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An important step towards a comprehensive understanding of far-from-equilibrium dynamics of quantum
many-body systems is the identification of unifying features that are independent of microscopic details of the
system. We experimentally observe such robust features in the magnetization relaxation dynamics of disordered
Heisenberg XX, XXZ, and Ising Hamiltonians. We realize these Heisenberg spin models with tunable anisotropy
parameter and power-law interactions in an ensemble of Rydberg atoms by encoding the spin in suitable Rydberg
state combinations. We consistently observe stretched-exponential relaxation of magnetization for all considered
spin models, collapsing onto a single curve after appropriate rescaling of time. This robust short-time relaxation
behavior is explained by a perturbative treatment that exploits the strong disorder in pairwise couplings, which
leads to a description in terms of approximately independent pairs of spins. In numerical simulations of small
systems, we show that these pairs of spins constitute approximate local integrals of motion, which remain at least
partially conserved on a timescale exceeding the duration of the relaxation dynamics of the magnetization.

DOI: 10.1103/PhysRevResearch.6.033131

I. INTRODUCTION

Far-from-equilibrium dynamics of isolated quantum sys-
tems after a quench displays a wide range of emergent
phenomena, such as dynamical phase transitions [1,2], quan-
tum many-body scars [3–5], and many-body localization
(MBL) [6–10]. The time evolution of these systems generally
depends strongly on the type of interactions and the distri-
bution of interaction strengths between the particles [11]. A
notable exception are systems showing (metastable) prether-
mal phases, where relaxation dynamics can show universal
behavior, i.e., the dynamics become independent of details of
the microscopic model [12–17].

When considering the role of disorder for the dynamics
of quantum many-body systems, a striking characteristic of
the dynamics is that they can be nonergodic [18], which is
found for example in spin glasses where relaxation becomes
extremely slow [19] or in MBL systems where the dynamics
might be completely frozen [20]. Anomalously slow relax-
ation was also observed in disordered quantum spin systems
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that feature subexponential dynamics [21–25]. Remarkably,
in all these different classical and quantum systems, in the
strong disorder regime, the subexponential dynamics are well
described by the same functional form, the stretched exponen-
tial law. This raises the question of the origin of this robust
behavior and whether it is affected by the modification of
symmetry properties of the Hamiltonian.

In classical systems, the answer to these questions is
provided by the seminal work of Klafter and Shlesinger,
who found that a scale-invariant distribution of timescales is
the common underlying mathematical structure that induces
stretched-exponential relaxation [26]. Indeed, the authors pro-
posed an intuitive understanding by considering the parallel
channels model where an ensemble of initially fully polarized
spins are coupled to an external bath at a different strength
sampled from a scale-invariant distribution. Due to the cou-
pling to the bath, each spin decays exponentially on a different
timescale. Thus, the global polarization of the system yields a
stretched exponential form resulting from the averaging over
all the spins.

For isolated quantum systems, where the dynamics are
unitary, there is no notion of decay due to a bath. However, in
a disordered system where the spins are randomly positioned
in space, the interaction strengths between the spins can be
distributed scale invariantly. For example, it was shown an-
alytically for the dynamics of the quantum Ising model that
this scale-invariant distribution of coupling strengths induces
a stretched exponential relaxation [27]. The derivation of the
analytic solution is only possible because the Ising model
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FIG. 1. Rydberg quantum simulator platform. (a) Illustration of out-of-equilibrium disordered spin systems relaxing with respect to
different Hamiltonians. (b) Illustration of the experimental realization of a Heisenberg XX Hamiltonian by coupling a Rydberg |nS〉 state
to a |nP〉 state, possessing opposite parity. The interaction is of dipolar nature and falls off as r−3

i j . Coupling two Rydberg states with the same
parity results in a Heisenberg XXZ Hamiltonian for state combinations |nS〉 and |(n + 1)S〉 (c), while state combinations |nS〉 and |(n + 3)S〉
results in a Ising Hamiltonian (d). In the two latter cases, the interactions are of van der Waals nature with a r−6

i j dependence.

features an extensive number of conserved quantities, i.e., it is
integrable. For nonintegrable models, where no analytic solu-
tion exists, generic mechanisms for describing the relaxation
dynamics after a quantum quench remain largely unknown.
Investigating the exact time evolution numerically is chal-
lenging due to the exponential growth of the Hilbert space
with system size in quantum many-body systems. Semiclas-
sical simulations, neglecting quantum effects beyond initial
quantum fluctuations, suggest that nonintegrable Heisenberg
XYZ Hamiltonians present out-of-equilibrium dynamics that
follows a stretched exponential law like the Ising model
independent of their symmetry [28]. An alternative route
is implementing the desired unitary time evolution experi-
mentally using quantum simulation experiments with tunable
parameters, which is the approach we pursue here [29–32].

