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Mechanical optimization of skateboard pumping
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Skateboarders perform a reciprocating motion on a curved ramp, called pumping, by moving their bodies up
and down perpendicular to the ramp surface. We propose a simple mechanical model for this pumping motion
and solve the equation of motion explicitly in angular coordinates. This allows us to derive an optimal control
strategy to maximize amplitude by dynamically adjusting the center of mass of the skateboarder. This optimal
strategy is compared to experimental results for the motion of a skilled and an unskilled skateboarder in a
half-pipe, validating that a skilled skateboarder follows the optimal control strategy more closely.
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I. INTRODUCTION

Gaining popularity as an action sport in the early sixties,
skateboarding grew into a social phenomenon that was even
included as an official discipline in the 2021 Olympic Games
[1]. From a scientific point of view, the mechanics of skate-
boarding have served as a versatile playground in classical
dynamics and control theory [2,3]. Recently, skateboarding
has also become popular as an appealing model problem from
dynamic control in robotics [4–6]. Mimicking the delicate
motion of human bodies during various dynamically involved
actions, state-of-the-art machine learning techniques are ap-
plied to capture performance data [7]. We also refer to [8–10]
for various in-depth considerations on the mechanics of the
dynamics of skateboarding.

In this paper, we propose a different, bottom-up ap-
proach towards the optimal control of skateboarding by
focusing on a particular confined motion with few degrees
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of freedom as a test case: pumping on a ramp. Despite
its utmost simplicity, our minimal model is consistent with
experimental data we obtained from comparing the per-
formance of a skilled and an unskilled skateboarder. This
approach not only avoids the computational complexity that
goes along with high-dimensional, multi-degree-of-freedom
models but is also in tune with reduced-order modeling and
nonlinear normal modes [11]. Indeed, the theory of nonlin-
ear normal modes [12], i.e., the reduction to few effective
degrees of freedom, is highly relevant in control problems
[13] for mechanical systems. Apart from the appeal of a
completely soluble, experimentally consistent example, our
insights might prove useful as a basic test case for robotics
as well [14].

II. MODELLING SKATEBOARD PUMPING

We aim to model the reciprocating, pumping motion of
a skateboarder in the half-pipe. To this end, we propose a
simple mechanical skateboarder model on a cylindrical ramp
by analogy to the pumping motion on a swing, see Fig. 1,
which is itself classically modeled as a variable-length pendu-
lum [15,16]. The results obtained for the cylindrical ramp are
then extended to the optimal control motion in the half-pipe by
interpolating along the flat part of the ramp. The equation of
motion for a frictionless variable-length pendulum takes the
form [17]

(L − h)θ̈ − 2ḣθ̇ + g sin θ = 0, (1)
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FIG. 1. Analogy of pumping motions. (a) Pumping on a swing.
(b) The variable-length pendulum. (c) Pumping of a skateboarder on
a cylindrical ramp.

where θ is the angle relative to a vertical axis, L is the radius of
the cylindrical ramp, h is the height of the center of mass, and
g sin θ is the gravitational restoring force. A skateboarder con-
trols his/her center of mass with respect to height, h = h(t ),
perpendicular to the surface of the ramp. For more details on
the dynamics of swinging, we refer to recent papers on the
pumping of a swing taking into account the detailed aspects
of swinging specific to human body movement [18–21]. The
mechanism of height increase and gain in rotational motion
is related to the conservation of angular momentum in the ab-
sence of friction. We therefore regard the height as an external
control function to be optimised for maximal amplitude gain
under certain constraints. Firstly, we assume that the height
is constrained between a minimal bending and a maximal
standing posture, H0 � h � H1. Secondly, we assume that the
energy input through the muscular activity of the human or
the control force of a skateboarding robot is limited, leading
to a constraint in the acceleration of the height |ḧ| � g.

