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Photonic cellular automaton simulation of relativistic quantum fields: Observation of Zitterbewegung
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Quantum cellular automaton (QCA) is a model for universal quantum computation and a natural candidate
for digital quantum simulation of relativistic quantum fields. Here we introduce the first photonic platform for
implementing QCA simulation of a free relativistic Dirac quantum field in 1 + 1 dimension, through a Dirac
quantum cellular automaton (DQCA). Encoding the field position degree of freedom in the orbital angular
momentum (OAM) of single photons, our state-of-the-art setup experimentally realizes eight steps of a DQCA,
with the possibility of having complete control over the input OAM state preparation and the output measurement
making use of two spatial light modulators. Therefore, studying the distribution in the OAM space at each step,
we were able to reproduce the time evolution of the free Dirac field observing the Zitterbewegung, an oscillatory
movement extremely difficult to see in a real-case experimental scenario that is a signature of the interference of
particle and antiparticle states. The accordance between the expected and measured Zitterbewegung oscillations
certifies the simulator performances, paving the way towards the application of photonic platforms to the
simulation of more complex relativistic effects.

DOI: 10.1103/PhysRevResearch.6.033136

I. INTRODUCTION

The notion of a cellular automaton was introduced by von
Neumann [1], with the purpose of showing how a simple
local update rule for an array of cells containing bits (or
larger information carriers) can produce complex behaviors
on a macroscopic scale. The quantum version of cellular au-
tomata, the quantum cellular automaton (QCA) [2–6], was
first envisaged by Feynman in his famous paper [7], where
he immediately proposes their use as quantum simulators.
A QCA consists of a lattice of finite-dimensional quantum
systems, along with an evolution occurring in discrete steps,
which can be summarized in a local update rule, i.e., involving
only a finite neighborhood in the update of a given cell (see
Fig. 1).

Recently, quantum cellular automata have attracted great
interest due to their potential in quantum computation [8–10]
and because they are universal digital quantum simulators
[11–20]—by this terminology we mean that a finite portion
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of space-time is simulated via a discrete network of finite-
dimensional systems, of size proportional to the volume of
the region of interest, following e.g., Refs. [7,21]. In this
context, special attention was paid to the single-particle sector
of QCAs whose dynamics reduces to a discrete-time quantum
walk (DTQW) [22]. DTQWs are useful for quantum com-
putation [23–26] and simulation [27–32], which makes them
worth realizing in their own right. As the single-particle sector
of a QCA, DTQWs can simulate free quantum relativistic field
theories and relevant effects thereof [33–38].

Several platforms, ranging from cold atoms [39] to trapped
ions [40,41] to photonics systems [28,31,42–53], have been
employed to implement DTQWs. In this paper, we focus on
the experimental realization of the Dirac quantum Cellular
automaton (DQCA) [36,54,55], which is a fermionic cellular
automaton which recovers the dynamics of a free Dirac field
in the small wave-vector regime. The digital simulation of the
special instance of its evolution on localized input states was
pioneered in Ref. [56] on a trapped-ion quantum computer.

In this work, we implement the single-particle sector of a
QCA with the same dispersion relation as that of the DQCA,
corresponding to a DTQW, using a photonic platform based
on the scheme proposed in Ref. [35]. We use the orbital
angular momentum (OAM) of light to encode the walker
system that is directly linked to the position of the Dirac
particle, while the coin is codified in the polarization degree
of freedom. The structured wave front characterizing OAM
states and their high-dimensionality motivate the wide ap-
plications that these states have found both in the classical
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FIG. 1. One-dimensional QCA. Representation of the one-
dimensional QCA discrete-time evolution described by the unitary
operator U. Here, the quantum field located at each lattice point
interacts locally only with the nearest neighbors at each step of the
evolution.

regime, regarding microscopy [57,58], optical trapping [59]
and communication [60–64], and in quantum information
processing for the development of protocols in quantum com-
munication [65–67], computation [68,69], metrology [70–72],
and cryptography [73,74]. Moreover, OAM-based platforms
offer the possibility to produce a DTQW on a line without an
exponential increase of the number of optical elements with
respect to the length of the walk [28,31,43–45].

