
condition reduces the thermodynamic description to (M − 1)
independent concentration fields ni(x).

All the components in the mixture collectively generate a
dielectric medium with permittivity ε = εrε0, where ε0 is the
vacuum permittivity and εr denotes the relative permittivity,
which in general depends on composition {ni}. The distribu-
tions of charges give rise to an electrostatic potential ψ (x),
which is related to the concentrations ni(x) via the Poisson
equation:

∇ · (ε ∇ψ ) = −ρ, (1a)

where ρ(x) = ∑
i qieni(x) is the local charge density. The

presence of the charges in the system also naturally give rise
to a length scale called the Bjerrum length �B = e2/(4πεkBT )
specifying the separation at which the Coulombic interaction
between two elementary charges becomes comparable to the
thermal energy kBT [20].

The electrothermodynamics of the mixture is governed by
the free-energy functional

F [ni, ψ] =
∫

d3x

[
f (ni ) +

∑
i

κi

2
(∇ni )

2 + ε

2
(∇ψ )2

+ λ(∇ · (ε ∇ψ ) + ρ) +
∑

i

μel
i

(
Ni

V
− ni

)]
,

(1b)

where f is the free-energy density. Moreover, κi is related
to the interfacial tension characterizing the energy contribu-
tion due to the spatial gradients of the components in the
system [36–38]. We refer to κi as the gradient cost for com-
ponent i in the following. We have neglected cross terms of
the form ∇ni · ∇n j for simplicity. The term proportional to
(∇ψ )2 describes the electrostatic energy density arising from
the charged components in the system. Moreover, λ is the
Lagrange multiplier to impose that the Poisson Eq. (1a) is
satisfied and μel

i is the Lagrange multiplier fixing the total
number of particles Ni = ∫

V d3x ni(x) for each component i
with V denoting the volume of the system.

To describe interactions among all components we choose
the Flory-Huggins (FH) free-energy density,

f (ni )

kBT
=

M∑
i=1

(ni ln (νini ) + ωini ) +
M∑

j=2

j−1∑
i=1

χi jnin j, (1c)

containing the mixing entropy, the internal free energies ωi,
and the mean-field interactions among the charged compo-
nents of interaction strength χi j [37,39].

Thermodynamic equilibrium states are characterized by
δF/δni = 0 and δF/δψ = 0, leading to

μel
i = ∂ f

∂ni
− κi∇2ni + qieψ − 1

2

∂ε

∂ni
(∇ψ )2, (1d)

λ = ψ. (1e)

Here, the constant μel
i is the exchange electrochemical poten-

tial, and the Lagrange multiplier for the Poisson equation is
the electrostatic potential ψ . When phases coexist, the value
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of μel
i corresponds to the slope of the Maxwell construction

and the osmotic pressures balance between the phases.
To solve the governing equations [i.e., the Poisson equa-

tion and the equations provided by constant exchange
electrochemical potential conditions in Eq. (1d)], we use
Neumann boundary conditions for the electrostatic potential
and the concentrations:

(∇ψ · n)|∂� = 0, (1f)

(∇ni · n)|∂� = 0, (1g)

where n is the unit outward normal to the system boundary ∂�

enclosing the system volume V . The Neumann boundary con-
dition for the electrostatic potential ensures that the electric
field normal to the boundaries vanishes corresponding to zero
surface charge. Integrating Poisson Eq. (1a) over the system
volume V using the boundary condition (1f) leads to overall
electroneutral systems with

∫
d3x ρ(x) = 0. Note that we do

not impose electroneutrality locally, i.e., ρ(x) �= 0 in general.
The Neumann boundary condition for the concentration field
corresponds to an inert boundary that has no affinity to adhere
or repel components.

In summary, Eq. (1) govern the position-dependent elec-
trothermodynamics of a nondilute mixture composed of
charged components where a dense coacervate phase can co-
exist with a dilute phase. This theoretical framework extends
the classical Poisson-Boltzmann theory [22] to nondilute con-
ditions where interactions among the charged components
affect the electrostatic potential.

III. RESULTS

In this work we use our theoretical framework given by
Eq. (1) to study simple coacervates (Sec. III A) and com-
plex coacervates (Sec. III B). For simplicity, we consider flat
interfaces and a one-dimensional system with a position x.
We determine the position-dependent electrostatic potential
ψ (x) together with concentration fields ni(x) of all the dif-
ferent charged components. In all studies we use a relative
solvent permittivity εr = 80, corresponding to pure water, and
a solvent molecular volume νs = 0.03 nm3. When salt ions or
counterions are present in the system, their molecular volumes
are, for simplicity, equal to the solvent. The internal free
energies ωi do not affect the results, as they can be absorbed
into the Lagrange multipliers μel

i . In our studies on simple
coacervates, we choose macromolecules carrying a positive
charge. In general, macromolecules such as proteins can be
positively or negatively charged under physiological condi-
tions. This diversity arises because, for example, the human
cytosol has a pH � 7.2 [40] and the human proteome shows a
bimodal distribution with two major peaks located at pI � 6.0
and 8.25 [41].

