
PHYSICAL REVIEW RESEARCH 6, 033129 (2024)

Overlapping plastic events as a mechanism for irreversible dynamics
in amorphous solids under oscillatory shear
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The origin of the transition from asymptotically reversible to asymptotically irreversible response in amor-
phous solids subject to oscillatory shear is still unknown. It is known that the plastic events that result from
shearing always involve localized particle rearrangements, but it is unclear why some are reversible while others
are not. Here, we show, using simulations and models, that overlaps between particle rearrangements caused
by straining the solid in alternating directions can cause the response to become irreversible when they occur
frequently. As the forcing amplitude increases, plastic events become more frequent, the number of such overlaps
increases, and the probability of the system returning to previous states diminishes.
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I. INTRODUCTION

Since its discovery, the irreversibility transition in amor-
phous solids under oscillatory shear has attracted significant
interest [1–9]. This transition is observed when amorphous
solids are subject to oscillatory shear at athermal quasistatic
(AQS) conditions for different strain amplitudes γmax. For
small, subyield amplitudes, the system eventually reaches a
periodic plastic state (a limit cycle in the terminology of
dynamical systems), where plastic rearrangements repeat after
each cycle and which stores an exact memory of the particle
configurations that are part of the cycle [10–14]. However,
reaching these states requires many irreversible transient cy-
cles, and when γmax approaches a critical value γc, the number
of cycles needed to reach a periodic state diverges. For γmax >

γc, the system never reaches a limit cycle and is thus me-
chanically irreversible. This transition was demonstrated in
experimental systems and atomistic simulations, where γc was
found to be close to or identical to the strain at which the ma-
terial plastically yields (the yielding point) [1–5]. Despite the
large interest in the transition from reversible to irreversible
dynamics and several attempts to explain it in terms of dy-
namics on a random energy landscape [15–17], there is still
no widespread agreement as to the nature and origin of this
transition, and these approaches do not provide a microscopic
origin of irreversibility.

On the microscopic level, it is known that plastic events
involve localized particle rearrangements known as soft
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spots [18–21]. In two dimensions, a soft spot causes a
displacement of four neighboring particles where two next-
nearest neighbors become closer to each other and two nearest
neighbors move further away from each other, resulting in a
typical quadrupolar displacement field [20,22]. The current
understanding is that soft spots behave as two-level systems
that can switch back and forth at specific stresses in response
to external strains [20,23,24]. This point of view implies
that most plastic transitions are reversible in the sense that
there are strain paths that allow them to repeat. However,
most plastic events are irreversible in the sense that they
occur only once and can never repeat [23–26]. Nevertheless,
the microscopic deformations in both cases seem qualita-
tively identical [23,25,26]. It is, therefore, not always clear
what causes some events to be reversible while others are
irreversible.

Authors of recent work on hysteresis and memory in amor-
phous solids have focused on modeling amorphous solids
as a collection of interacting, hysteretic, two-level systems
called hysterons, representing soft spots [24,27–30]. However,
models with a fixed number of soft spots have a finite number
of possible configurations, as will be explained below. Such
models thus have only transient irreversibility [24], eventually
reach a limit cycle for any amplitude, and cannot exhibit yield
under monotonic straining. To address these issues, recent
elastoplastic models have chosen to represent deformable re-
gions as multilevel systems [31–33]. This modeling strategy
can allow for an infinite number of soft spots, and simulations
of some of these models have demonstrated a diverging num-
ber of cycles at yield [31,32]. However, even in these models,
the question of why the dynamics become irreversible at yield
remains unanswered.

Here, we propose that the sharing of particles, or over-
laps, between soft spots is a plausible mechanism for the
emergence of sustained irreversibility. By modifying and ex-
tending current models to include overlap effects observed
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in atomistic simulations, we show that overlaps caused by
soft spots that switched due to alternating strain directions
can prevent the system from reaching a limit cycle when
they become frequent, which is the situation in the postyield
regime [20,22,34].