We consider Eq. (1) together with kinetic friction by as-
suming that the wheels of the skateboard kinetic friction μN at
the surface of the ramp, where μ is a material-specific friction
coefficient and N is the normal force

N = m(gcos θ + ḧ + (L − h)θ̇2). (2)

The force term (2) results from balancing the force component
normal to the ramp with gravity in the radial direction since
m(L − h)θ̇2 represents the centrifugal force.

Starting from an initial angle θ0 and zero initial velocity
θ̇0 = 0, the height h is adjusted during a roll from the ini-
tial angle to the final angle θ∗ at which all kinetic energy
is consumed and the amplitude is maximal. Different height
variations then lead to different maximal amplitudes θ∗. We

are interested in an optimal control function ĥ = ĥ(t ) such that

ĥ(t ) = arg max
{h(t )}

θ∗[h(t )], (3)

subject to the constraint H0 � h(t ) � H1 and |ḧ(t )| � g for all
times. Problem (3) of controlling a variable-length pendulum
under different constraints and damping mechanics has been
considered in, e.g., [22,23]. To tackle the optimization prob-
lem (3) directly, we assume that the height is a monotonic
function of time for a one-directional roll along the cylindrical
ramp. Since the angle θ (t ) along one roll is a monotonic
function of time as well, we may rewrite the governing equa-
tion for the radius r(θ ) = L − h(t ) as a function of the angle,
which will simplify the notation in the following. This allows
us to derive an equation for the kinetic energy with respect to
angular rotation Ekin = θ̇2/2 as a function of θ .

Writing the kinetic energy and the radius as functions of
the angle—the original dynamical variable—is reminiscent of
the modern solution of the brachistochrome problem [24] and
similar problems in the calculus of variations, thus leading
to E ′

kin ≡ dEkin/dθ = θ̈ . By transforming the time deriva-
tive ḣ into the spatial derivative as ḣ = −ṙ = −r′θ̇ , where
r′ ≡ dr/dθ , the second-order differential equation in time (1)
can be transformed into an analytically solvable first-order
differential equation in angular coordinates,

rE ′
kin + 4r′Ekin + g sin θ = 0. (4)

Since the acceleration r̈ can be transformed as r̈ =
d/dt (r′θ̇ ) = θ̈r′ + θ̇2r′′, we obtain a first-order differential
equation for the kinetic energy Ekin with respect to θ for (2) as
well,

rE ′
kin + 4r′Ekin + g sin θ

+ μ(gcos θ − r′E ′
kin + 2(r − r′′)Ekin ) = 0. (5)

The linear first-order differential Eq. (5) can be integrated
easily to

Ekin(θ ) = −g
∫ θ

θ0

sin u + μ cos u

r(u) − μr′(u)
exp

(∫ θ

u
f (s)ds

)
du,

f (s) = −4r′(s) + 2μ(r(s) − r′′(s))
r(s) − μr′(s)

. (6)

We remark that the influence of an air drag or an inertial
drag proportional to the square of the velocity Fair = CD|v|v
can be treated analogously to kinetic friction and an explicit
formula similar to (6) may be derived by explicitly solving
a linear differential equation for the angular kinetic energy.
The numerical results for the optimal control strategy, how-
ever, show little deviation as compared to pure kinetic friction
and we focus on formula (6) henceforth. At the maximal
amplitude θ∗ along one monotonic roll, all kinetic energy is
consumed and we have that Ekin(θ∗) = 0. Setting μ = 0 in
(6) we immediately see that the optimal control strategy in the
frictionless case is given by

r̂frictionless(θ ) =
{

L − H0, (θ0 � θ � 0),

L − H1, (0 < θ ),
(7)

where we have assumed that the skateboarder starts his/her
roll on the left side of the ramp (θ0 < 0). The maximal angle
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θ∗
frictionless achieved by this optimal control can be calculated

explicitly as well and is given by

cos θ∗
frictionless = 1 −

(
L − H0

L − H1

)3

(1 − cos θ0). (8)

Solutions (7) and (8) will serve as a benchmark for the full,
physically meaningful optimal control with constraints.