In this paper, we use different combinations of states of
highly excited Rydberg atoms to realize different types of spin
Hamiltonians thus making use of the full versatility of this
platform [9,21,33–37]. Rydberg atoms are ideally suited to
study unitary quantum dynamics because the timescales of
the interacting dynamics vastly exceed those of the typical
decoherence mechanisms. We observe the relaxation dynam-
ics of three different Heisenberg Hamiltonians: the integrable
Ising model and the nonintegrable XX and XXZ models with
power-law interactions and positional disorder [see Fig. 1(a)].
For all models, we observe the same characteristic decay
of magnetization, well described by a stretched exponential
function, which causes the data to collapse onto a single curve
after the appropriate rescaling of time. We show that this

robust behavior is directly linked to the presence of strong
disorder, which allows deriving an effective, integrable model
consisting of pairs of spins.

II. HEISENBERG SPIN SYSTEMS ON A RYDBERG-ATOM
QUANTUM SIMULATOR

We consider an interacting spin-1/2 system described by
the following Heisenberg Hamiltonian (h̄ = 1)

Ĥ =
∑
i< j

(
J⊥

i j /2(ŝi
+ŝ j

− + ŝi
−ŝ j

+) + J‖
i j ŝ

i
zŝ

j
z

)
. (1)

Here, ŝi
± = ŝi

x ± iŝi
y, where ŝi

α (α ∈ x, y, z) are the spin-1/2

operator of spin i and J⊥,‖
i j = C⊥,‖

a /ra. These types of Heisen-
berg XXZ Hamiltonians with disordered couplings feature
a rich phenomenology of different phases and relaxation
behaviors [38]. The Ising case, where J⊥

i j = 0, features
additional symmetries under local spin rotations ŝi

z that
commute with the Hamiltonian, which make the Ising model
integrable. For J⊥

i j �= 0, ŝi
z are no longer conserved and the

Hamiltonian is nonintegrable. We provide a comprehensive
description of how to engineer this Hamiltonian with different
combinations of Rydberg states in the Appendix [39,40].
Figure 1 illustrates the state combinations that can be used
to realize the Heisenberg XX, XXZ, and Ising models. For
the rest of this paper, the three spin models are realized
by state combinations |61S〉 − |61P〉 (XX, J‖/J⊥ = 0,
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FIG. 2. Relaxation dynamics of disordered quantum spin systems. Magnetization dynamics as a function of time for the Ising model (a),
the XX model (b), and the XXZ model (c). The dashed lines stem from DTWA simulations. (d) Magnetization dynamics of the three models as
a function of the time rescaled by the typical interaction strength 2π |J⊥

median − J‖
median| = 2.3 MHz (Ising model), 21 MHz (XX model), 7.6 MHz

(XXZ model). (Inset) Data points of (c) plotted on as loglog vs log. The dashed line is a guide to the eye, indicating a stretched exponential
relaxation with β = 0.5. The error bars denote the standard error of the mean.

a = 3), |61S〉 − |62S〉 (XXZ, J‖/J⊥ = −0.7, a = 6), and
|61S〉 − |64S〉 (Ising, J‖/J⊥ = −400, a = 6).

III. EXPERIMENTAL OBSERVATION OF MODEL
INDEPENDENT RELAXATION DYNAMICS

The experiment starts with trapping rubidium-87 atoms
loaded in a crossed dipole trap at a temperature of 20 µK
(see Appendix for experimental details). The atoms are ex-
cited from the ground |g〉 = |5S1/2, F = 2, mF = 2〉 to the
Rydberg state |61S1/2, mj = 0.5〉 by a two-photon transition
with red (780 nm) and blue (480 nm) lasers that are de-
tuned by 2π × 98 MHz from the intermediate state |e〉 =
|5P3/2, F = 3, mF = 3〉. For this state, the Rydberg lifetime
of 100 µs exceeds the duration of the spin experiment of 30 µs.
The excitation process leads to a three-dimensional cloud of
N ≈ 80 − 250 Rydberg atoms that are distributed randomly.
The van der Waals interaction during the excitation process
imposes a minimal distance of rbl ≈ 10 µm between the spins
(Rydberg blockade effect). The state |61S1/2, mj = 0.5〉 is the
|↓〉 state of all three different spin systems, the main difference
is the second Rydberg states that is addressed by choos-
ing proper microwave coupling using an AWG setup (see
Appendix for details).

After having excited the ground state atoms to the down
spin state, we implement a Ramsey protocol in our Rydberg
experiment. To initialize the dynamics a first π/2-microwave

pulse is performed, which sets the whole system is the state
|→〉⊗N = 1/

√
2(|↑〉 + |↓〉)⊗N and we let the system evolve

over 30 µs. A second π/2 pulse at a different readout phase
followed by optical de-excitation and field ionization allows
a tomographic measurement of the x magnetization 〈Ŝx〉 =∑

i 〈ŝi
x〉 [21].