II. OVERLAPS AND THEIR SIGNIFICANCE

As mentioned above, a system comprising a finite number
of hysterons will always reach a limit cycle. To understand
why, we note that, in a system of N hysterons, where N is
finite, a state of the system corresponds to a configuration of
the possible states of the N hysterons. Each configuration of
the system can thus be described in terms of a binary number
with N digits of the form s = 011000101 · · · 010001. In this
number, the value of the nth digit corresponds to the state of
the nth hysteron which in the initial (reference) configuration
can be either 0, which indicates that it can switch due to an
increase in the strain, or 1, which indicates that it switches
due to a decrease in the strain. Note that, out of all the possible
2N combinations of 0’s and 1’s, only a small subset represents
configurations that are stable for some strain value, and each
stable configuration is stable for a range of strains/stresses
(see discussion in Refs. [23,35,36]). This means that, for a
fixed N , the system can attain a finite number (significantly
smaller than N ) of stable states. Since at zero temperature the
dynamics is deterministic, once the system reaches a state that
was visited previously, it continues to other states that were
visited previously and will therefore start periodic dynamics.
Furthermore, since there is only a finite number of possible
states, the system will always eventually reach a state that
was previously visited and will thus always enter periodic
dynamics (enter a limit cycle).

In an actual amorphous solid, the number of soft spots is
not bounded. Since each soft spot is made of several particles
(typically four), when a soft spot switches as part of a plastic
event, some of its particles may belong to a soft spot that
was switched previously. The new soft spot may thus disable
previously switched soft spots from switching. Such sharing
of particles between soft spots is certain to occur in finite
systems at large enough strain amplitudes since, if overlaps
are prohibited, the space that was not yet subject to plastic
deformation runs out eventually.

However, identifying such overlaps in experiments or
atomistic simulations is challenging due to the difficulties in
identifying individual soft spots, especially at large strain am-
plitudes when plastic events involve large avalanches that can
include many different soft spots. In a previous work, we stud-
ied multiperiodic cycles observed in atomistic simulations of a
binary 1 : 1.4 system comprising 1024 particles interacting by
the potential described in Refs. [1,37]. Initial configurations
were prepared by quenching liquids from high temperatures
and subjecting the resulting amorphous solid samples to AQS
shear using the Lees-Edwards boundary conditions [38] as
described in Ref. [27]. This procedure was used to generate
the different stable configurations and the plastic transitions
between them as described in Ref. [27].

By applying a special algorithm (which we developed)
that employs a network representation of the dynamics, we
identified all the soft spots switching during these cycles [27].

The goal of Ref. [27] was to understand the formation of
multiperiodic cycles (i.e., limit cycles in which the zero-strain
configuration repeats after >1 forcing cycle), as they involve
both reversible and irreversible dynamics. As part of this pa-
per, we also identified overlaps between soft spots that were
part of multiperiodic cycles. Nevertheless, the significance
of overlaps to the dynamics was not clear and is thus not
discussed in Ref. [27].

A later examination of these simulations revealed that over-
laps come in two distinct scenarios. In the first scenario, two or
more soft spots that switch at different strains overlap during
a monotonic strain increase. In most cases, when the strain is
reversed, the soft spots switch in the opposite order, as demon-
strated in the example shown in Fig. 1(a) (the exceptions will
be discussed below). In Fig. 1(a), soft spot 8 switches, and
following a further increase in the strain, soft spot 1 also
switches. When the strain is decreased, soft spot 1 switches
back, and upon a further decrease in the strain, soft spot 8
also switches back. Thus, in this case, the switching exhibits
a last-in-first-out (LIFO) ordering, and the final zero-strain
state is identical to the zero-strain state at the beginning of
the cycle. In the second scenario, a soft spot that switches
after the straining direction is reversed disables a soft spot
that switched due to an increase in the strain, as shown in the
example in Fig. 1(b). In this example, soft spot 1 switches
upon an increase in the strain, while soft spot 2 switches
upon a decrease in the strain before soft spot 1 can switch
back (we have verified that soft spot 1 cannot switch back
even for significantly larger negative strains indicated by the
dashed line). In the final zero-strain state, soft spots 1 and 2
are both switched, and this state is thus not identical to the
initial zero-strain state. We refer to the first type of overlap
as a regular overlap, as it involves sequential switching and
switching back, and the second type of overlap as an irregular
overlap since it breaks the switching ordering.

