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Classical chaos in quantum computers

Simon-Dominik Börner ,1 Christoph Berke ,1 David P. DiVincenzo ,2,3,4 Simon Trebst ,1 and Alexander Altland 1

1Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
2Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany

3Jülich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologies, 52425 Jülich, Germany
4Peter Grünberg Institute, Theoretical Nanoelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany

(Received 8 May 2023; accepted 2 July 2024; published 5 August 2024)

The development of quantum computing hardware is facing the challenge that current-day quantum proces-
sors, comprising 50–100 qubits, already operate outside the range of quantum simulation on classical computers.
In this paper we demonstrate that the simulation of classical limits can be a potent diagnostic tool for the
resilience of quantum information hardware against chaotic instabilities potentially mitigating this problem. As a
testbed for our approach we consider the transmon qubit processor, a computing platform in which the coupling
of large numbers of nonlinear quantum oscillators may trigger destabilizing chaotic resonances. We find that
classical and quantum simulations lead to similar stability metrics (classical Lyapunov exponents vs quantum
wave function participation ratios) in systems with O(10) transmons. However, the big advantage of classical
simulation is that it can be pushed to large systems comprising up to thousands of qubits. We exhibit the utility
of this classical toolbox by simulating all current IBM transmon chips, including the 433-qubit processor of the
Osprey generation, as well as devices with 1121 qubits (Condor generation). For realistic system parameters, we
find a systematic increase of Lyapunov exponents with system size, suggesting that larger layouts require added
efforts in information protection.
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I. INTRODUCTION

Coupled mathematical pendula are textbook paradigms
of deterministic classical chaos [1]. When excited to en-
ergies large enough that the nonlinearity of the pendulum
potential becomes sizable, a transition from integrable har-
monic motion to chaotic dynamics generically takes place.
In the world of quantum physics, the mathematical pendulum
finds a prominent realization as the transmon superconducting
qubit [2], with the gravitational potential defined by a Joseph-
son junction, and the kinetic energy by a microcapacitor. The
cosine nonlinearity of the former is required to gap the lowest
two quantum states of the transmon (aka the qubit) against
the noncomputational higher lying parts of the spectrum in a
nonresonant manner [3,4]. Coupled transmons/pendula define
the brickwork of superconducting quantum processors [5]. On
the basis of quantum-to-classical correspondence, one may
suspect traces of chaotic dynamics – which induce qubit-qubit
correlations (e.g., ZZ , but also longer-ranged correlations)
and are therefore toxic where quantum computing is con-
cerned, to be visible in this setting [6,7]. Indeed, they are,
and there appear to be two master strategies for keeping them
out: decouple qubits off-operation by so-called tunable cou-
plers [8–10] (an approach applied in, e.g., Google’s Sycamore
quantum chip [11]), or intentionally detune the oscillator fre-
quencies of neighboring qubits relative to each other, to avoid
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dangerous resonances (as done in current quantum chips by
the IBM [12] / Delft [13] / ETH Zürich [14] consortia).

Both approaches have their individual advantages. The first
reliably stabilizes the system, but at the expense of substantial
overhead hardware for switchable coupling [11]. The second
avoids this complication, but instead introduces engineered
disorder. (In the parlance of quantum many-body physics, the
ensuing state of matter is called many-body localized [15,16].
In it, the system becomes effectively integrable, but at the
expense of site to site randomness, with perhaps unintended
side effects in large-scale structures.)

In this paper, we investigate manifestations of classical
chaos in transmon arrays, tuned to a classical limit by set-
ting h̄ = 0 [17]. Otherwise, our systems – their transmon
frequencies, coupling strength, system layout, etc. – are mod-
eled in agreement with published data for existing quantum
chips [18,19]. Why would one enforce a classical limit upon
a quantum computer? Our prime motivation for this study is
that the transmon array displays a highly developed quantum-
to-classical correspondence: exact diagonalization performed
for the corresponding quantum systems show quantum chaos
in parametric regions with classical chaos, and its absence in
regions without. For systems with up to ten transmons (the
limit for our quantum calculations), this correspondence is
developed with high accuracy. The point now is that the anal-
ysis of the classical limit can be pushed to O(103) resonators,
i.e., numbers comparable to those of state-of-art processors
deployed in cloud computing services [18], and way be-
yond anything that can be quantum simulated on a classical
computer. Our study of large-scale, but static transmon stor-
age devices complements the existing literature on the link
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between classical chaos and the driven quantum dynamics
in circuit QED setups [17,20,21]. While these earlier works
study the effects of nonlinearities in circuits subject to addi-
tional complexity, e.g., with drive lines for the implementation
of gates, they focus on small-scale architectures (single qubit
coupled to a cavity).