The resulting relaxation dynamics of the Ising, Heisen-
berg XX, and XXZ models are shown in Figs. 2(a)–2(c).
At early times, the magnetization seems to be almost per-
fectly conserved at 〈Ŝx〉 = 0.5 before the relaxation begins.
This effect is attributed to the Rydberg blockade that induces
a maximal interaction strength that determines the system’s
fastest timescale. For each model, the system relaxes to
zero magnetization, which can be understood by consider-
ing symmetry arguments: Indeed, the magnetization can be
rewritten using the commutator relation for Pauli matrices
〈Ŝx〉 = −i〈[Ŝy, Ŝz]〉. The latter term vanishes for each eigen-
state |φ〉 of the XXZ Hamiltonian because each eigenstate
is also an eigenstate of Ŝz|φ〉 = ∑

i ŝ(i)
z |φ〉 = Sz|φ〉 due to the

global U(1) symmetry leading to 〈[Ŝy, Ŝz]〉 = Sz〈[Ŝy, 1]〉 = 0.
The timescale of the dynamics occurring within less than
10 µs is comparable with the typical interaction strengths in
the megahertz regime depending on the realized Heisenberg
model (details on the distribution of interaction timescales can
be found in the Appendix).

To compare the relaxation curves to numerical predictions,
the spatial distribution of Rydberg spin positions needs to
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be modeled realistically. We use a hard-sphere model where
each Rydberg excitation is described by a superatom [41]
with a given blockade radius and effective Rabi frequency
[21]. For more details on the parameters of the models, see
the Appendix. We simulate the exact time-evolution of the
experiment using the discrete truncated Wigner approxima-
tion (DTWA) [42]. DTWA simulations agree well with the
experimental data as shown in Figs. 2(a)–2(c). The small
deviation between simulations and experiments can be mostly
attributed to an inaccuracy of the atom distribution obtained
from the simplified excitation model (see Appendix).

The dynamics under the three different spin model in
Figs. 2(a)–2(c) look strikingly similar in a log-linear plot.
Indeed, by rescaling time with the characteristic timescale of
each system given by |J⊥

median − J‖
median|, all relaxation curves

coincide within the experimental errors. Here,

J⊥,‖
median = median j max

i
|J⊥,‖

i j | (2)

is the median of the nearest neighbor interaction strengths.
This choice of typical interaction timescale is motivated by the
oscillation frequency of a single pair of interacting spins gov-
erned by (1), which will be further discussed in the following
section. The striking collapse allows us to infer the func-
tional form of the relaxation dynamics of the nonintegrable
models: For the Ising model, it is known that the relaxation
follows exactly the stretched exponential law e−(t/τ )β [27]
with stretching exponent β and timescale τ . The logarithm
of the stretched exponential law is a power law. Plotted on
a double logarithmic scale, this power law becomes a linear
function [dashed line in the inset of Fig. 2(d)]. In this repre-
sentation, the rescaled experimental data also show a linear
behavior. This confirms the hypothesis that the stretched ex-
ponential law is the unifying description of the magnetization
relaxation for the integrable quantum Ising model as well as
the nonintegrable XX and XXZ Hamiltonians in the strongly
disordered regime. We note that the dynamics are only robust
with respect to a parameter of the microscopic model, the
anisotropy J‖/J⊥, whereas the macroscopic geometry and
also the dimension of the cloud may lead to different dynamics
(see Appendix). In addition, we also measured the relax-
ation dynamics for various initial states (for one Hamiltonian)
possessing different magnetization and again find similar re-
laxation dynamics at late times (see Appendix E).

IV. APPROXIMATE DESCRIPTION THROUGH
STRONGLY INTERACTING PAIRS

In order to understand the regime where we have observed
robust relaxation dynamics, we aim for a simplified model
that includes only the relevant timescales of the system. To
identify these, we exploit the strongly disordered nature of the
system by adopting a perturbative approach in the spirit of
the strong disorder renormalization group (SDRG) where the
strongest coupling is integrated out iteratively [43–46].

In our model, the strongest coupled spins define a pair of
spins. Crucially, the coupling within the pair will be much
larger than all other couplings affecting the pair. This allows
one to treat the coupling between this pair and the rest of the
system perturbatively. To zeroth order, this pair of spins just

decouples from the system and evolves independently. This
elimination step, where we remove the strongest coupling, can
be repeated within the rest of the system. For our initial state,
each individual pair undergoes coherent dynamics between
the fully polarized state in plus and minus x direction [see
Fig. 3(a)] [47]. The resulting oscillation of the magnetiza-
tion [shown in Fig. 3(b)] is independent of the specific XXZ
Hamiltonian. Only the frequency, given by J⊥

i j − J‖
i j , differs

depending on the Ising and exchange interaction strengths.
This independence is at the origin of the observed model
independence of relaxation dynamics.