A. Simple coacervates

1. Minimal model for simple coacervates

We first discuss a minimal model for a simple coacer-
vate that contains a single type of charged macromolecule
(p), a neutralizing counterion (−), and a solvent compo-
nent (s). Phase separation in such a system takes place for

sufficiently large and positive interaction parameters χps.
For the numerical examples discussed below, we use χps =
1.5 nm3 together with χ−s = −0.09 nm3, χp− = −1.0 nm3,
and the volume ratios νp/νs = νp/ν− = 20. The counterions
are assumed to be monovalent, e.g., OH−, with q− = −1,
and the macromolecule has a charge qp = +3 if not stated
otherwise. For such parameters we numerically solved Eq. (1).

Coexistence of a dense coacervate phase and a dilute phase
is reflected in the concentration profiles of charged compo-
nents ni(x), which are depicted in Fig. 2(a) for different κp/κ−
ratios. Both charged components show a pronounced change
highlighting the interface between the dense coacervate phase
and the dilute phase. The interface is indicated by a vertical
gray dashed line and is defined as the position where the
electrostatic potential ψ (x) takes half the value between dense
coacervate and dilute phase. The concentration profiles are
not symmetric and deviate from the classical interface pro-
file obtained for a symmetric binary Ginzburg-Landau free
energy [38,42]. The reason is that the mixture is ternary and
molecular volumes of the charged components are different.
For decreasing relative gradient cost ratio κp (the ratio κp/κ−
is varied by only varying κp while keeping κ− fixed), the
concentration profiles become steeper around the interface as
the energy cost associated with keeping gradients goes down.
We also note that although the relative gradient cost ratio
κp/κ− is varied by only varying κp while keeping κ− fixed,
both np and n− show the same behavior with changing κp.

A key finding of our work is that charges can separate
within the interfacial domain, which is evident in the spatially
varying charge density ρ(x) [Fig. 2(b)]. While the mixture is
charge neutral [ρ(x) � 0] deep within the dense coacervate
and dilute phase, we find multiple domains with a positive or
negative charge density. The gradient cost κp essentially deter-
mines the shape and the amplitudes of the charge density. For
the considered parameters there is a pronounced negatively
charged domain at x > 0 and a pronounced positively charged
domain at x < 0.

This separation of charge leads to a complex behavior of
the electrostatic potential ψ (x) within the interfacial domain
[Fig. 2(c)]. The negatively charged domain at x > 0 gives
rise to a potential well relative to the reference potential in
the dilute phase that is chosen to be zero. On the contrary,
the positively charged domain at x < 0 causes a barrier of the
electrostatic potential relaxing toward the Donnan potential
ψD inside the dense phase [43,44]. The electrostatic potential
well and barrier implies that a positive test charge would get
attracted into the well and repelled by the potential barrier.
The existence and strength of both characteristics is set by
the cost ration κp. For large values, the well and the potential
barrier vanish. The reason is that the charge density in the
interface approaches concomitantly to zero [Fig. 2(b)] since
the free-energy penalty for gradients becomes too large for
increasing κp.

The charge separation at the interface can be understood
in the following way. Due to differences in the interaction
between components and their concentration differences in
the two phases, a chemical potential difference arises between
the phases. To balance this, an electrostatic potential differ-
ence between the two phases created by charge separation at
the interface develops such that the resulting electrochemical
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FIG. 2. Interfacial charge separation of simple coacervates without salt. (a) Concentration profiles of charged components ni(x), where (p)
and (−) indicate the macromolecule and counterion, respectively. For increasing κp, the profiles steepen around the interface indicated by a
vertical dashed line. (b) The charge density ρ(x) = e[qpnp(x) + q−n−(x)] indicates separation of charged components in the interfacial domain
for small enough κp. Only in this case, the free-energy penalty is low enough such that interactions of the charged components with the solvent
can give rise to a nonzero charge density. (c) The electrostatic potential ψ (x) has a complex shape within the interfacial domain. There is a
well in the negatively charged domain and a barrier in the positively charged domain. The potential is set to zero far in the dilute phase. The
interface position is defined where the electrostatic potential is half the value deeply inside the dense coacervate phase.

potential becomes equal everywhere. Although not shown
here, all the properties presented in Fig. 2 qualitatively re-
main the same for a system with κp/κ− = νp/ν− = |qp/q−| =
ωp/ω− = 1, but having slightly different Flory-Huggins inter-
action parameters. As shown by Aerov et al. [32], a similar
phenomenon can happen for interfaces separating ionic and
nonionic liquids.

2. Impact of salt on simple coacervates

Now we consider a system that, in addition to the posi-
tively charged macromolecules and its counterions, contains
salt. For simplicity, we consider a monovalent salt and do
not make any distinction between the counterions and the
anions released by the salt. The resulting quaternary mix-
ture thus contains macromolecules (p), cations (+), anions
(−), and solvent (s) molecules. For results discussed in this
section, we choose the molecular volumes and the inter-
action parameters as follows: νp/νs = νp/ν+ = νp/ν− = 30,
and χps = 1.9 nm3, χp+ = 1.8 nm3, χp− = −1.8 nm3, χ+− =
χ+s = χ−s = −0.09 nm3. We also set κ+ = κ− = κ , and un-
less stated otherwise, use κ = 15 kBT nm5.