Here, we move beyond the present status of experimental
OAM-based quantum walk platforms [28,43–45,53], imple-
menting eight steps of a DTQW with a controllable initial
state and an arbitrary projective measurement stage. Our setup
allows us to perform a rich dynamics for what concerns
both the length of the evolution and the manipulation of the
experimental parameters. As a certificate of our simulation,
we observed the Zitterbewegung, a quivering motion of a
relativistic particle that, despite being practically impossi-
ble to observe in relativistic systems, is considered as one
of their benchmark signatures. Indeed, it was sought in the
pioneering—and to date one of the very few—quantum sim-
ulations of Dirac equations in a trapped-ion system [75]. We
achieved the digital quantum simulation of Zitterbewegung.
Our work demonstrates the capability of photonic platforms
of simulating relativistic behavior, which is difficult to observe
in real-case scenarios, paving the way for further experimental
implementations of QCA and DQCA, also with more complex
evolution dynamics thanks to the reconfigurability of the plat-
form for what concerns input and output stages.

II. QUANTUM CELLULAR AUTOMATA
AND QUANTUM WALKS

Quantum cellular automata describe the unitary evolution
of a lattice of cells, each representing a quantum system.
The evolution occurs in discrete steps and it is local, namely,
the state of a cell after a certain step t + 1 depends only
on the state of finitely many neighboring cells after the pre-
ceding step t (see Fig. 1).

Let us consider the one-dimensional nearest-neighbor lat-
tice Z and a local bosonic (fermionic) mode per cell. We
associate every site x ∈ Z with an algebra of field operators

ψx,a, where the index a ∈ S belongs to a finite set S and
denotes some internal degrees of freedom (e.g., polarization,
spin, helicity, ...). The field operators fulfill either the canon-
ical commutation relations (CCR) [ψx,a, ψ

†
y,b] = δx,yδa,b and

[ψx,a, ψy,b] = [ψ†
x,a, ψ

†
y,b] = 0 or the canonical anticommu-

tation relations (CAR) {ψx,a, ψ
†
y,b} = δx,yδa,b, {ψx,a, ψy,b} =

{ψ†
x,a, ψ

†
y,b} = 0, ∀x, y ∈ Z, and a, b ∈ S. A quantum cellular

automaton U is a local and translation invariant automorphism
of the representation of the CCR (CAR) algebra which repre-
sents a one-step evolution of the lattice. We give a Fock-space
representation of the CCR (CAR) algebra by introducing
the N-excitation (particle) states |(x1, a1), . . . , (xN , aN )〉 :=
ψ†

x1,a1
· · · ψ†

xN ,aN
|�〉, where |�〉 is the vacuum state, i.e., the

state with no excitations which obeys ψxi,ai |�〉 = 0 for all i
[76]. If we consider the particular case of a free, i.e., non-
interacting, evolution, the QCA action is linear in the field
operators, namely,

U (ψx,a) =
∑
y∈Z

∑
b∈S

U ∗
y,b;x,aψy,b, (1)

where the coefficients Uy,b;x,a turn out to be matrix elements of
a unitary operator on the subspace spanned by single-particle
states.

Thus, the dynamics is completely determined by the quan-
tum walk U on the single-particle Hilbert space CS ⊗ l2(Z):

|ψ (t + 1)〉 = U |ψ (t )〉,
U |a〉|x〉 =

∑
y∈Z

∑
b∈S

Uy,b;x,a|b〉|y〉,

|a〉|x〉 = |(x, a)〉. (2)

We now consider a two-dimensional internal degree of
freedom corresponding to the polarization of an electromag-
netic field mode. The Hilbert space C2 is thus spanned by the
polarization eigenstates, {|V 〉, |H〉}, and the circularly polar-
ized states are denoted as |L〉 and |R〉 with

|L〉 = 1√
2

(|H〉 + i|V 〉), |R〉 = 1√
2

(|H〉 − i|V 〉).