With this model in hand, we can compute the time evo-
lution of the magnetization by a simple average of cosine
oscillations as shown by the grey dash-dotted lines (pair,
noninteracting) in Figs. 3(c)–3(e). The resulting relaxation
dynamics show good agreement with the experimental data.
However, especially for the Ising and XXZ model, this model
underestimates the timescales of the dynamics. This is some-
what expected, considering that the pair couplings found by
iterative elimination are, on average, smaller than the nearest
neighbor couplings.

Taking the perturbative treatment to next order, one finds
an effective Ising-like coupling between pairs, as derived re-
cently in the Appendix of [48]. The effective Hamiltonian
governing the dynamics was found to be

Ĥeff ≈
∑
〈i, j〉

(
J⊥

i j /2(ŝi
+ŝ j

− + ŝi
−ŝ j

+) + J‖
i j ŝ

i
z ŝ

j
z

)
.

+
∑

〈i, j〉,〈k,l〉
Jeff

i jkl ŝ
(i)( j)
z ŝ(k)(l )

z (3)

Jeff
i jkl = J‖

ik + J‖
il + J‖

jk + J‖
jl (4)

where 〈i, j〉 denotes the summation over paired spins i and j
and 2ŝ(i)( j)

z = ŝi
z + ŝ j

z .
Fortunately, this model is integrable and allows for deriva-

tion of an analytical solution for the evolution of 〈Ŝx(t )〉 (see
Appendix F), which reads

〈
Ŝpair

x

〉
(t ) = 1

N

∑
〈i, j〉

cos

(
1

2
(J⊥

i j − J‖
i j )t

) ∏
〈k,l〉

cos2

(
1

8
Jeff

i jkl t

)
.

(5)

The first factor in each term originates from the pair dynamic
to zeroth order, as described previously. The other factors are
reminiscent of the Emch-Radin solution for the Ising model
and stem from the effective Ising interaction among the pairs.
This effective Ising model of pairs captures the overall demag-
netization dynamics remarkably well for all observed times
[see Figs. 3(c)–3(e)], yielding very similar (and in the case of
XXZ, even better) results compared to dTWA.

From the analytical form of the time evolution, Eq. (5),
we find that many different oscillation frequencies contribute
to each spin’s magnetization dynamics. Most of these
frequencies are very small, however, and do not contribute
to the early-time dynamics. Thus, a reasonable ansatz for
rescaling to make the dynamics collapse is to consider
only the fastest frequency for each spin. Due to the highly
disordered nature of our system, this strongest coupling will
essentially always correspond to the closest neighboring spin.
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FIG. 3. Effective description by localized pairs. (a) Illustration of
the oscillation of a single pair under an arbitrary XXZ Hamiltonian.
A fully polarized state |→→〉 (left) evolves via the maximally en-
tangled Bell state 1/

√
2(|→→〉 + |←←〉) (top) to the state |←←〉

(right). Then, it returns to the origin via the other Bell state
1/

√
2(|→→〉 − |←←〉) (bottom). (b) Oscillation of the magneti-

zation for a single pair initialized in |→→〉. [(c)–(e)] Comparison
of the relaxation dynamics obtained by the pair approximation
with/without effective Ising terms (solid black line/grey dash-dotted

This explains the rescaling found from the experimental data
with mediani max j |J⊥

i j − J‖
i j |.

V. SEPARATION OF TIMESCALES IN SPIN DYNAMICS

In the previous section, we revealed that the relaxation
dynamics of a single-body observable is well captured by an
ensemble of pairs with Ising-like interactions. This simple
description in terms of pairs provides an integrable effec-
tive Hamiltonian, which is valid not only at early times but
agrees surprisingly well with the data over the entire relax-
ation process, which lasts for over three decades in time.
In the following section, we will more quantitatively ad-
dress the question of whether the magnetization of each pair
is conserved by evaluating the pair autocorrelator given by
〈Ŝpair

z (t )Ŝpair
z 〉, where Ŝpair

z = ŝi
z + ŝ j

z . If the pair picture is per-
fect or if the system is an Ising model, this quantity stays
〈Ŝpair

z (t )Ŝpair
z 〉 = 1. On the other hand, if the correlations in

the system are fully decohered, the autocorrelator assumes its
minimal value of 〈Ŝpair

z (t )Ŝpair
z 〉 = 2

N for a system of size N due
to symmetry constraints.