The concentration profiles of charged components ni(x) in
simple coacervates with salt (i = p,+,−) show a complex
behavior close to the interface [Fig. 3(a)], where the interface
is indicated by a vertical dashed line. The macromolecule
concentration np(x) decreases monotonically, together with
the oppositely charged counterion (−) when passing from
the dense coacervate phase toward the dilute phase. This
coupled behavior is a result of the attractive electrostatic
interactions. Interestingly, the positively charged coions (+)
vary nonmonotonically, i.e., (+)-ions accumulate right out-
side the coacervate phase. This accumulation is a result of a
macromolecule-poor layer right outside the coacervate and is
formed by the attractive electrostatic interactions between op-
positely charged ions. This variation vanishes with increasing
cost ratio κp as the profile of macromolecules at the interface

flattens and thereby contributes to neutralizing the interfacial
domain.

The charge density ρ(x) and the electrostatic potential
ψ (x) have a similar qualitative behavior as compared to the
case without salt. Multiple charge layers of alternating charge
develop within the interfacial region [Fig. 3(b)], and the elec-
trostatic potential can vary nonmonotonically with potential
wells and barriers [Fig. 3(c)]. These profile characteristics
vanish for increasing κp, as it quantifies the free-energy
penalty for profile heterogeneities. However, the presence of
salt quantitatively makes charge separation more pronounced,
i.e., it is observed for even higher values of κp.

The well and barrier of the electrostatic potential is deter-
mined by the salt concentration csalt. To quantify this impact,
we introduce the interfacial potential ψint as the potential
difference between the barrier and the well minimum and
contrast it with the Donnan potential ψD [Fig. 4(a)]. We also
propose a definition for the interface width of the coacervate
� as the distance between the position of potential well and
barrier. We find that the Donnan potential ψD and the inter-
facial potential ψint decrease with the salt concentration csalt

[Fig. 4(b)]. This decrease is due to screening, as more salt
reduces the electrostatic interactions of the phase-separated
macromolecules. For large salt concentrations, this decrease
weakens and crosses over to a logarithmic decay for both
ψD and ψint, each decaying with a characteristic salt con-
centration (see Appendix A). The decrease of ψD and ψint

with salt is, however, extremely insensitive to the average
macromolecule concentration np. The latter predominantly
sets the size of the coacervate without altering the composi-
tion significantly. For sufficiently large values of the gradient
cost κp, the potential profiles become monotonically varying,
leading to a vanishing difference (ψint − ψD) [Fig. 4(c)]; see
Fig. 3(c) for the corresponding electrostatic potential profiles.
However, lowering the κp values leads to barriers and wells
of the electrostatic potential and thereby nonzero differences
(ψint − ψD). Interestingly, though both the Donnan potential
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FIG. 3. Interfacial charge separation of simple coacervates with salt. (a) In contrast to the case without salt (Fig. 2), the concentration
profiles of charged components ni(x) (i = p, −,+) can vary in a nonmonotonic fashion within the interfacial domain; the interface is indicated
by the vertical dashed line. The dense coacervate phase is enriched in positively charged macromolecules together with its neutralizing
counterions (−), while the positively charged coions (+) accumulate adjacent to the interface toward the dilute phase. This accumulation
enhances for decreasing κp. (b) The charge density ρ(x) = e[qpnp(x) + q−n−(x) + q+n+(x)] shows, as in the case without salt, that charges
separate in the interfacial domain and that charge separation is more pronounced for smaller κp. (c) The associated electrostatic potential ψ (x)
exhibits potential wells and barriers that are even more pronounced compared to the case without salt. The plots correspond to a system with
salt concentration csalt = 100 mM, a macromolecular charge qp = +4, and average concentration np = 0.1 mM, and ion charges q± = ±1.

ψD and the interfacial potential ψint decrease with increasing
salt, their difference increases [Fig. 4(c)]. This trend indicates
that the electrostatic potential differences between the dense
coacervate phase and the dilute phase are more affected by
salt screening than the interfacial potential. This asymmetry
between bulk phases and interfacial domains arises from the
additional gradient cost compared to the bulk phases for the
counterions to accumulate in the interfacial domains.

The salt concentration determines the amount and the size
of the layers within the interfacial domain. A logarithmic rep-
resentation of the absolute value of the charge density |ρ(x)|

reveals that multiple layers of alternating charge extend from
the interfacial domain towards the dense and dilute phase,
respectively [Fig. 5(a)]. Increasing the salt concentration in-
creases the number of such layers and decreases layer width.
To quantify the layering with salt, we calculated the real and
imaginary part of γI/II deeply in the dense coacervate and
dilute phase by linearizing the profile of each component i
around phase equilibrium n0

i by writing

ni(x) = n0
i + ci exp(γ x); (2)

FIG. 4. Impact of salt on the electrostatic potential of simple coacervates. (a) Illustration of the Donnan potential ψD, the interfacial
potential ψint, and the interfacial width � for a representative electrostatic potential profile ψ (x) obtained for simple coacervates. (b) The
Donnan potential ψD and the interfacial potential ψint decrease with salt concentration csalt, since salt screens the electrostatic interactions. The
average macromolecule concentration np in the system hardly affects ψD or ψint, as it mainly alters the size of the dense coacervate phase.
(c) For a large value of κp = 50, the potential profile varies monotonically and ψint − ψD vanishes. Thus, there are no additional potential
barriers and wells. For small enough values of κp, the difference between Donnan and interfacial potential ψint and ψD is nonzero and increases
with salt concentration csalt. The reason is that salt reduces the electrostatic potential by screening, which is more pronounced in the bulk phases
due to the ions’ gradient costs. We fixed average macromolecule concentration np = 0.1 mM. For all the plots here, macromolecule charge
qp = 4, and co/counterion charges q± = ±1 are used.
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FIG. 5. Layers of alternating charge density in the dense coacervate and dilute phase. (a) Logarithmic representation of the absolute value
of the charge density |ρ(x)| around the interfacial domain indicates layers of alternating charge density. The amplitude of charge density
|ρ(x)| within layers decays approximately exponentially with characteristic length scales Re(γI/II )−1 that are phase dependent. The width of
charged layers that can be characterized by Im(γI/II )−1 decreases with increasing salt concentration csalt. (b) In the dilute phase, Re(γII ) shows
a nonmonotonic behavior. A nonzero Im(γII ) indicates the existence of layers of alternating charge. Layers only occur for salt concentrations
above the threshold c∗