Because the evolution is translationally invariant, it is con-
venient to represent the unitary operator U in Eq. (2) through
the momentum representation:

U =
∫ π

−π

dk U (k) ⊗ |k〉〈k|, U (k)|±〉k = e∓iω(k)|±〉k, (3)

where we introduced the plane waves |k〉 := ∑
x

eikx√
2π

|x〉, and
U (k) ∈ SU(2) is a unitary matrix with eigenvectors |+〉k and
|−〉k [77]. For example, the DTQW corresponding to the
one-particle sector of the Dirac cellular automaton [34,35,55]
reads as follows:

U (k) =
(

ne−ik −im
−im neik

)
, ω(k) = arccos[n cos(k)] (4)

for some real numbers n and m such that n2 + m2 = 1.
For a given quantum walk U , it is useful to introduce an

effective Hamiltonian H which obeys U = exp(−iH ). The
Hamiltonian H generates a continuous-time evolution which
interpolates the evolution of the quantum walk. We refer to
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the support H+ (respectively, H−) of the projector P± :=∫
dk |±k〉〈±k| ⊗ |k〉〈k| as the subspace of positive-energy (re-

spectively, negative-energy) states.
In particular, for the DTQW of Eq. (4) we have

H =
∫ π

−π

dk H (k) ⊗ |k〉〈k|,

H (k) = ω(k)

sin ω(k)

(
n sin(k) m

m −n sin(k)

)
, (5)

and one can easily verify that for small k and m the one-
dimensional Dirac equation

i∂tψ (k, t ) = (kσz + mσx )ψ (k, t ) (6)

is recovered. The above considerations show that the DTQW
in Eq. (4) provides a quantum simulation of the one-
dimensional Dirac free field and can be used to observe
relativistic quantum effects pertaining to regimes that are dif-
ficult to access experimentally.

Zitterbewegung in quantum walks

One of the main predictions of the Dirac equation is the
existence of antiparticles. As first noticed by Schrödinger
[78], interference of a Dirac particle with its antiparticle is
responsible for the so-called Zitterbewegung effect, namely,
the oscillation of the expected value of the position operator
X [33–35,79–93]. Direct observation of this phenomenon in
particle physics would be prohibitive since it requires prepar-
ing a coherent superposition of the particle and the antiparticle
and the oscillation amplitude is of the order of the Compton
wavelength (10−12 m for an electron).

Since this phenomenon ultimately depends only on the
presence of positive- and negative-energy states, it can be
observed also in DTQWs [35]. For the case of a quantum
walk on a one-dimensional lattice [see Eq. (3)], the posi-
tion operator is X := ∑

x∈Z x I ⊗ |x〉〈x| and its time evolution
X (t ) = U −t XUt can be computed by integrating the differen-
tial equation d2

dt2 X (t ) = −[H, [H, X ]], where H is the effective
Hamiltonian. We obtain

X (t ) = X (0) + V t + 1

2iH
(e2iHt − I )F,

V :=
∫ π

−π

dk
ω′(k)

ω(k)
H (k) ⊗ |k〉〈k|, F := [H, X ] − V, (7)

where V is the velocity operator and F is responsible for the
oscillating motion. Since FP± = P∓F , we have that the Zit-
terbewegung occurs only for states which are a superposition
of positive-energy (particle) and negative-energy (antiparticle)
states. Indeed, by taking the expectation value of X (t ) with
respect to a state |ψ〉 = |ψ〉+ + |ψ〉−, where |ψ〉± ∈ H±, we
have