Our numerics presented in Fig. 4 for N = 16 spins in
d = 1 with interaction exponent α = 2 reveals three important
points. Firstly, at t |J‖

median − J⊥
median| ≈ 0.2 the global mag-

netization 〈Ŝx〉 has decayed almost by half, while the pairs’
magnetization autocorrelators are still close to 1. This justifies
our simplistic pair picture and highlights the regime of univer-
sal dynamics. Secondly, at intermediate times up to 102, the
global magnetization relaxes fully to zero while the autocorre-
lator still features slow dynamics. This illustrates the existence
of two timescales. Observing two distinct timescales shows
that the system has not yet reached thermal equilibrium once
the magnetization has relaxed to zero [17,22] but rather hints
at prethermal behavior [12,14,16,49]. This generally means
that a system does not directly relax to its “true” thermal state,
but instead reaches a prethermal state. This is still a thermal
state but with respect to a different, prethermal Hamiltonian,
which in our case only contains mostly Ising-like interactions
among pairs. At very late times, this prethermal description
ceases to be a reliable description, but even in the infinite
time limit (derived by the diagonal ensemble and indicated
by arrows in Fig. 4), the pair autocorrelator remains at ≈1/2,
which is significantly above the lower limit of 2

N = 1/8. This
indicates that our integrable pair model is still a reasonable
description of the system even at late times.

VI. CONCLUSION

Our paper demonstrates the ability of Rydberg atom
quantum simulators to synthesize a variety of many-body
Hamiltonians on a single experimental platform. By choosing
the appropriate state combination, we realized XX, XXZ, and
for the first time, a quantum Ising model within the Rydberg
manifold. This versatility of the platform has enabled us to

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
line) and with DTWA (dotted line) and the experimental data of
Fig. 2 for Ising (c), XX (d), and XXZ model (e).
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FIG. 4. Dynamics of the pair magnetization autocorrelator. Nu-
merical simulation of N = 16 spins in d = 1 with interaction
exponent a = 2 and a mean interspin distance a0 = 20rb. Line width
shows statistical uncertainty from disorder averaging.

directly study and compare the relaxation dynamics of three
different quantum spin systems far from equilibrium.

The central finding of this study is the robustness of the
functional form of the relaxation curves with respect to pa-
rameter changes in the microscopic spin model, even across
models featuring different symmetries, and the choice of
initial state (cf. Appendix E). This discovery raises a funda-
mental question about the universality of relaxation dynamics
in spatially disordered spin systems. To address this question
comprehensively, we presented an approximate description
of the system based on pairs of spins, exhibiting excellent
agreement with both numerical simulations and experimental
data. Moreover, this effective model is integrable and thus
features an extensive number of conserved quantities allowing
for an exact solution.

To assess the quality of the effective model, we studied
the decay of these effectively conserved quantities in small
systems via exact methods. We found them to decay on a
much slower timescale, which might indicate that the system
behaves prethermaly: On the early timescale, the effective pair
model to lowest order holds, and thus the relaxation appears
universal.

The observed robustness hinges on a number of system
properties: Firstly, universal relaxation is known to hold only
in the strong disorder regime [21]. Secondly, we expect the
dynamics to depend on global parameters of the system like
the spatial dimension d and the range of interaction α, which
both determine the distribution of couplings J⊥,‖

i, j (e.g., the
stretch power has been analytically derived to be β = d/α

in the case of the Ising model [27]). Therefore, it is crucial
to compare experimental data only where the distributions of
interaction strengths are comparable such that the underlying
universal behavior becomes evident (see also Appendix C
where the distribution of coupling for the experiments shown
in this article are shown).

The accurate approximation of the relaxation dynam-
ics by an integrable model of pairs indicates that the
time evolution of disordered quantum spin systems can-
not be viewed as direct thermalization. Instead, even at

later times when the global magnetization has completely
relaxed to zero, the system can still exhibit local charac-
teristics originating from quasiconserved pairs of spins. In
order to investigate the deviations from the pair model and,
hence, from the prethermal state, future experiments will re-
quire single-site resolution [50]. Further investigations could
also study the influence of the energy density of the ini-
tial state on the dynamics, indicative of a possible phase
transition [51].
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APPENDIX A: ENGINEERING HEISENBERG XXZ
HAMILTONIANS BY DIFFERENT COMBINATIONS

OF RYDBERG STATES

In the following, we provide a comprehensive description
of how to engineer this Hamiltonian with different combina-
tions of Rydberg states [40,41]. Especially, this gives us the
opportunity to explain how to engineer an Ising Hamiltonian
in a spin system realized by two different Rydberg states.

For general spin systems with global U (1) symmetry, the
coupling terms can be obtained by calculating the matrix
elements of the interaction Hamiltonian Ĥ . The Ising term

J‖
i j = (E↑i↑ j + E↓i↓ j ) − (E↓i↑ j + E↑i↓ j ) (A1)

is defined as the energy difference between spins being
aligned and being antialigned. Here, Eαiβ j = 〈αiβ j |Ĥ |αiβ j〉
are the interaction energy of spin i and j with α, β ∈ [↑,↓].
The exchange term is determined by

J⊥
i j = 〈↓i↑ j |Ĥ |↑i↓ j〉. (A2)

For a system consisting of states with opposite parity,
such as |↓〉 = |nS〉 and |↑〉 = |nP〉 [see Fig. 1(b)], where n
is the principal quantum number, the dominant coupling is
a direct dipolar interaction, which can be described by the
Hamiltonian