salt. For csalt > c∗
salt, Re(γI/II ) decreases with salt, indicating a deviation from classical Debye-Hückel theory. Here we

used κ = 15 kBT nm5. (c) In the coacervate phase, Re(γI ) changes only weakly with salt, and there are no layers deep in the coacervate phase
[Im(γI ) = 0]. (d) The threshold salt concentration c∗

salt decreases with increasing interfacial width �, where � can be changed by the gradient
cost κ . (e, f) Increasing the interfacial width � makes the system crossing from a situation where alternating charged layers solely exist
inside the coacervate, over a regime without any layers, to a regime with layers present exclusively in the dilute phase. For all panels we use
np = 0.1 mM, κ+ = κ− = κ , κp = 3.33κ . In panels (e) and (f), the interfacial width � is varied by varying κ in the range (6 − 75) kBT nm5.
Further parameters are the same as in Fig. 4. The gray shaded regions in panels (b), (e), and (f) indicate situations where the imaginary part of
the decay constant is zero in both phases.

for details see Appendix B. We find that amplitudes of charge
density |ρ(x)| in the layers decay approximately exponentially
with a characteristics length scale Re(γI/II )−1, an effect remi-
niscent of classical electrostatic screening as described by the
Debye-Hückel theory [45], where Re(γ )−1 would correspond
to the Debye screening length. For our simple coacervate in
the presence of salt, Re(γII ) shows a nonmonotonic behavior
with salt [Fig. 5(b)]. For low salt, it increases with increasing
salt concentration, which is consistent with Debye-Hückel
theory. However, when passing a threshold salt concentration
c∗

salt, this behavior qualitatively changes as Re(γII ) decreases
with increasing salt concentration. The threshold c∗

salt co-
incides with the appearance of a nonzero imaginary part
Im(γII ), which indicates the existence of layers of alternat-
ing charge also far away from the coacervate interface. In
other words, the bulk phases can be layered reminiscent of
Coulomb microphase separation in polymer solutions or of
block copolymers undergoing microphase separation [46–56],

however, noting that the amplitude of charge density decays
exponentially when going away from the interface [Fig. 5(a)].
Charged layers, in general, arise due to competing interac-
tions related to different length scales. For our system, these
competing length scales are the Bjerrum length �B, due to
electrostatic interactions, and the gradient costs κi related to
interfacial tension (see Appendix B for details). As derived in
Appendix B 5, for a ternary system comprising of oppositely
charged species (+,−) in a solvent (s) in the large κ± limit,
the decay constant γ [defined in Eq. (2)] reads

γ = ±1 ± i√
2

(
e2

ε

(
q2

+
κ2+

+ q2
−

κ2−

))1/4

. (3)

Clearly, a competition between the Bjerrum length �B =
e2/(4πεkBT ) and the length scale associated with the inter-
facial width gives rise to complex γ , leading to oscillatory
number density as well as electrostatic potential profiles.
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FIG. 6. Interfacial charge separation of complex coacervates. (a) Monotonic decrease of concentration profiles of the macromolecules
n±

p (x) within the interfacial domain. (b) The charge density ρ(x) = e[q+
p n+

p (x) + q−
p n−

p (x)] shows complex spatial variation inside the interfacial
domain, indicating that charge separation can also occur for complex coacervation. By altering the relative gradient cost κ+

p of the oppositely
charged macromolecules, the charged layers can swap their sign. (c) This swapping is evident in the corresponding behavior of the electrostatic
potential profile ψ (x) when changing κ+

p . The ordering of potential barriers and wells swaps. The vertical dashed line in each plot marks the
location of the interface. As parameters, we use q+

p = 4, q−
p = −2 together with other parameters mentioned in Sec. III B.

In the other limit κ± → 0, the decay constant is real (see
Appendix B for details). While the layering extends to the
bulk, the amplitudes of such layers are exponentially damped,
implying that the manifestation of layering gets negligible
deeply in the respective phases. Moreover, for the considered
parameters in Figs. 5(a)–5(c), we have found that layers not
necessarily exist in both coexisting phases; here we show an
example where the dilute phase is layered while the dense
coacervate phase is not [Figs. 5(b) and 5(c)]. Though layers
have been reported in theories at charged solid interfaces
[57–59], layering around the liquid interface is distinct, as the
additional interfacial width is coupled to the spatial variations
extending towards both bulk phases.

The interfacial width � of the coacervate strongly af-
fects the threshold c∗

salt of charge layering [Fig. 5(d)]. The
interfacial width can be changed by increasing the parame-
ter characterizing the gradient cost κ , where we chose κ+ =
κ− = κ . Thus, for larger �, the threshold for layering, c∗

salt,
decreases.