Our construction of classical dynamics simulations as a
diagnostic toolbox for the stability of large scale processors
against chaotic fluctuations is organized in three steps. After a
quick review of current day transmon hardware in Sec. II, we
present an analysis of classical chaos in linear arrays of two
to ten transmons in Sec. III. A principal observation is that
chaos is present already in the two-transmon context but only
at excitation energies way beyond those relevant for quantum
applications. For ten transmons, however, manifestations of
chaos bleed down into the excitation range corresponding to
that of the quantum computational qubit Hilbert space. We
take this observation as an incentive for a thorough com-
parison of classical and quantum dynamics for ten transmon
arrays in Sec. IV. The number 10 is special inasmuch as it
defines the maximal number of transmons for which we can
run precision quantum simulation with good statistics [22].

Focusing on classical Lyapunov exponents and many-body
wave function statistics as prime indicators of classical and
quantum chaos, respectively, we will construct a comparison
chart showing the predictive potential of classical simula-
tion. Specifically, we will argue that Lyapunov exponents
measuring the instability of the classical system are, in a sta-
tistical sense, in quantitative correspondence to the quantum
system’s inverse participation ratios (IPR). The latter are a
measure for the spread of quantum wave function over Fock
space, and provide microscopic information on the integrity
of qubits [23].

In Sec. V we then turn to the trump card of the classical
approach, the option to simulate arrays of up to thousands
of transmons, including realistic transmon wiring [24] and
other hardware design elements. Specifically, we will simulate
transmon chips contained in the current IBM roadmap [25],
from the 27-transmon Falcon to the 1,021-transmon Condor
chip. Assuming that the quantum-to-classical correspondence
observed at the 10-transmon level extends to larger qubit
numbers, this analysis yields valuable insights into the de-
sign of (future) processor layouts. We will consider advanced
design principles, as realized in frequency-engineered cross
resonance architectures [26], where IPRs close to unity –
representing perfect single transmon wave function localiza-
tion – can be reached by engineered fine tuning [12,19]. Our
classical analysis will demonstrate the manner in which the
Lyapunov exponents signal the proximity to such sweet spots.
At the same time, they show a systematic tendency to increase
for larger system architectures, which we take as indication
that maintaining the stability of these sophisticated designs
will require an additional engineering effort. We conclude in
Sec. VI.

II. TRANSMON HARDWARE

Transmon-based quantum computers are among the most
developed information processing platforms of the era of
noisy intermediate-scale quantum (NISQ) devices [27] and

have been used in several recent experimental landmarks: the
first demonstration of quantum computational advantage [11],
the simulation of topologically ordered states [28], and small
instances of error-correcting experiments with surface code
logical qubits [13,29]. While there are other promising ap-
proaches based on superconducting circuits at the level of
single qubits or few-qubit devices (e.g., the fluxonium [30,31]
or the C-shunt flux qubit [32]), transmons are the clear front-
runner when it comes to integrating O(50)–O(100) qubits
into a single viable processor. This property makes the trans-
mon the preferred choice for applications where scalability is
paramount, e.g., the recent demonstration of the performance
improvement of a logical qubit with the surface code distance,
conducted in a 72-qubit device [29]. Processors containing
more than 1000 transmon qubits are expected to be launched
in upcoming years. For example, IBM’s quantum roadmap
announces a monolithic processor with 1121 qubits for the
year 2023 and a modular quantum computer with 4158 qubits
in 2025 [25].

In the following, we review the transmon qubit array and
introduce a model which stays close to the systems used in
reality. We then proceed to address the main question of this
paper: what can we learn from the classical physics of this
system about the functioning of the quantum processor?