ĤDDI = d̂i · d̂ j − 3(d̂i · eri j )(d̂ j · eri j )

r3
i j

, (A3)
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where d̂i is the dipole operator of atom i, eri j is the unit vector
connecting the two atoms, and ri j their distance. Mapped
Eq. (A3) on the spin Hamiltonian of Eq. (1), the resulting
interaction coefficient is

J⊥
i j = C⊥

3 (1 − 3cos2θij )

r3
i j

. (A4)

Here, θi j is the angle between eri j and the quantization axis

and C⊥
3 the coupling parameter [36,37]. The Ising term J‖

i j is
zero since interaction energy shifts Eαiβ j are dipole forbidden.
Therefore, this is a way to realize an XX model as depicted
in Fig. 1(b). In this paper, we have chosen |61S〉 and |61P〉
leading to C⊥

3 /2π= 3.14 GHzµm3 .
In the case where the two chosen states possess the same

parity, such as the two atoms being in the same state |nS〉,
direct dipolar coupling is forbidden and the leading interaction
is a second-order process through a virtually excited pair state
|m〉 and can be described by

ĤvdW = −1

h̄

∑
m

ĤDDI|m〉〈m|ĤDDI

�ν

. (A5)

Here, the Foerster defect �ν is the energy difference between
the initial state and the virtually excited state |m〉. This Hamil-
tonian gives rise to power-law interactions Ji j = C6/r6

i j that
scales with n11. Especially, this term is large if a pair state |m〉
with a small Foerster defect exists. Many experiments exploit
these interactions to realize a spin system where the ground
state is coupled to a single Rydberg state. These systems
feature the Rydberg blockade effect and can be mapped on
an Ising model [3,34,35].

Similar interactions also exist for a spin system real-
ized with two different Rydberg states |↓〉 = |nS〉 and |↑〉 =
|(n + 1)S〉. In this case, the van der Waals Hamiltonian (A5)

TABLE I. Waists of the blue (480 nm) and red (780 nm) Rydberg
excitation lasers used to realize the different models and the respec-
tive ground state cloud waists.

Model blue exc. σx,y red exc. σx,y GS σx GS σy,z

Ising 55 µm 1.5mm 64 µm 45 µm
XXZ 55 µm 1.5mm 64 µm 45 µm
XX 55 µm 1.5mm 62 µm 47 µm

also induces a spin exchange term because the two Ryd-
berg states are coupled via the intermediate pair state |m〉 =
|nP, nP〉 [see Fig. 1(c)]. In the case of n = 61, both the Ising
and exchange interactions terms are similar with J‖/J⊥ =
−0.7. Therefore, this spin system can be mapped onto an
effective Heisenberg XXZ-Hamiltonian [21].

In order to realize an Ising Hamiltonian with two different
Rydberg states, a state combination is needed where the ex-
change term (A2) is small requiring a large Foerster defect �ν

[see Fig. 1(d)]. This can be achieved by coupling |↓〉 = |nS〉 to
|↑〉 = |(n + 3)S〉. In this case, the largest contribution to the
exchange term comes from |m〉 = |(n + 1)P, (n + 1)P〉. For
example, for n = 61, this spin system is characterized by a
ratio of J‖/J⊥ = 400, which is a good approximation to an
Ising Hamiltonian (J⊥ = 0).

APPENDIX B: EXPERIMENTAL IMPLEMENTATION
OF VARIOUS SPIN MODELS

To realize the Heisenberg XX model, a single-photon
microwave transition at 2π × 16 GHz with a Rabi fre-
quency of � = 2π × 18 MHz couples the state |↓〉 to |↑〉 =
|61P3/2, mj = 1/2〉. To implement the XXZ Hamiltonian,

FIG. 5. Comparison of the scaling behavior for rescaling time either by the median interaction matrix (a) or by the median of the pair
oscillation frequency (b). max(J⊥

median, J‖
median ) is defined as J⊥

median for the Heisenberg XX and XXZ model, and as J⊥
median for the Ising model.
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FIG. 6. Influence of the density and the blockade radius on the DTWA simulations. Left column: Simulations for the same blockade radius
as in the main text for different particle numbers N . Right column: Simulations for the same particle number and various blockade radii. In all
simulations the geometry of the cloud is the same.

two microwave photons at 2π × 16 GHz couple to |↑〉 =
|62S1/2, mj = 1/2〉. Here, a single photon Rabi frequency
of � = 2π × 48 MHz with a detuning �ν = 2π × 170 MHz
leads to a two-photon Rabi frequency of �2γ = 2π ×
6.8 MHz. To realize the Ising model, the state |61S〉 has to
be coupled to |64S1/2, mj = 0.5〉 but the detuning of �ν =
2π × 1.426 GHz is too large and prevents an efficient cou-
pling of the states with two microwave photons of the same
frequency 2π × 47 GHz. Therefore, we combine two fre-
quencies differing by 2π × 1.563 GHz such that the effective
detuning to the intermediate state |62P〉 is 2π × 136 MHz.
For a single photon Rabi frequency of � = 2π × 30 MHz
this results in an effective two-photon Rabi frequency of
�2γ = 2π × 3.3 MHz [see Figs. 1(b)–1(d) for the microwave
photonic transitions]. The parameters of the laser waists and
resulting geometries can be found in Table I.