The interfacial width � also controls whether layers of al-
ternating charge occur in the dilute or in the coacervate phase
[Figs. 5(e) and 5(f)]. For low interfacial width � the dense
coacervate phase [Fig. 5(f)] exhibits layers while the dilute
phase does not. Increasing � leads to a domain where none of
the phases have layers [gray shaded domain in Figs. 5(b), 5(e)
and 5(f)]. For even larger value of the interfacial width �, the
coacervate is not layered while the dilute phase has layers of
alternating charge [Fig. 5(e)].

B. Complex coacervates

Here we discuss a minimal model for complex coacer-
vation and scrutinize our key finding of charge separation
at the interface. In contrast to a simple coacervate, com-
plex coacervation is driven by the attractive electrostatic
interaction between (at least) two oppositely charged macro-
molecules. As a result, both macromolecule types are enriched

inside the coacervate phase compared to the coexisting di-
lute phase. Our minimal model for a complex coacervate
accounts for two oppositely charged macromolecules (p+ and
p−) suspended in a solvent (s). For the following studies
we consider macromolecule-solvent molecular volume ratios
ν+

p /νs = ν−
p /νs = 20 and Flory-Huggins parameters χp+s =

1.0 nm3, χp−s = 0.6 nm3, and χp+ p− = −1.0 nm3.
The concentration profiles of the macromolecules n±

p (x)
vary monotonously [Fig. 6(a)]. We could not find any addi-
tional concentration layers as observed for simple coacervates
with salt. However, the charge density can exhibit spatial
variation in the interfacial domain, indicating that charges
can separate also for complex coacervates [Fig. 6(b)]. We
have varied the relative gradient cost of the positively to the
negatively charged macromolecule, κ+

p /κ−
p , by varying κ+

p .
We find that κ+

p can flip the charge of the layers when passing
through the interfacial domain. For κ+

p � κ−
p , the gradients

of the concentration field n+
p can be steeper compared to

those of n−
p . Therefore, right inside the coacervate one has

n+
p > n−

p , leading to a positively charged layer. In the other
limit, i.e., for κ+

p 	 κ−
p , the gradients of the concentration

field n+
p become less steep compared to those of n−

p . Therefore
one obtains the swapped case with n−

p > n+
p and a negatively

charged layer right inside the coacervate. This swapping also
becomes evident in the behavior of the electrostatic potential
ψ (x) as a function of the relative gradient cost κ+

p . While for
small κ+

p � κ−
p , the coacervate phase comprises a potential

barrier and the dilute phase a potential well; this swaps for
large κ+

p 	 κ−
p .

We end our discussion by commenting on the relevance
of changing the gradient costs κ±

p and some of the parameter
choices in our study. Biological condensates are often formed
by complex coacervation of two macromolecules of rather dif-
ferent molecular volume, e.g., proteins with oligonucleotides
such as RNA and DNA. Moreover, interaction parameters
among macromolecules and solvent are generally different.
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Since the gradient costs of such macromolecules κ±
p depend

on their molecule volumes and on their interactions, we ex-
pect them to vary, suggesting the relevance of our results
in Fig. 6 for biomolecular condensates. We also note that
our qualitative results, i.e., interfacial charge separation and
associated potential profile formation, rely on the asymme-
tries in Flory-Huggins parameters, and they are expected to
be present even for higher macromolecular charges. As to
the used model of complex coacervate, in general, free ionic
species (e.g., protons) can be present in the solution. However,
the resulting quaternary mixture is very much similar to the
simple coacervates with the added salt case, albeit with one
ionic species being larger. Therefore, we do not expect the
qualitative features of our results to change in that case.

IV. CONCLUSIONS

In summary, we present a theoretical framework to
study profiles of concentrations and electrostatic potential
at interfaces of phase-separated solution containing charged
components. We apply this framework to simple and complex
coacervates. Our approach extends the Poisson-Boltzmann
theory that describes the spatial distributions of ions adja-
cent to charged, solid surfaces, or charged colloidal particles.
In these systems counterions typically follow a Boltzmann
distribution and screen the surface charge. Our extension ac-
counts for the interactions among all charged components,
taking into account phase coexistence. Our work therefore
provides a framework for coacervation at salt concentrations
where the Poisson-Boltzmann theory fails [19]. Most impor-
tantly, in phase-separated systems, interfaces are associated
with free-energy costs for gradients of charged and uncharged
components. These contributions are lacking in the classical
Poisson-Boltzmann theory.

A similar theoretical framework was recently proposed by
Zhang and Wang [30]. However, they focus on electrostatic
interaction between charged components and consequently,
capture interfacial double-layer formation for the case of
asymmetric complex coacervates. We show that the phe-
nomenon of interfacial charge separation is much more
general and can take place in any system with asymmetric
interaction between components. We also show that charge
separation can take place away from the interface due to
a competition between the interfacial length scales and the
Bjerrum length.

The key finding of our theory is therefore the general
presence of charge separation in the interfacial domain of
any type of coacervates, be it simple or complex. Beyond
a threshold salt concentration, multiple layers of alternating
charges can occur around the interface, which extends into the
bulk phases. However, the amplitude of the charge contained
in each layer decreases exponentially for increasing distance
from the interface. We show that salt regulates the number
and the width of such layers of alternating charges. Similar
layering has also previously been reported, but in homoge-
neous systems for large salt concentrations. Charge layering in
such homogeneous systems results from correlations beyond
mean-field as well as within mean-field description [57–64].
Our studies show that layering can occur at the mean-field

level with moderate salt concentrations due to phase separa-
tion where the interfacial width controls the layer patterns.