A. Transmons

In its simplest form, a single transmon consists of only a
single Josephson junction and a large shunting capacitance.
Its Hamiltonian is given by [2]

ĤTr = 4ECn̂2 − EJ cos ϕ̂, (1)

where n̂ is the charge operator [33] counting the number of
Cooper pairs that have traversed the junction and ϕ̂ is the
superconducting phase conjugate to n̂, i.e., [ϕ̂, n̂] = i. The
Josephson energy EJ is a macroscopic parameter describing
the ability of Cooper pairs to pass the tunnel barrier, and
EC is the charging energy necessary to transfer one electron
through the junction. EC is proportional to the total ca-
pacitance of the circuit and, due to the sizable shunting
capacitance, can be made small compared to EJ , which pushes
the dimensionless parameter EJ/EC to the transmon regime
where EJ/EC � 20. Typical values of EC range from 100 MHz
to 400 MHz [4], while EJ often lies near 12.5 GHz (note here
that we give energies in Hz, by setting h to 1). The ground
state and the first excited state serve as the two qubit states |0〉
and |1〉. The energy spacing between the two qubit states hν01

typically takes values of ν01 ≡ νq = 5 GHz, where νq is called
the qubit frequency.

For our purposes, it will be advantageous to consider ϕ̂ as
an angular variable with conjugate angular momentum L̂z =
h̄n̂. With the identification EC = h̄2/8ml2, and g = EJ/ml =
8ECEJl/h̄2, Eq. (1) then describes a quantum pendulum (see
Fig. 1)

ĤTr = L̂2
z

2ml2
− mgl cos ϕ̂ (2)

of mass m, rigid length l , and gravitational constant g.
The coupling of neighboring transmons is often realized

via a capacitive interaction n̂in̂ j between their charge degrees
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FIG. 1. Quantum vs classical transmon array. (a) A chain of four
transmons initialized in the quantum state |1203〉 of the correspond-
ing cos potentials, where the integers, i = 1, 2, 0, 3 correspond to
the bound state energies Ei. (b) The corresponding classical rotors,
initialized at angular deflections corresponding to the energies Ei as
discussed in the main text, and the springs connecting the suspension
points representing the angular momentum coupling.

of freedom. The full Hamiltonian of an array of coupled
transmons then reads [34]

Ĥ = 4EC

∑
i

n̂2
i −

∑
i

EJ,i cos ϕ̂i + T
∑
〈i, j〉

n̂in̂ j . (3)

Here, the site dependence of the Josephson energies, EJ,i,
accounts for unavoidable fabrication imprecisions, usually
of the order of 5% to 10% [35,36]. While these tolerances
can be reduced by postprocessing or by advanced fabrication
techniques (see Ref. [7] for a detailed discussion) frequency
variations are often introduced intentionally to detune neigh-
boring transmons during gate-off times and in this way
suppress undesired correlations [37]. (Adjustable Josephson
energy variations are usually realized via so-called flux tun-
able transmons where a single Josephson interface is replaced
by a superconducting quantum interference device [37].)

By comparison, variations of both the charging energy EC

(here assumed to be at the value 250 MHz) and of the coupling
energies T (∼30 MHz for flux tunable transmons [37] and ∼2
– 5 MHz [38,39] for single-junction fixed-frequency) are of
lesser relevance and will be ignored throughout. We also will
not consider the important concept of tunable couplers [8],
i.e., additional hardware allowing to vary the coupling on
operation at the expense of extra noise sources.

B. Classical limit

Transmon quantum computing relies on the deep quanti-
zation of the Josephson junctions’ two lowest energy levels.
However, as we are going to demonstrate in the following,
the system’s classical limit – a network of classical pendula
– contains valuable information about the physics of the
transmon array. In this limit, the operators ϕ̂i, n̂i are demoted
to real valued variables ϕi, ni, and the commutation relation
[ϕ̂i, n̂ j] = iδi, j turns into a Poisson bracket

{ϕi, n j} = δi, j . (4)

Hamilton’s canonical equations of motion then read

ϕ̇i = {ϕi, H} = ∂H

∂ni
= 8ECni + T

∑
j=NN(i)

n j, (5)

ṅi = {ni, H} = −∂H

∂ϕi
= −EJ,i sin ϕi, (6)

where H is the classical Hamilton function obtained by
replacing ϕ̂ and n̂ with their classical counterparts in the
Hamiltonian Ĥ in Eq. (3), and the sum is over nearest neigh-
bors of transmons. These equations describe a system of
classical pendula with a momentum-momentum interaction
arising from the capacitive coupling.