APPENDIX C: DISTRIBUTION OF INTERACTION
TIMESCALES IN THE SPIN SYSTEM

In the main text, we have highlighted that the typical
timescale of the relaxation is given by the pair oscillation
frequency |J‖ − J⊥|. For the Heisenberg XXZ Hamiltonian,
both exchange and Ising interactions exist. Therefore, another

possibility of rescaling would only involve J⊥, which would
disregard the anisotropy δ = J‖/J⊥. In Fig. 5, we have com-
pared both possibilities of rescaling time. The rescaling by the
oscillation frequency shows a more precise collapse of the ex-
perimental data. This demonstrates that this frequency indeed
determines the relevant timescale of the system. In addition,
this indicates that the Rydberg interactions can be mapped
onto the Heisenberg XXZ Hamiltonian with δ = −0.7.

In Fig. 6, we show the sensitivity of the DTWA simulations
to different densities and blockade radii. For most simulations,
these parameters have only a small, quantitative effect on the
simulated dynamics. A notable exception is the Ising system.
Here, the Rydberg cloud is largely saturated and the blockade
radius is the relevant length scale of the system. Therefore,
a variation of the blockade radius changes drastically the
early time dynamics. In contrast, the density of the sample
featuring XX-interaction is low, therefore the blockade effect
can be neglected. For the Heisenberg XXZ Hamiltonian, the
simulations show that the blockade radius of 8.3 µm fits the
observed dynamics slightly better than the value of 10 µm
expected from the simplified excitation model assuming no
phase noise of the laser.

Histograms showing the resulting distribution functions of
couplings are shown in Fig. 7.
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FIG. 7. Histograms of the distribution of interaction strengths for
the experimental data shown in the main text. The histograms are
obtained by averaging over 50 distributions of interaction strengths,
with a bin size of 0.1median j maxi |J⊥,‖

i, j |.

APPENDIX D: INFLUENCE OF THE GAUSSIAN TRAP
GEOMETRY ON THE RELAXATION DYNAMICS

The functional form of the relaxation dynamics in a
strongly disordered spin system has been demonstrated to be
independent of both the Rydberg blockade radius and the
anisotropy of the Heisenberg XXZ Hamiltonian. However,
the timescale of these dynamics is contingent upon the den-
sity and coupling constant. Consequently, there arises the
necessity to rescale time by the median interaction strength
mediani max j Ji j .

In the context of a Gaussian trap geometry, we conduct an
averaging procedure over varying local densities ρ. Assum-
ing local density approximation, we average over different
local relaxation dynamics, each characterized by a stretched
exponential function, sharing a common stretching exponent
β, while exhibiting distinct timescales τ (ρ). The collective
summation of these relaxation curves again manifests as
a stretched exponential decay. However, the details of the
stretching exponent β depend on the shape of the Gaussian
cloud (cf. Fig. 8).

Furthermore, finite-size effects come into play, with one-
dimensional physics becoming relevant in an elongated
cigar-shaped geometry and two-dimensional physics in a flat
pancake geometry. Consequently, the measured stretched ex-
ponential does not align with the expected value of β = d/α

(where d represents the dimension and α signifies the range
of interactions) as anticipated from semiclassical simulations
[28]. Instead, the observed value interpolates between various
dimensions and exhibits slight variations in different experi-
mental realizations when the trap geometry is altered.

Nevertheless, through a comparative analysis of experi-
ments conducted in similar geometries, it remains feasible
to investigate whether the dynamics are contingent upon the
size of the blockade radius [21] or the anisotropy parameter
� of the Heisenberg XXZ Hamiltonian (as explored in this
study).

FIG. 8. MACE simulations of the relaxation of the magnetization
for four different geometries of the Gaussian cloud where the aspect
ratio of the waist wx in x direction with respect to the waist wyz in
y and z direction is tuned. The product wx × w2

yz is fixed for all four
geometries. For each geometry, we simulate the time evolution for
different anisotropies J‖

J⊥ ∈ {−2, −0.5, 0, 0.5, 2}.