The fact that the irregular overlap caused the system not
to return to the initial zero-strain state indicates that irregular
overlaps can cause the system to be unable to reach a periodic
cycle. To see this, consider a situation where the system is
subject to γmax that is larger than the yield strain. In this case,
each shearing cycle involves a number of large avalanche
events [39] that occur due to straining in both positive and
negative strains. One thus expects that the probability of ir-
regular overlaps due to new plastic events will be large and
that, for large enough γmax, there will be at least one new such
overlap during each forcing cycle, as is illustrated in Fig. 2(a).
In this case, the system will not be able to repeat the same
zero-strain configuration, and periodic behavior will not be
possible.

III. MODEL

To better understand the contribution of overlaps to irre-
versibility, we developed a model of soft-spot dynamics that
includes both regular and irregular overlaps. In our model,
soft spots are represented by interacting hysterons, which we
and others have used before to model the response for small
strain amplitudes [24,27–30]. However, contrary to our previ-
ous models that used the strain as a state variable, here, the
stress in each hysteron is the primary variable, and switching
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FIG. 1. (a) A microscopic particle configuration exhibiting a regular overlap between two soft spots (regions marked by blue and green
ellipses). (b) A microscopic particle configuration exhibiting an irregular overlap between two soft spots (regions marked by blue and yellow
ellipses). Both examples are taken from Ref. [27]. In the irregular configurations, the coordinates were flipped xi → −xi such that a soft spot
that was activated at a negative strain is now activated at a positive strain and vice versa to maintain consistency with the other figure. In both
cases, the strain at which a soft spot switches or switches back is shown as a horizontal line on a curve that shows the strain as a function of
simulation steps (the equivalent of time for athermal quasistatic dynamics).

is stress activated, as is the case in other models of plastic-
ity [22,32,40–42]. The interaction strength between soft spots
is of the mean-field type with random, frustrated, coupling,
like what we used in previous work [27] (see detailed descrip-
tion below). The soft spots are distributed in N sites, where a
site k that belongs to one of these N sites, is associated with a
distinct stress value σk that is modified at each simulation step
due to an applied strain step δγ by δσ = μδγ . Here, μ is the
shear modulus, which is assumed to be a material constant.
Each site represents several soft spots that share some of
their particles, and thus, when one of them switches, others
become disabled, like the situation in Figs. 1(a) and 1(b).
In the following, we first develop a model that allows only

regular overlaps and then extend it to also include irregular
overlaps. When only regular overlaps are allowed, each site
has two switchable soft spots for each configuration of the
system. In Fig. 2(b), top, we show a schematic demonstrating
the switching of a single soft spot n between two possible
states due to an increase in the stress. When the stress is
increased to σ+

n , the soft spot switches from state 0 to 1. Upon
a decrease of the stress to σ−

n , the soft spot switches back to
state 0. A soft spot can also have an initial state 1 and switch
to state 0 upon a decrease of the strain.

In Fig. 3, we show typical dynamics in one site when only
regular overlaps are allowed. We take the configuration in the
bold square to be a typical configuration which we use as a

FIG. 2. (a) At postyield strain amplitudes γmax, deformation during one cycle involves many large avalanches occurring in both straining
directions. This increases the chance that at least one irregular overlap will occur during each forcing cycle (i.e., after a deformation of the form
γ = 0 → γmax → −γmax → 0), which will prevent the system from ever returning twice to the same zero-strain configuration, thus preventing
the system from reaching a limit cycle. (b) Top: An illustration of the switching of a single soft spot from state 0 (dotted) to state 1 (continuous
line) due to strain increase. Bottom: When irregular overlaps are allowed, there is a probability pir that a soft spot ñ with σ+