To mimic a transmon initialized in one of its eigenstates
|0〉, |1〉, |2〉, ... we first compute the energies Ea of the quan-
tum model, where a = 0, 1 for computational states. We then
initialize the classical rotor in a phase space configuration
(n, ϕ) = (0, ϕa), where −EJ cos ϕa = Ea, or

ϕa = arccos

(
−Ea

EJ

)
. (7)

In other words, the classical pendulum is started in a con-
figuration of maximal potential and zero kinetic energy, see
Fig. 1. As illustrated, the quantum transmon supports seven
bound states, for the chosen parameters of EJ = 12.5 GHz and
EC = 250 MHz, and we distinguish between as many classical
initial configurations.

III. CLASSICAL CHAOS

Coupled nonlinear pendula are a paradigm of deterministic
chaos, and the question to be addressed in this paper is to what
extent the corresponding instabilities also affect the quantum
array. To approach this question, we first consider simple toy
models for values of T and EJ that partly exceed the usual ex-
perimental range: two coupled pendula, and the generalization
to a chain of L of them.

A. Two coupled transmons

Chaotic behavior already emerges in the classical two-
transmon Hamiltonian, provided that the system is excited
to sufficiently high energies [40]. In this reduced setting, the
phase space spanned by the coordinates (n1, n2, ϕ1, ϕ2) is
four dimensional, implying that the onset of chaos can be
demonstrated via the powerful concept of Poincaré sections,
i.e., stroboscopic images defined by the crossing of classical
trajectories on the three-dimensional surface of conserved en-
ergy with the two-dimensional surface defined by the fixation
of one of the coordinates. To be specific, we here keep track
of the pairs (ϕ1, n1) at ϕ2 = 0 and n2 > 0, where the second
condition fixes a sense of traversal.

To monitor the onset of irregular dynamics, we vary the
initial angle ϕinit

2 while keeping ϕinit
1 = ninit

2 = 0 and ninit
1 =

0.01 fixed. Figure 2 shows four different Poincaré sections for
initial angles ϕinit

2 , which, from (a) to (d), get progressively
closer to π . While the closed curves for (a) and (b) indicate
that the motion is (quasi)periodic and thus integrable, one
observes a qualitative change upon further increasing ϕinit

2 .
The Poincaré section then extends over a finite fraction of
the ϕ1-n1 plane, as is expected for nonintegrable systems. We

033128-3



SIMON-DOMINIK BÖRNER et al. PHYSICAL REVIEW RESEARCH 6, 033128 (2024)

FIG. 2. Poincaré sections for a system of two coupled trans-
mons. Shown are Poincaré sections in the ϕ1–n1 plane with ϕ2 = 0
and n2 > 0. The transmons are initialized with ϕ1(t = 0) = n2(0) =
0, n1(0) = 0.01 and ϕ2 = π − x, where (a) x = 0.1 (b) x = 0.05,
(c) x = 0.02 and (d) x = 0.0005. We set T = 40 MHz and EC =
300 MHz. The Josephson energies (EJ,1 = 98.8 GHz and EJ,2 =
101.2 GHz) lie above the experimentally relevant parameter range.

have also confirmed that in the nonintegrable regions of the
Poincaré plot there is exponential sensitivity to initial condi-
tions, as witnessed by finite Lyapunov exponents. Figure 3,
which is a fine-grained representation of the section (c) in
Fig. 2, indeed shows various textbook signatures [41] of a
system whose phase space contains integrable and chaotic re-
gions. Examples of these include Kolmogorov-Arnold-Moser

−0.5 0 0.5

−0.1

0

0.1

n1

ϕ
1

FIG. 3. Signatures of nonlinear dynamics in a system of two
coupled transmons. Parameters are chosen as in Fig. 2(c). The
figures represent orbits with identical energy but different initial
conditions, leading to integrable (blue) or chaotic (gray) dynamics.
Note the self similar structure of orbits and satellite orbits upon
magnification.