Charged layers localized around the interface can affect
interfacial transport. An interesting case is the stochastic tra-
jectory of single-charged probe molecules diffusing across the
interface. This molecule will encounter the electric potential
profile with barriers and traps, which affects the transport
kinetics. The resulting charge-specific reflection or trapping of
the probe at the interface suggests charge-dependent transport
properties at the interface. In the context of biomolecular con-
densates forming via phase separation in cells [1], this phe-
nomenon could be used by cells to regulate molecular trans-
port, a property usually associated with membranes [65,66].

Our finding of complex-shaped charged layers at the coac-
ervate interfaces implies that a coacervate is not a colloid with
a surface charge surrounded by a (dilute) layer of screening
counterions. Counterions at coacervate interfaces are, in gen-
eral, nondilute and participate in the phase separation equally
as the macromolecules. In other words, the surface charge is
not solely a property of the coacervate, as is typically the case
for colloids. For coacervates, the surface charge depends on
the interactions and concentrations of all charged components
in the system. Thus, changes in salt or gradient costs alter
the coacervate’s surface charge and the screening counterion
distribution. This complexity poses an exciting challenge in
calculating the electrophoretic mobility when coacervates are
subject to external electric fields [24,26,28].

Our theoretical framework also paves the way to investi-
gating even more complex phase separation phenomena in
nondilute mixtures composed of charged components. It re-
mains elusive why coacervates hardly undergo coarsening by
Ostwald ripening [17,67,68], and why coacervates can repel
each other or stick without fusing [69]. Moreover, the surface
charge of coacervates could also be regulated by pH [33–35],
and coacervates can also act as chemical reactors [70–72]. Re-
cently, coacervates maintained away from equilibrium were
shown to deform to complex shapes, including the formation
of liquid shells [73,74].

Finally, we note that, for simplicity, we have combined
a Flory-Huggins model with long-range electrostatic inter-
actions to discuss profiles of interfacial charges. However,
other approaches have been proposed that also account for an
electrostatic free energy beyond mean field, as well as chain
correlations along polymer [30,75–78]. It will be interesting to
include such effects in our analysis and additionally account
for charge regulation of macromolecules [33,34] to investigate
how the charge oscillations at and away from the coacervate
interface are affected.
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FIG. 7. Variation of both the Donnan potential ψD and the in-
terfacial potential ψint [defined in Fig. 4(a)] as functions of the salt
concentration csalt, showing that ψD and ψint vary logarithmically for
large csalt but with different rates.

APPENDIX A: ψD AND ψint AS A FUNCTION OF SALT
CONCENTRATION

In Fig. 4 of the main text, we have shown the variations
of the Donnan potential ψD and the interfacial potential ψint

as functions of the salt concentration csalt using linear scales.
In order to gain further insight into the actual variation, we
plot them for an even larger salt concentration range using
semi-log scale in Fig. 7. As the plots suggest, both ψD and
ψint vary logarithmically with csalt but with different rates.

APPENDIX B: DECAYING CHARGE OSCILLATIONS
TOWARDS BULK PHASES

1. Governing equations

Let us consider a ternary system consisting of a positively
charged species (+), a negatively charged species (−), and
a solvent (s). Conservation of volume fractions implies that
all of the three volume fractions are not independent of each
other. As always, we consider the one for the solvent to be the
dependent one, which is given by (1 − ν+n+ − ν−n−). The
other two volume fractions, or equivalently, the correspond-
ing concentration profiles (as we consider constant molecular
volumes ν±), together with the electrostatic potential every-
where in the system, can be obtained by solving the following
equations:

∇2ψ = −ρ

ε
, (B1)

μel
± = constant. (B2)

2. Exponential ansatz and small deviation assumption

Away from the interface, all the quantities decay exponen-
tially as

n+ = n0
+ + c+ exp (γ x) + c.c., (B3)

n− = n0
− + c− exp (γ x) + c.c., (B4)

ψ = ψ0 + cψ exp (γ x) + c.c., (B5)

to their respective bulk values, i.e., to n0
+, n0

−, and ψ0 with a
decay constant γ . Here, c.c. refers to the complex conjugate.
As there are three equations to solve for four unknowns (c+,
c−, cψ , and γ ), one can obtain only the ratios cp = c+/cψ and
cm = c−/cψ . Inserting the exponential profiles [Eqs. (B3)–
(B5)] back into the Poisson equation (B1), one obtains the
condition

γ 2 = −e(q+cp + q−cm)

ε
. (B6)

As c+, c−, and cψ are not restricted to be real valued, both
cp and cm, and consequently, γ , can also be complex valued.
Please note that a complex γ corresponds to oscillatory pro-
files for the number densities and the electrostatic potential.
Next, the exponential profiles are inserted into the equal ex-
change electrochemical potential conditions [Eq. (B2)]. The
log terms are expanded up to linear order with respect to small
deviations from the bulk densities [i.e., in exp(γ x)] in the
following way:

log (νini ) = log
[
νin

0
i + νici exp (γ x)

]
= log

[
νin

0
i

(
1 + ci

n0
i

exp (γ x)

)]

= log
(
νin

0
i

) + log

(
1 + ci

n0
i

exp (γ x)

)