ñ < σ+
n will switch

before soft spot n switches.
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FIG. 3. Illustration of the soft spot dynamics of a single site
(site k out of N sites) in the model in the case where only regular
overlaps are allowed. At any given time, the site is in a particular
configuration in which the stress is σk and one soft spot can switch
due to a stress increase and another one can switch due to a stress
decrease. For example, in the highlighted reference configuration,
soft spot n switches at σ+

n , while soft spot n − 1 switches at σ−
n−1,

where σ−
n−1 < σk < σ+

n . If σ+
n is reached, the stress drops to a new

value, and then soft spot n can switch back at σ−
n , and soft spot n + 1

can switch at σ+
n+1. The former switch takes the system back to the

previous (reference) configuration, while the latter switch takes the
system to a new configuration.

reference configuration (or reference state) for this specific
site. In this configuration, there are two switchable soft spots
n and n − 1. Soft spot n starts at state 0 and switches to state 1
if the stress is increased to σ+

n . Soft spot n − 1 starts at state 1
and switches to state 0 if the stress is decreased to σ−

n−1. When
soft spot n switches, it disables soft spot n − 1 from switching
due to an overlap. The site then reaches a new configuration
(box to the right) and a new soft spot n + 1 that can switch
due to an increase in the stress is added to the site. Starting
in this configuration, soft spot n can switch back from state
1 to 0 if the stress is decreased to σ−

n , which then disables
soft spot n + 1 but releases soft spot n − 1 and brings the site
back to the reference configuration. Similarly, starting from
the reference configuration and decreasing the stress to σ−

n−1,
soft spot n − 1 switches from 1 to 0, disables soft spot n, and
causes the creation of a new soft spot n − 2 that can switch
if the strain is decreased further. The dynamics obtained from
this scheme is similar in nature to the single-cell multiwell
dynamics used in recent elastoplastic models [31–33].

We next modify the model to include the possibility of
irregular overlaps. To allow for such overlaps, whenever the
dynamics reaches a configuration which was not visited be-
fore, we add a new soft spot to the site with probability pir .
This is illustrated in Fig. 2(b), bottom, where soft spot ñ with
a random σ+

ñ < σ+
n is added to the cell. This introduces irreg-

ular overlaps since it allows a soft spot to become overlapped
and disabled before switching back to its initial state. When

FIG. 4. Illustration of the soft spot dynamics of the same site
as in Fig. 3 but where irregular overlaps are allowed. For any site
configuration, there is a probability pir that a competing soft spot ñ
with σ+

ñ < σ+
n will switch before soft spot n switches. In that case,

upon a further increase (in the example shown in the illustration)
in the strain, the system will reach configurations that were not
reachable with purely regular overlaps (faded part of the illustration).
However, if the strain is decreased (assuming no interactions with
neighboring sites), the system can return to the configurations that
were reachable by regular overlaps, assuming that no new irregular
overlap occurs.

the system reaches a previously visited system-wide config-
uration, we do not allow further soft spot additions (i.e., we
set pir = 0). This is compatible with the deterministic nature
of the dynamics in the atomistic simulations and guarantees
that, once a previously visited state is reached, the system will
enter a limit cycle. Figure 4 demonstrates how the dynamics
is modified when an irregular overlap is added at the reference
configuration. Starting from σk , the stress is increased, and at
σ+

ñ , soft spot ñ switches from 0 to 1, which then disables soft
spots n and n − 1 and causes the creation of a new soft spot
ñ + 1 that can switch upon a further increase in the stress.
The system thus enters an alternative path in the configuration
space where soft spots n, n + 1, n + 2, . . . cannot switch and
soft spots ñ, ñ + 1, ñ + 2, . . . are switched instead. Upon
a decrease of the strain, the system can, in principle switch
n − 1, n − 2, n − 3, . . . back to their 0 states. However, there
is a finite probability that another irregular overlap will occur
before any of these soft spots switch back, and in that case, at
least some of these soft spots will not switch back, and alterna-
tive soft spots will switch instead. In addition to overlaps, the
dynamics of each soft spot is also affected by interactions with
the soft spots at the other N − 1 sites in the system. Modeling
these interactions is discussed in the following section.