III. OPTIMIZATION PROBLEM AND NUMERICAL
SOLUTION

As potential pumping strategies, we examine a two-
parameter family of logistic functions interpolating between
maximal and minimal height,

r(θ ) = L − H0 − H1 − H0

1 + e−β(θ−δ)
, (9)

for the pumping momentum β and the timing parameter δ.
For the numerical simulation, we choose a friction coeffi-
cient of μ = 0.02, which is consistent with the experimentally
obtained coefficient. We compare the optimal pumping strate-
gies for the cylindrical parts of the half-pipe in Fig. 2 for
the frictionless case, unbounded acceleration, acceleration
bounded by |ḧ| � g, and unsuccessful pumping motions,
where the achieved maximal angle θ∗ is smaller than the initial
amplitude |θ0|.

We continue with the analysis of the full half-pipe, start-
ing with an initial position of the skateboarder at the left
cylindrical part of the ramp (θ0 < 0). To enter the flat zone
linking the two cylindrical parts with the highest possible
speed, we seek optimal parameters β and δ from (9) such that
Ekin is maximal at θ = 0 (entering the flat zone). During the
motion in the flat zone, the height h is decreased to H0 con-
tinuously until leaving the flat zone again. Upon entering the
right cylindrical part, we search for another set of parameters
in (9) so that the final angle of a skateboarder θ∗ is maximized.
Similar to the cylindrical ramp, we note that in the frictionless
case, the maximal amplitude can be calculated explicitly to

cos θ∗ = 1 −
(

L − H0

L − H1

)5

(1 − cos θ0). (10)

We remark that the maximal angle is larger than the one of
the cylindrical ramp (8) since the skateboarder performed
two pumping cycles in the half-pipe. Figure 3 compares
the optimal pumping strategies in the half-pipe for bounded
acceleration (thick-blue line), the frictionless case (solid-
black line), the case with friction but acceleration unbounded
(dashed-green line), and two examples of unsuccessful pump-
ing (brown- and orange-dotted lines) where the achieved
maximal angle is smaller than the initial amplitude.

Here, we have chosen a friction coefficient of μ = 0.02
and an initial angle of θ0 = −1.3 to be consistent with the
experimental conditions described below.

IV. EXPERIMENTAL VALIDATION

To experimentally validate the optimal control strategy, we
requested two skateboarders of different skill levels to gain
as much height (or angle achieved) as possible by using their
most efficient pumping action. The skilled skateboarder has

FIG. 2. Pumping on a cylindrical ramp in the presence of kinetic
friction. (a) The attained angle θ∗ plotted against the pumping timing
δ and pumping momentum β. (b) The optimal height h and its accel-
eration ḧ in the frictionless case (solid-black line); unbounded control
in the presence of kinetic friction (green-dashed line); and the opti-
mal solution under the acceleration bounded by |ḧ| � g (thick-blue
line). The optimal strategies for a cylindrical ramp are compared with
unsuccessful controls where an achieved angle θ∗ is smaller than
the initial angle |θ0| (brown- and orange-dotted lines). Parameters:
θ0 = −π/3, L = 3, H0 = 0.8, H1 = 0.9, and μ = 0.02.