= log
(
νin

0
i

) + ci

n0
i

exp (γ x) + · · · ,

and

log(1 − ν+n+ − ν−n−)

= log[1 − ν+n0
+ − ν−n0

− − (ν+c+ − ν−c−) exp (γ x)]

= log

[
φ0

s

(
1 − ν+c+

φ0
s

exp (γ x) − ν−c−
φ0

s

exp (γ x)

)]

= log
(
φ0

s

) + log

(
1 − ν+c+

φ0
s

exp (γ x) − ν−c−
φ0

s

exp (γ x)

)

= log
(
φ0

s

) − ν+c+
φ0

s

exp (γ x) − ν−c−
φ0

s

exp (γ x) + · · · ,

where φ0
s = 1 − ν+n0

+ − ν−n0
−. Using these expressions in the

constant exchange electrochemical potential conditions and
equating the coefficients of exp (γ x) to zero, one obtains

κ+γ 2cp =
[

cp

n0+
+ ν+

νs

(
ν+cp

φ0
s

+ ν−cm

φ0
s

)]
kBT + χ+−cm

− χ+s

(
2
ν+
νs

cp + ν−
νs

cm

)
− χ−s

ν+
νs

cm + eq+,

(B7)
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and

κ−γ 2cm =
[

cm

n0−
+ ν−

νs

(
ν+cp

φ0
s

+ ν−cm

φ0
s

)]
kBT + χ+−cp

− χ−s

(
2
ν−
νs

cm + ν+
νs

cp

)
− χ+s

ν−
νs

cp + eq−.

(B8)

Equations (B6), (B7), and (B8) form a set of three equations to
be solved for three unknowns cp, cm, and γ . We first solve
Eqs. (B7) and (B8) to obtain cp and cm in terms of γ , and this
is then used in Eq. (B6) to obtain the following polynomial
equation satisfied by the decay constant γ :

εκ+κ−γ 6 − ε(aκ− + dκ+)γ 4

+ (εad − εb2 + e2q2
+κ− + e2q2

−κ+)γ 2

+ e2(2bq+q− − q2
+d − q2

−a) = 0, (B9)

where

a =
(

1

n0+
+ ν2

+
νsφ0

s

)
kBT − 2χ+s

ν+
νs

, (B10)

b = ν+ν−
νsφ0

s

kBT + χ+− − χ+s
ν−
νs

− χ−s
ν+
νs

, (B11)

d =
(

1

n0−
+ ν2

−
νsφ0

s

)
kBT − 2χ−s

ν−
νs

. (B12)

Equation (B9) is a polynomial equation of sixth order in γ

and can have real as well as complex roots in accordance
with what one can already infer from Eq. (B6). A similar
calculation can be done for a quaternary system which leads
to a polynomial equation of higher degree.

3. Complex decay constant γ

In order to get an idea of the nature and origin of the
different roots of γ , we rewrite Eq. (B9) in the following way:(

γ

�1

)6

−
(

γ

�2

)4

+
(

γ

�3

)2

+ r = 0, (B13)

with

�6
1 = e2(q2

+d + q2
−a − 2bq+q−)|χ→0

εκ+κ−
, (B14a)

�4
2 = e2(q2

+d + q2
−a − 2bq+q−)|χ→0

ε(aκ− + dκ+)
, (B14b)

�2
3 = e2(q2

+d + q2
−a − 2bq+q−)|χ→0

εad − εb2 + e2q2+κ− + e2q2−κ+
, (B14c)

r = 2bq+q− − q2
+d − q2

−a

(q2+d + q2−a − 2bq+q−)|χ→0
. (B14d)

The χ → 0 condition implies that the expression is calculated
in the limit of vanishing Flory-Huggins interaction between
all components. The resulting limiting expression can be
shown to always have a nonzero and strictly positive value. By
construction, �1, �2, and �3 are three length scales associated
with the roots of γ in Eq. (B9).

Figure 8 shows the variations of these length scales and
the corresponding variation of the characteristic length scale
γII in the dilute phase as function of the gradient cost for a
ternary system (either a simple coacervate without salt, panels
(a) and (b), or a complex coacervate, panels (c) and (d)).
For both systems, either only one of the gradients costs κ+
or both of them, i.e., κ+ = κ− = κ are varied to change the
interfacial width. We note that increasing the gradient cost
increases the interfacial width. As one can see from the upper
panels of all the plots, with increasing interfacial width, the
decay constant γII becomes complex from being purely real.
Quite interestingly, the corresponding lower panels suggest
that the length scale �3 also changes its slope around the
position where γII changes its behavior. The other two length
scales �1,2 do not manifest such a change. Therefore, the
origin of the complex decay constant can be attributed to
the length scale �3, which, as Eq. (B14c) suggests, arises
due to a competition of the electrostatic length scale and of
the interfacial width. We note that in the limit of vanish-
ing Flory-Huggins interactions χi j → 0, vanishing molecular
volumes ν± → 0, and vanishing gradient costs κ± → 0, the

length scale �3 =
√

(q2+e2n0+ + q2−e2n0−)/(εkBT ) matches the
well-known inverse Debye length.

4. Criterion for obtaining complex decay rate γ

By using a quadratic variable substitution, Eq. (B9) can
be rewritten as a cubic equation which has complex roots for
negative discriminant, i.e., for

1

�8
2�

4
3

+ 4r

�12
2

− 4

�6
1�

6
3

− 18r

�6
1�

4
2�

2
3

− 27r2

�12
1

< 0. (B15)

Consequently, γ can also have complex (with nonzero real
part) values only when the condition in (B15) is satisfied.