IV. INTERACTIONS AND DYNAMICS

We assumed both stress thresholds σ±
nk

and the interaction
kernel to be random, where the interaction was taken to be of
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the frustrated mean-field type [24,43]. The stress thresholds
σ±

nk
of the different soft spots are drawn from a folded normal

distribution, such that the stress threshold of soft spot nk in
site k is

σ±
nk

= ±σth |X |, (1)

where X ∼ N (0, 0.09), σth = 2. and

σ+
nk

> σ−
nk

, (2)

which guarantees hysteretic behavior. After σ+
nk

is reached,

the stress changes by σ
dr p
nk , which is a random number drawn

from a uniform distribution ±U [0, 1) (a positive number for a
transition from 0 to 1, and a negative number for a transition
from 1 to 0). To prevent infinite loops where the stress drop
is large enough to cause a soft spot to switch back and forth,
σ

dr p
nk is defined as

σ dr p
nk

= 0.5(σ+
nk

− σ−
nk

)Y, (3)

where Y ∼ U [0, 1).
Our simulation is event driven, and thus, at each simulation

step, the algorithm searches for the smallest value of

δσk =
{
σ+

nk
− σk, for increasing strain in state 0,

σk − σ−
nk

, for decreasing strain in state 1 .
(4)

The soft spot corresponding to the lowest δσk switches, and
the strain in all the sites is then increased (or decreased) by
δγ = δσk/μ, where the shear modulus μ has been chosen to
be unity. When a soft spot at site j switches, the stress at the
rest of the sites is changed according to

σk = σk + Gk, j, (5)

where

Gk, j = ηk, j√
N

+ η̃k

N
(6)

is the random, frustrated interaction kernel. Here, ηk, j ∼
U [−0.2, 0.2), and η̃k is chosen such that∑

j �=k

Gk, j =
∑
j �=k

ηk, j√
N

+ η̃k = 0, (7)

which is consistent with the conservation of stress in the
quadrupolar interactions generated by soft spots, as was dis-
cussed in Refs. [41,42]. We next tested the model in different
scenarios to verify its applicability for studying amorphous
solids.

V. MODEL TESTING

To test the model, we verified that it reproduces the salient
features of amorphous solids as observed in experiments and
atomistic simulations.

A. Monotonically increasing strain

We checked the response to a monotonically increasing
strain for a system of N = 250 sites, where the probability
of irregular overlaps pir was controlled. In Fig. 5(a), we show
the stress-strain curves obtained for different pir values, aver-
aged over 100 realizations. These curves are characteristic of
poorly annealed samples. Different values of pir were evalu-

FIG. 5. (a) Stress-strain curves for a system of N = 250
sites, averaged over 100 realizations, for pir = 0.0, 0.01, 0.1, 0.2,

0.5, and 1.0. The stress decreases with pir . (b) The probability distri-
bution of the avalanche sizes for postyield strains averaged over 300
realizations, exhibiting a power-law behavior with an exponential
cutoff for pir = 0 and 0.01. Inset Mean avalanche size vs strain
averaged over 500 realizations for pir = 0 and 0.01.

ated and found to lower both the maximum stress and the yield
point. However, the stress-strain curves for pir = 0 and 0.01
(green and blue curves), the values used in the simulations
discussed in the main text, were almost identical.

B. Avalanches

Avalanche statistics for similar models were studied in the
past [34,42]. Here, our goal was to verify that a model that
includes overlaps reproduces similar results. For that purpose,
we calculated the average avalanche size for pir = 0 and 0.01,
with N = 250. In Fig. 5(b), we show the probability distribu-
tion of avalanche sizes taken from postyield configurations,
averaged over 300 realizations. This distribution follows a
power law with an exponential cutoff as was observed in re-
lated models [44–47]. We see that the postyield avalanche size
distribution also does not depend on pir or at least depends
very weakly on it. In the inset of Fig. 5(b), we compare the
mean avalanche size, calculated from 500 realizations, and
show that, in both cases, it changes in a similar manner with
respect to the strain.

C. Hysteresis

In Fig. 6, we compare the stress-strain curves obtained
from the model in Fig. 6(a) and atomistic simulations in
Fig. 6(b). It is clear that, qualitatively, the behavior is very
similar. In both cases, there is observable hysteresis, and in
both cases, large avalanches become more frequent in the
postyield regime.

Following model verification, we studied the effect of
changing pir on irreversibility.