APPENDIX E: RELAXATION UNDER INITIAL STATES
WITH DIFFERENT MAGNETIZATION

In order to test if the universal relaxation behavior, orig-
inating from a pair picture approximation is even consistent
for the relaxation of more general states than the fully

Init. Preparation Readout

(a)

(b)

Evolution

FIG. 9. Relaxation dynamics of initial states with different mag-
netization. (a) Experimental sequence consisting of an evolution
under a spin locking field (preparation), followed by a measurement
of the magnetization for the resulting relaxation dynamics for t2

(evolution). (b) Magnetization dynamics after different �Lock/2π

applied in phase one.
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x-polarized state, we probe the relaxation for initial states with
different magnetization. The experimental protocol is shown
in Fig. 9(a) and is similar to the one used in [53]. It consists
of the following steps. In the preparation, spins are initially
polarized along the x axis. A locking field �Lock, which is
also aligned along the x axis is applied for a time t1. During
this time, as reported in [53], the magnetization will relax and
approximately settle to a constant nonzero value that depends
on the strength of the locking field. In the evolution, we then
turn off the locking field and measure the resulting relaxation
of the x-magnetization. The resulting relaxation over period
t2 is shown in Fig. 9(b). The magnetization starts with dif-
ferent values depending on the field strength applied during
the preparation. We note that the locking time t2 = 2 µs is
larger than the time it takes to directly relax to zero magne-
tization without phase one (blue points). We observed that for
decreasing initial magnetization, the onset of the relaxation
dynamics gets shifted to a later time (red, green, and yellow
points). However, independent of this behavior, for later times,
all curves overlap with the direct relaxation curve without field
(blue points).

The observed dynamics can be understood within the pair
approximation in the following way. During preparation, the
locking field is only able to lock pairs with interactions
smaller than the field strength �Lock. These pairs stay po-
larized while pairs with stronger interactions oscillate and
dephase. As reported in [53], magnetization takes an almost
constant value. During the evolution, when the field is turned

off, the relaxation timescale is given by the remaining pairs
that were locked and now start to oscillate. This timescale is
longer for small fields where only weakly interacting pairs
remained locked during the preparation. The overlapping at
a later time is due to the fact that these pairs are also locked
under larger fields. The data was take for |48S1/2, mj = 0.5〉
and |48P3/2, mj = 0.5〉.

APPENDIX F: DERIVATION
OF DEPOLARIZATION DYNAMICS

The goal is to compute the expectation value of 〈Ŝx(t )〉 =
1
N

∑
i 〈ŝi

x〉 starting from the x-polarized state |ψ0〉 = |→〉⊗N

governed by the effective Hamiltonian derived in [48]

Ĥeff =
∑
〈i, j〉

(
J⊥

i j

(
ŝi

x ŝ j
x + ŝi

yŝ j
y

) + J‖
i j ŝ

i
z ŝ

j
z

)

+
∑

〈i, j〉,〈k,l〉
Ji jkl

eff ŝ(i)( j)
z ŝ(k)(l )

z (F1)

where 〈i, j〉 denotes the summation over paired spins i and j
and 2ŝ(i)( j)

z = ŝ(i)
z + ŝ( j)

z .
Without loss of generality, we assume that spins 1 and

2 form a pair and compute 〈ŝ1
x (t )〉. The evolution of 〈Ŝx(t )〉

then follows simply by linearity. First we notice that all the
terms in Ĥeff commute with each other, allowing for direct
computation of 〈ŝ1

x (t )〉 by commuting ŝ1
x through the time

evolution operators,

ŝ1
x (t ) = eitĤeff ŝ1

xe−it Ĥeff (F2)

= eitJ⊥
12

(
ŝ1

x ŝ2
x+ŝ1

y ŝ2
y

)
eitJ‖

12 ŝ1
z ŝ2

z eit ŝ(1)(2)
z

∑
〈k,l〉 J12kl

eff ŝ(k)(l )
z ŝ1

xe−it ŝ(1)(2)
z

∑
〈k,l〉 J12kl

eff ŝ(k)(l )
z eitJ‖

12 ŝ1
z ŝ2

z e−itJ⊥
12

(
ŝ1

x ŝ2
x+ŝ1

y ŝ2
y

)
(F3)

= eitJ⊥
12

(
ŝ1

x ŝ2
x+ŝ1

y ŝ2
y

)
eit ŝ1

z

∑
〈k,l〉 J12kl

eff ŝ(k)(l )
z e2itJ‖

12 ŝ1
z ŝ2

z e−itJ⊥
12

(
ŝ1

x ŝ2
x−ŝ1

y ŝ2
y

)
ŝ1

x . (F4)

Now we can just expand the exponentials using the usual formula for the exponential of Pauli matrices (note that ŝ1
x ŝ2

x + ŝ1
y ŝ2

y is
akin to ŝx in a specific subspace) and take the expectation value with respect to the initial state to get the desired result,

〈ŝ1
x (t )〉 = 1

2
cos

(
J⊥

12 − J‖
12

2
t

) ∏
〈k,l〉

cos2

(
J12kl

eff

8
t

)
. (F5)
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