5. The limits of large and small gradient costs

In the limits of large and small gradient costs, the behavior
of the decay constant γ can also be analytically understood.

a. Large gradient costs

In the limit of large gradient costs κ±, we make the follow-
ing reasonable ansatz:

γ ∼ κα, α < 0. (B16)

Using this in Eq. (B9), one obtains

O(κ2+6α ) + O(κ1+4α ) + O(κ2α ) + O(κ1+2α ) + O(κ0) = 0.

(B17)

In order to get meaningful solutions for γ , only one term in
this expression cannot dominate. Therefore, at least two of
the terms scale equally in Eq. (B17), and the remaining ones
grow slower. Keeping in mind that 2α < (1 + 2α) as well as
(1 + 4α) < (1 + 2α) for α < 0, one can have the following
three situations:

Case I: κ2+6α = κ1+2α . In this case α = − 1
4 , and the poly-

nomial equation (B9) simplifies to

εκ+κ−γ 6 + e2(q2
+κ− + q2

−κ+) � 0.
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FIG. 8. Change in length scales corresponding to charge oscillations in the dilute phase. Upper panels: The real and imaginary parts of
the characteristic length scales γII in the dilute phase as functions of the surface parameter(s) for simple [panels (a) and (b)] and complex
coacervates [panels (c) and (d)]. In panels (a) and (c), only the surface parameter κ+ is varied, keeping κ− = 10 kBT nm5 fixed. In contrast,
panels (b) and (d) show the behavior of γII when both the surface parameters κ+ = κ− = κ are varied. In both cases, one sees that the decay
constant turns complex from real with increasing surface parameters, or equivalently, with increasing interfacial width. Lower panels: Log-log
plots showing the variations of the length scales �1, �2, and �3 defined in Eq. (B14) corresponding to the situations considered in the respective
upper panel. As one can identify, in each case the length scale �3 changes slope around the region where the length scale γ becomes imaginary.
The other two length scales, i.e., �1 and �2, do not show such changes in their slopes. Unless stated explicitly, all the parameters correspond to
those used in Figs. 2 and 6 of the main text for simple and complex coacervates, respectively.

Its solution,

γ � ±1 ± i√
2

(
e2

ε

(
q2

+
κ+

+ q2
−

κ−

))1/4

� ±1 ± i√
2

(
4π�BkBT

(
q2

+
κ+

+ q2
−

κ−

))1/4

, (B18)

is discussed in the main text in detail; see Eq. (3). Essentially,
this solution is complex, implying an oscillatory decay of the
quantities in Eqs. (B3)–(B5) as well as of the corresponding
charge density, and is due to a competition of the electrostatic
interaction and interfacial tension.

Case II: κ2+6α = κ0. This condition implies α = − 1
3 .

However, plugging this value of α in the different terms, one
obtains

κ2+6α = κ0 < κ1/3 = κ1+2α,

implying that the third term dominates over the other two.
Thus, this case cannot take place.

Case III: κ1+2α = κ0. Solving this, one obtains α = − 1
2 ,

and plugging this back into Eq. (B9) leads to the simplified
form

e2(q2
+κ− + q2

−κ+)γ 2 + e2(2bq+q− − q2
+d − q2

−a) � 0.

The solution γ � ±
√

q2+d+q2−a−2bq+q−
q2+κ−+q2−κ+

of this quadratic equa-

tion can never be complex. It is either real or purely imaginary,
and stems from a competition of short-range Flory-Huggins
interactions and the interfacial tension.

b. Small gradient costs

For small gradient costs, i.e., for κ± → 0, Eq. (B9) simpli-
fies to

ε(ad − b2)γ 2 + e2(2bq+q− − q2
+d − q2

−a) � 0,

and the resulting decay rate γ � ±
√

e2(q2+d+q2−a−2bq+q− )
ε(ad−b2 ) , orig-

inating due to a competition of the electrostatics and
short-range Flory-Huggins interactions, is either real or purely
imaginary. Therefore, one cannot obtain oscillatory profiles in
the sharp-interface limit.

APPENDIX C: TOTAL CHARGE Q INSIDE
THE COACERVATE PHASE

In Fig. 9 we plot the total charge Q = ∫ 0
−∞ dxρ(x) con-

tained inside the coacervate phase for three different cases
(simple coacervates with or without salt and complex coac-
ervates). As one can see, in all three cases, the total
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FIG. 9. Variation of both the total charge contained within the coacervate phase as a function of the relative gradient cost parameters
for (a) simple coacervates without salt, (b) simple coacervates with salt, as well as for (c) complex coacervates. Whereas for the simple
coacervates the total charge of the coacervate remains of the same sign with changing relative gradient cost, for complex coacervates it can even
change sign.

charge Q decreases with increasing gradient cost ratios. In
addition, it can even flip sign for complex coacervates. The
kinks in the curve corresponding to complex coacervates
[Fig. 9(c)] correspond to changes in the shape of the elec-
trostatic potential profiles as depicted in Fig. 6(c). We note

that the position of the interface, i.e., the location x = 0, is
defined based on the electrostatic potential profiles. In case
the potential profile encounters the value ψD/2 more than
once, we choose the middle one to be the location of the
interface.
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