VI. RESULTS

To study the contribution of irregular overlaps to irre-
versibility, we compared simulations of the model with pir =
0 (strictly regular overlaps) and pir = 0.01 (a finite but small
probability for irregular overlaps). In both cases, we simulated
100 realizations of systems of N = 250 sites and studied the
response to up to 2000 forcing cycles. We found that, con-
trary to the response to monotonically increasing strain, which
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FIG. 6. Comparison of the hysteresis loops generated by the
model to hysteresis curves obtained from molecular dynamics simu-
lations: (a) Stress-strain curve generated using the model for forcing
amplitude γmax = 0.7 with pir = 0.01. (b) Stress-strain curve gener-
ated from atomistic simulations for forcing amplitude γmax = 0.15
(data taken from the simulation results discussed in Ref. [1]).

was almost identical for pir = 0 and 0.01, the response to
cyclic shear is extremely different: when pir = 0, the system
reaches a limit cycle for any forcing amplitude γmax, but when
pir = 0.01, the number of cycles τ needed to reach a limit
cycle seem to diverge at a critical amplitude γc, as shown in
Fig. 7. Fitting to τ ∼ |γ − γc|α leads to a best fit for γc = 0.97
and α = 4.65(1). The exponent α obtained is larger than that
observed in atomistic simulations ∼2.6, which could be at-
tributed to using random, mean-field interactions rather than
realistic quadrupolar interactions.

To better understand the difference between dynamics with
strictly regular overlaps and dynamics that include irregular
overlaps, we recorded the number of new soft spots added at
each cycle ρ, which is an indication of the aperiodicity of the
cycle. Figure 8(a) shows that for the strictly regular pir = 0,
the number of new soft spots per cycle decreases rapidly to
zero, irrespective of the driving amplitude γmax. However,
when pir = 0.01 [Fig. 8(b)], there is a transition as a function
of γmax from transient dynamics in which the number of new
soft spots decays to zero to dynamics in which the number of
new soft spots reaches a constant value. This is consistent with
our understanding that an irreversible steady state requires the
number of soft spots to become effectively infinite (note that
ρ = 0 does not mean that the system immediately enters a

FIG. 7. The average number of cycles τ needed to reach a peri-
odic state as a function of |γmax − γc| for pir = 0.01.

FIG. 8. (a) The number of new soft spots ρ that are added in each
cycle as a function of the number of applied cycles n for pir = 0.
(b) The same plot for pir = 0.01. The data are normalized such that
ρ is 1 at n = 0 and γmax = 0.4(©), 0.6(�), 0.8(�), and 1.2(♦).

limit cycle, but like a system with a fixed number of soft spots,
it will eventually reach a limit cycle after a finite number of
forcing cycles).

The origin of the difference between dynamics that in-
cludes and excludes irregular overlaps can be understood by
studying the number of new soft spots added per cycle ρ as
a function of the strain at which they are switched γ , and
the number of cycles applied n. In Figs. 9(a) and 9(b), we
show the average ρ as a function of n and γ for a postyield
amplitude γmax = 1.2, starting from the second cycle (we
are interested in the transient distribution). When pir = 0
[Fig. 9(a)], the number of new soft spots rapidly decays to zero
for most of the strain range except for two boundary layers
close to ±γmax, and eventually, the number of new soft spots
decays to zero in the entire strain range. These boundary lay-
ers are also observed when pir = 0.01 [Fig. 9(b)]. However,
in this case, the number of new soft spots per cycle reaches a
nonzero steady state. The difference in the steady-state density
between pir = 0 and pir > 0 stems from the fact that, in the
former, after the first forcing cycle, new soft spots are added