〈X (t )〉 = x+(t ) + x−(t ) + x0 + z(t ),

x±(t ) := 〈ψ±|X (0) + V t |ψ±〉,
x0 := 2Re[〈ψ+|X (0) − (2iH )−1F |ψ−〉],

z(t ) := 2Re[〈ψ+|(2iH )−1e2iHt F |ψ−〉], (8)

and we see that interference between positive- and negative-
energy states causes a shift x0 of the mean value of the

position and the oscillating term z(t ). Let us now consider
states whose particle and antiparticle components are both
smoothly peaked around some momentum eigenstate, i.e.,

|ψ〉in = c+|ψ+〉 + c−|ψ−〉, (9)

|ψ±〉 =
∫

dk√
2π

g(k)|±〉k|k〉, (10)

where |c+|2 + |c−|2 = 1 and |g(k)|2 is peaked around k0.
Therefore, for small value of t , the oscillating terms can be
approximated as follows:

z(t ) = |c+||c−|| f (k0)| cos[2ω(k0)t + φ0], (11)

where we define f (k) := 〈+k|F |−k〉/[2iω(k)] and φ0 is a
suitable phase.

III. EXPERIMENTAL IMPLEMENTATION OF THE DIRAC
CELLULAR AUTOMATON

To experimentally realize the DQCA, we employ the two
components of the photon angular momentum, the spin angu-
lar momentum and the orbital angular momentum, to encode
coin and walker states of a quantum walk, respectively. The
orthonormal basis {|R〉, |L〉} corresponds to right- and left-
circular polarization, respectively. The position states {|x〉, x ∈
Z} represent eigenstates of the OAM; in particular, throughout
the paper we consider its expression in the eigenstate basis of
Laguerre-Gaussian modes [94].

In our platform, the polarization can be controlled by a set
of waveplates. In the circularly polarized basis {|R〉, |L〉}, the
action of a quarter-waveplate followed by a half-waveplate
can be described by the following unitary matrix:

C = 1√
2

(
e2i(α−β ) ie2iα

ie−2iα e−2i(α−β )

)
, (12)

where α and β are the angles of the fast axes with respect to
the horizontal axis.

A conditional shift in the OAM (i.e., in the spatial degree
of freedom) is implemented using a device called a q-plate
[95]. The latter is a thin plate made of a birefringent material
with a direction for the optical axis that is not uniform over the
device. The angle between the optical axis and the horizontal
axis of the device follows the relation γ = α0 + qφ, where α0

is the initial angle, q is the topological charge of the device,
and φ is the azimuthal angle on the device plane. The delay
introduced on the propagation by such arrangement of the
optical axis produces a modulation of the wave front, the
q-plate action, in the momentum representation, and can be
described by the following unitary operator [95]:

Q(k) =
⎛
⎝ cos δ

2 iei2α0 sin δ
2 eik

ie−i2α0 sin δ
2 e−ik cos δ

2

⎞
⎠, (13)

where k = 2qφ and δ ∈ [0, π ] is the q-plate tuning. The latter
is directly linked to the efficiency of the device in the manipu-
lation of the angular momentum of light; this parameter can be
electrically tuned to switch on (δ = π ) or switch off (δ = 0)
the device and, thus, control its action.

We realize an eight-step DTQW on a line, where each step
is composed of a q-plate and a set of a half-waveplate (HWP)
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(a)

(b) (c)
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(b) (c)
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FIG. 2. Experimental setup. (a) The quantum cellular automaton evolution is implemented through an eight-step discrete-time quantum
walk in the OAM of light. First of all, single-photon states are generated through spontaneous parametric down-conversion in a PPKTP
nonlinear crystal. After projecting the polarization of single photons on the horizontal one through a polarizing beam splitter (PBS), the
desired input state is produced via a spatial light modulator (SLM) and, after a spatial filtering performed with an iris diaphragm, is sent to the
DTQW. Each step of the latter consist of a coin operator, implemented by a quarter-waveplate (QWP) and a half-waveplate (HWP), and a shift
operator performed using a q-plate. Then, the polarization is traced out using a series of QWP, HWP, and PBS. The output-state probability
distribution is measured with a projective measurement executed via a further SLM followed by a single-mode fiber (SMF), the resulting
coupled signal is detected by an avalanche photodiode detector. (b) Mapping between the OAM space and the position space. In particular,
each position of the Dirac particle is identified with a different OAM eingenstate. For the latter, we report both the intensity and the phase
of the wave function as expressed in the Laguerre-Gaussian mode basis. (c) The time evolution of a free Dirac particle is simulated through
the DTQW platform using the orbital angular momentum of single photons. Here, a modification in the particle position is identified with a
variation of the OAM value.