eleven years of experience, while the unskilled skateboarder
has two years of experience. For each trial, they started from a
position of rest and stopped their pumping when they reached
the top of the ramp. The subject’s center of mass was esti-
mated automatically by the motion-capture software Xsens.
The motion-capture (MOCAP) of the skateboarder was ac-
complished by the Xsens wireless system using 17 inertial
measurement units (IMUs) placed on various segments of the
entire body (feet, lower legs, upper legs, hands, fore arms, up-
per arms, shoulders, pelvis, sternum, and head). The sampling
rate was 60 Hz. The spatial localization of the Xsens MOCAP
is facilitated by utilizing four Vive IR Base stations and five
trackers located on the lower legs, forearms, and pelvis. The
Xsens MVN Analyze software was used to integrate Xsens
and Vive tracking to produce full body kinematic data includ-
ing joint angles, segment orientations, and center of mass as
well as position. The acceleration in the sagittal plane {ax, ay}
was translated into the height acceleration measured relative
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FIG. 3. (a) Simulations for the optimal pumping motion of a skateboarder on a half-pipe consisting of two cylindrical ramps connected by
a flat zone in between. The radius of curvature of the cylindrical parts is L = 1.9 m and the width of the flat zone is D = 3.2 m, corresponding
to the experimental conditions. (b) Height and acceleration for different pumping strategies: optimal control for the frictionless case (black
line), optimal unbounded control in the presence of kinetic friction (dashed green line), and optimal control under the acceleration bounded by
|ḧ| � g (blue thick line). The optimal controls are compared with unsuccessful pumping (brown and orange dotted lines), where the maximal
angle achieved is less than the initial amplitude. Parameters: θ0 = −1.3, H0 = 0.8, H1 = 0.9, and μ = 0.02.

to the ramp surface ḧ using information about the center of
mass of the subjects.

Figure 4(a) shows snapshots of the skilled and unskilled
skateboarders performing reciprocating during the experi-
ment. Figures 4(b)–4(d) show their horizontal velocity vx and
vertical velocity vy as well as the acceleration ḧ. Each black-
solid curve represents a left-to-right motion segmented from
the back-and-forth motion.

Firstly, the friction coefficient μ is estimated from the
decrease in horizontal velocity in Fig. 4(b). With an average
speed of v ≈ 3 m/s, the skateboarder took �t ≈ 1 s to pass
the flat zone of 3 m. The velocity decreased by �v ≈ 0.2 m/s
during this passage, implying that the change in velocity
�v/�t = μg or μ ≈ 0.02. We also used this friction coef-
ficient as an input parameter for the theoretical estimation
described above.

Secondly, we have compared the estimated accelera-
tion with the optimal acceleration obtained by our theory
[Fig. 3(b)]. The skilled skateboarder had a smaller root-mean-
square error (3.8 m/s2) with the theoretical optimal solution
than the unskilled skateboarder (4.3 m/s2). This indicates
that our theoretical-numerical optimal pumping strategy is

followed more closely by the skilled skateboarder as com-
pared to the unskilled one. We emphasize that our theory
is suggesting a more efficient motion even for the skilled
skateboarder.

V. CONCLUSIONS

We conclude with a summary of the results. We modeled
the pumping motion of a skateboarder in a half-pipe as a
variable-length pendulum with kinetic friction in the cylin-
drical part of the ramp surface and solved the equation of
motion explicitly for the kinetic energy in angular coordinates.
This allows us to formulate an optimization problem for the
maximal angle in one roll. The results were compared to an
experimental study in which the pumping strategies of skilled
and unskilled skateboarders trying to gain height were com-
pared. The skilled skateboarder showed less deviation from
the theoretically predicted optimal control strategy.

We have shown that a simple mechanical model can ac-
curately represent specific aspects of the highly complex and
delicate motion of skateboarding and may even suggest po-
tential improvements in an athlete’s performance. This type
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FIG. 4. (a) Pumping on a half pipe performed by skilled and unskilled skateboarders. (b) and (c) The horizontal and vertical velocities of
the center of mass. Each line represents a left-to-right motion segmented from the back-and-forth motion. (d) The acceleration of the height
from the ramp surface, ḧ. The magenta line shows the theoretical-numerical prediction of the optimal control strategy.

of kinematic consideration on a simplified low-degree-of-
freedom model could also be used to investigate improved
motions in other sports, such as ski jumping. The presented
model might be extended to include other degrees of freedom,
such as lateral motion or rigid body properties.
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