FIG. 9. The number of new soft spots added in each cycle ρ, as a
function of the strain γ and the cycle number n starting from n = 2,
averaged over 100 realizations for (a) pir = 0 and (b) pir = 0.01.
Numerical solution of Eq. (8) as a function of γ and t with (c) c = 0
and r = −1 (equivalent to regular dynamics) starting from t = 3 and
(d) c = 10 and r = 0.5 (equivalent to irregular dynamics) starting
from t = 1.
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only in the vicinity of the boundaries of the strain range
(i.e., γ = ±γmax) due to the hierarchical nature of regular
overlaps, whereas in the latter, new soft spots are also added
at intermediate strains due to the effect of irregular overlaps,
which can occur at any strain value. This allows the number
of soft spots added per cycle to reach a nonzero steady state
in which new soft spots are continually added to the system.
To better understand this behavior, we developed a model
based on a mean-field description of the dynamics, which
is like approaches taken before to describe the irreversibility
transition in dilute systems and the effect of jamming on
such a transition [48,49]. The primary assumption is that the
number of new soft spots added at the n + 1 cycle depends
on how many new soft spots were added at the nth cycle.
If no new soft spots are added starting from some forcing
cycle, the system eventually reaches a limit cycle, as explained
above. The dynamical variable in our model is thus ρ, which
represents the number of new soft spots added at a time t
on a domain −γmax � γ � γmax. The equation describing the
change in ρ is a nonlinear diffusion equation:

ρt = Dργγ + rρ − cρ2, (8)

where the diffusive term Dργγ models random, mean-field
interactions as was shown in other work [50]. These lead
soft spots to switch at different strains in the next cycle (the
so-called scrambling [30]). The case pir = 0 is modeled by
taking c = 0 and r < 0, which accounts for the hierarchical
property of regular overlaps that prevents the addition of new
soft spots at intermediate strains, which then causes ρ to
degrade over time. For pir > 0, we still assume that there
is a degradation term proportional to ρ, but we also add a
term that models the addition of new soft spots at strains
−γmax < γ < γmax due to irregular overlaps. We assume that
the rate of soft spot addition is proportional to the current
number of new soft spots ρ and the number of sites in which
new soft spots were not added at time t . This term is thus of
the form ρ(N − ρ), where N is the total number of sites in
the system. Together, these terms lead to the nonlinear part of
Eq. (8). Note that this is the simplest nonlinear term that leads
to a transition between ρ = 0 and a nonzero steady state and
that this term is equivalent in form to the mean-field theory of
directed percolation [51]. To consider the addition of new soft
spots at ±γmax (for any pir), we assign nonlinear boundary
conditions:

ργ |γ=±γmax = ±[ρ − ρ2]|γ=±γmax , (9)

where we have chosen the simplest boundary conditions that
allow for steady states with either zero or nonzero ρ starting
from a nonzero ρ. In Fig. 9(c), we show numerical solutions of
Eq. (8) for D = 0.75, c = 0, and r = −1, whereas in Fig. 9(d),
we show the results for D = 0.75, c = 10, and r = 0.5. We
can see that the former exhibits dynamics qualitatively like
Fig. 9(a), while the latter shows dynamics qualitatively like
Fig. 9(b) in support of our analysis (note that γmax and the
initial ρ values are not numerically identical to the values in
the discrete model). The numerical solutions were obtained
using the MATLAB package CHEBFUN [52].

VII. CONCLUSIONS

Our simulations and models indicate that soft-spot overlap
provides a mechanism that allows for entirely irreversible
dynamics, even in a system with a relatively small number
of particles, such as an atomistic simulation. As the amplitude
γmax increases, the number of plastic events occurring during
a cycle increases, and system-spanning avalanches become
more frequent [14]. This increases the probability of having
at least one new irregular overlap during each monotonic
part of a forcing cycle, which as we saw above, prevents the
system from reaching the same zero-strain state after a cycle.
When this probability is large enough, the probability of the
system returning to a zero-strain configuration after a cycle
vanishes, preventing it from ever reaching a periodic state. In
future work, we plan to extract pir directly from atomistic
simulations and quantify the role played by avalanches in
irregular overlaps and irreversibility. We would also like to
clarify the relationship between our overlap approach, exist-
ing elastoplastic models, and strain compatibility [53,54]. We
believe that overlaps between plastic events may play a role
in other mechanical systems, such as crumpled and corru-
gated sheets [29,55], and in the emergence of multiperiodic
cycles as the irreversibility transition is approached [27,28].
For these reasons, we believe that overlaps between plastic
events will play an important role in understanding plasticity
in mechanical systems.
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