and a quarter-waveplate (QWP). Then, the single step is given
by the composition:

U (k) = Q(k)C. (14)

The entire setup is enclosed between two spatial light mod-
ulators (SLMs) as shown in Fig. 2(a), a configuration that
has been already proved suitable for the implementation
of the DTQW dynamics [43–45]. The inputs of the setup
are triggered single-photon states produced via spontaneus
parametric down-conversion (SPDC) in a periodically poled
potassium titanyl phosphate (PPKTP) nonlinear crystal. These
are coupled into a single-mode fiber (SMF) and then sent to
the first SLM. The latter is used to modulate the spatial profile
of photons to obtain the desired initial state at the entrance of
the quantum walk. Therefore, the input states of the setup are
of the following factorized form:

|ψ〉in = 1√
2

(|R〉 + |L〉) ⊗
∑
x∈Z

g(x)|x〉, (15)

where g(x) ∈ R and
∑

x |g(x)|2 = 1.

A second SLM instead is employed in the measurement
stage along with a single-mode fiber to project the output
state onto the computational basis and extract the occupation
probability of each OAM mode [53,96–100]. Before doing
that, the polarization degree of freedom is traced out using
a series composed of a QWP, a HWP, and a polarizing beam
splitter (PBS). In this way, we are able to measure only the
OAM components of the walker state at the end of the DTQW.
In particular, the waveplates are used to project the output
states on both the two circular polarizations, and the infor-
mation associated with them is canceled out by summing the
photon counts collected in the two cases for each OAM value
measured with the SLM.

The discrete size of SLM pixels determines the modula-
tion efficiency of the device especially for high OAM values
[96,99], while the divergence of the OAM modes [44,53]
needs to be engineered and accounted for depending on the
number of steps. In particular, our setup gives us full con-
trol over OAM states |x〉 such that |x| � 5, and we choose
a wave packet which stays confined therein for the whole
evolution. Moreover, since the platform performs up to eight
evolution steps, it is convenient that the Zitterbewegung period
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Step 0

Step 8

5 4 3 2 1 0 1 2 3 4 5
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FIG. 3. Data analysis. Representation of the Gaussian fit performed on experimental data. The 3D function shown is obtained by fitting the
experimental data with the function in Eq. (18), where the assumed theoretical model is characterized by a Gaussian distribution that oscillates
around the initial position during the evolution. In side panels, the comparison between the experimental distribution and the fitted function
is reported for three different steps of the evolution (here 0 represents the input state). Although satisfactory similarities can be observed, the
difference between histograms and plotted curves increases with the step evolution and this is mainly due to experimental imperfections. The
reported errors on experimental data are due to the Poissonian statistics of the measured counts.

T = 2π/2ω0, see Eq. (11), be of the order of 4, so as to
observe two complete oscillations.

Let us consider the quantum walk step

U (k) = 1√
2

(
eik eik

−e−ik e−ik

)
, (16)

which can be experimentally implemented by choosing the
following parameters: δ = π , α0 = π/4, α = −π/4, and β =
π/4 in Eq. (14). One can show that the dispersion relation
ω(k) of U (k) is equivalent to that characterizing Eq. (4) for
m = n = √

2/2. We are then interested in those states that
are superpositions of positive- and negative-energy eigen-
states and that at the peak angular wave number k0 feature
the following: (i) zero group velocity ω′(k0) = ∂kω(k0) = 0,
(ii) angular frequency equal to π/4, and (iii) appreciable
Zitterbewegung amplitude given by |c+| = |c−| = 1/

√
2 and

| f (k0)| = 1 [see Eq. (11)]. We selected the initial state

|ψ〉in = 1√
2

(|R〉 + |L〉) ⊗
∑
x∈Z

Gx0,σ (x)|x〉, (17)

where Gx0,σ (x) is the truncated normal distribution between
−5 and 5, centered in x0 = 0, and with the standard deviation
σ = 3.0. For such a spatial distribution, the wave function
in momentum representation resembles a normal distribution
peaked at k0 = 0 and with the standard deviation 1/σ = 1/3.

This setup allows us to have precise control and reproduce
the Dirac evolution step-by-step by simply turning on the right
number of q-plates.

IV. RESULTS

Exploiting the DTQW dynamics implemented with the
setup, we are able to realize a photonic QCA that allows
us to experimentally study the Zitterbewegung effect of the
Dirac relativistic evolution in the space of the single-photon
OAM. To this aim, we use q-plates with the topological charge
q = 1/2 and select the angles of the waveplates in order to
reproduce the evolution operator reported in Eq. (16). Notably,
we realized a state-of-the-art platform able to reach eight steps
of the DQCA evolution for arbitrary initial states in dimension
11.

We simulated the oscillatory behavior of the position of a
one-dimensional relativistic particle encoding this degree of
freedom in the OAM of photons, thus making the relation
|x〉 = |m〉, where x is the position and m is the value of
the OAM. This encoding is explicitly reported in Fig. 2(b),
while a conceptual representation of the simulation approach
implemented in this work is shown in Fig. 2(c). We considered
as input a Gaussian state localized around the position |0〉,
generated using the first SLM in Fig. 2(a), and observed its
evolution step by step. In particular, for each step we turned on
the relative q-plate setting δ = π , traced out the information
stored in the polarization, and measured via the second SLM
and the SMF the walker-state distribution over the compu-
tational basis {|i〉}5

i=−5, opportunely taking into account the
efficiencies of the measurement holograms [96,99]. From the
measurements, we extracted the occupation probabilities of
each site and derived the evolution of the mean position (see
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(a) Ideal distribution
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0.20

(b) Experimental distribution

FIG. 4. Zitterbewegung dynamics. The plots show the output-state distribution over the OAM computational basis for each time step
considered; we indicate with 0 the initial input state. Panel (a) shows the evolution obtained following the ideal noiseless model of the quantum
walk, and in panel (b) experimental data are shown. Yellow points represent the behavior of the mean position during the steps of the evolution,
while the dashed line is obtained as the step-dependent mean values of the fitted Gaussian functions.

the Appendix for the measured distribution at each step and
the corresponding theoretical model). In particular, from a
theoretical prospective, we expect a Gaussian distribution that
oscillates around the position x = 0 during the evolution. The
oscillation of the Gaussian peak follows the sinusoidal expres-
sion in Eq. (11) with the frequency ω = 2ω(k0) = π/2 and
the amplitude A = |c+||c−|| f (k0)| = 0.5. Since, in the exper-
iment, we only had access to the portion of the distribution
between x = −5 and x = 5, the reference values for ω and A
were different. Therefore, at each step, we performed a fit over
the distributions in a truncated interval of the position space
spanned by x ∈ [−5, 5] with Gaussian functions whose mean
values oscillated along the evolution direction:

f (t, y) = e−(y−μ0−A cos (ωt+φ))2/(2σ 2 )

σ
√

2π
, (18)

where t represents the step of the DTQW, y the values of
probability distributions over the OAM basis, μ0 the mean of
the Gaussian distribution, and σ its standard deviation. This
fitting procedure was used to derive the oscillation parameters
for both theoretical and experimental distributions. The results
in the experimental case are shown in Fig. 3, where the 3D plot
reports the time evolution of the fitted Gaussian envelopes.

The complete experimental results are reported in Fig. 4
together with the theoretical ideal distributions. The yellow
dashed lines represent the oscillations of the mean values
of the fitted Gaussian functions. For the theoretical distri-
bution, the sinusoidal curve in Fig. 4(a) is characterized by
values equal to ω = 1.714 ± 0.017 and A = 0.695 ± 0.032.
Experimentally, we obtained an oscillation very similar to
the expected one with values that correspond to ω = 1.655 ±
0.009 and A = 0.615 ± 0.017, the measured behavior is re-
ported in [Fig. 4(b)]. From both numerical results and plots
shown in Fig. 4, it can be seen how the implemented
platform is capable of simulating the dynamics of a free

relativistic particle, reproducing its typical Zitterbewegung
trembling motion.

V. CONCLUSIONS

We showcase the photonic implementation of a quantum
cellular automaton able to simulate features typical of the
Dirac free-particle evolution. Our work makes a relevant step
forward in the exploration of experimental QCA, and espe-
cially of DQCA, in photonic platforms. The single-particle
sector of the DQCA is realized through the discrete-time
quantum walk dynamics performed exploiting the OAM of
single photons. In particular, the quantum walk platform is
composed of a cascade of eight q-plates interspaced by wave-
plates and placed between 2 SLMs. This setup allowed us
to have a high degree of control over the input state and
the capability to perform the eight steps of the automaton
evolution. The simulation power of the DQCA was used to
reproduce the Zitterbewegung, i.e., the trembling motion that
occurs during the free evolution of relativistic particles. These
effects are clearly reproduced in the reported results, in which
the particle position, encoded in the OAM value of single
photons, presents an oscillatory behavior with an amplitude
and a frequency in agreement with the theoretical predictions.
Moreover, these experimental results represent a proof of
principle demonstrating the possibility of employing photonic
platforms to implement DQCAs. The proposed experimental
protocol constitutes a first step towards the simulation of more
complex dynamics where position-dependent evolutions are
necessary, such as the Dirac particle evolution subject to ex-
ternal potential [16,101] and curved space-time [15,102,103].
On the other side, the potential of the implemented DQCA
can be extended to the multiparticle regimes, for instance,
by considering entangled photons in parallel quantum walks
[104]. Although the DTQW dynamics is a special case of
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FIG. 5. Step-by-step QCA evolution. OAM occupation probability measured at the output of the setup for different steps of the DTQW
dynamics. Above each histogram the relative step is indicated. The experimental data are reported in blue, while in red are reported the expected
behaviors from the theoretical noisy model of the experimental apparatus. The fidelity between the experimental and theoretical distributions
is reported under each histogram. Error bars are due to the Poissonian statistics of single-photon counting.

QCA evolution, the provided photonics tools are completely
general and thus can aim at the implementation of more
general multidimensional QCA in suitable experimental pho-
tonics platforms.
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APPENDIX: NOISY THEORETICAL MODEL
AND EXPERIMENTAL DATA

In this section, we present in more detail the experimen-
tal result of the QCA evolution together with the theoretical
model used to account for the experimental imperfections
present in the setup. These are mainly related to the nonuni-
tary efficiencies of the cascaded q-plates, errors in the coin
operators and the efficiencies of the holographic technique
in manipulating the OAM [96,99]. In this way, the DTQW
evolution is simulated by means of a theoretical model
whose parameters are the conversion efficiencies of the q-
plates, the offset of the waveplates and the efficiencies of
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the two SLMs. These parameters are optimized around the
attended values by simultaneously minimizing the square
difference between the theoretical evolution and the raw mea-
sured data for each step. All the experimental distributions,
measured at each step, are shown in Fig. 5, where the OAM

probability occupation, as expected from the noisy theoretical
model and the experimental unfolded one, is reported. The
similarity between the theoretical and experimental distribu-
tions is quantified by the fidelity value reported under each
histogram.
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