FIG. 4. Classical chaos in a chain of ten coupled transmons.
(a) The maximal Lyapunov exponent in the (EJ , T ) plane averaged
over at least 8000 disorder realizations. Current-generation fixed-
frequency processors operate in the lower-left corner at T < 5 MHz
and EJ ≈ 12.5 GHz. (b)–(e) Time-dependent single transmon ener-
gies for the sites 5 (upper row) and 6 (lower row) for two disorder
realizations. The left (right) column corresponds to the parameters
marked by the green (blue) star in (a). Whereas the Hamilton func-
tions remain near their initial values in (b) and (d), they fluctuate
heavily on time scales much shorter than typical decoherence times
in (c) and (e). Only in the first case can one draw a credible conclu-
sion that the initial bitstring is 1010 . . . from the energies at t > 0.
This consideration shows that the magnitude of λ, which is small for
(b) and (d) but large for (c) and (e), can serve as a quality indicator
of the classical transmon storage device.

(KAM) tori [42], the intermittent presence of elliptic and
hyperbolic fixed points required by the Poincaré-Birkhoff
theorem (see, e.g., Ref. [43]), and self-similarity.

While the above analysis is proof of principle of the pres-
ence of chaos in the two-transmon system, it is of no practical
relevance: The energies where the onset of chaos is observed
lie well beyond those relevant for computing applications,
i.e., the energies corresponding to the computational states
|00〉, |10〉, |11〉 according to the mapping discussed in the
previous section. However, as we are going to show next,
the situation changes dramatically when we pass from two-
to many-transmon arrays.

B. Ten coupled transmons

As a first step towards understanding the physics of
many-transmon arrays, we now discuss a model of L = 10
transmons coupled in a chain geometry, for energies perti-
nent to quantum computing applications. More precisely, the
system is prepared in the |1010 . . . 〉 state, i.e., the angles
ϕi on the even (odd) sites are chosen such that the initial
single transmon energies correspond to the quantum mechan-
ical energies E0 (E1). To diagnose chaos, we calculate the
maximal Lyapunov exponent λ, i.e., the rate at which tra-
jectories with initial phase space distance δπ diverge, i.e.,
δπ (t ) ≈ δπ exp(λt ), for more details, see Appendix 1.

Figure 4(a) shows the results as a function of the Josephson
energy EJ and the coupling T , averaged over a large number
of disorder configurations. Each of these instances is gener-
ated by the independent drawing of ten values EJ,i from a
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FIG. 5. Data collapse for the maximal Lyapunov exponent. Lya-
punov exponent plotted for different values of EJ as a function of
T (inset) and of the scaling variable T

√
EJ (main panel). In the

latter case the data collapses almost perfectly for small T and still
reasonably well for larger values: T

√
EJ is the relevant parameter

controlling the onset of chaos.

normal distribution with mean EJ and standard deviation
δEJ = √

EJEC/8. As detailed in Appendix 2, this peculiar
choice for δEJ ensures a constant frequency disorder (as
EJ varies) of δνq ≈ EC

2 akin to what is found for current-
generation quantum processors.

The omnipresence of chaos for experimentally relevant
parameter values reveals itself in a nonvanishing Lyapunov
exponent for almost the entire phase diagram of Fig. 4(a). The
exception to the rule is a narrow region near T = 0, the limit
of uncoupled pendula. Increasing T leads to a sharp increase
of the Lyapunov exponent towards a maximum value, and
finally the levelling at a value slightly below that maximum.
Figure 5 shows this behavior of the T -dependent Lyapunov
exponent, now plotted as a function of the scaling variable
T

√
EJ for different values of EJ . The oberservation here is that

under this rescaling, the two parameter function λ(T, EJ ) →
λ(T

√
EJ ) shows data collapse, indicating that T

√
EJ is the

relevant parameter controlling the onset of (quantum) chaos.
We will return to this point when we discuss the quantum
interpretation of our classical findings in the next section.

To develop some intuition for the meaning of a non-
vanishing Lyapunov exponent, Fig. 6 exemplifies the sensi-
tivity to variations in initial conditions (a mismatch of 0.1%
in the first angular coordinate of a 10-transmon array) for
realistic system parameters. While for λ = 0 (left) the initial
mismatch increases linearly, we observe exponential behavior
on a scale magnified by one order of magnitude for λ ≈ 0.03,
which eventually gives way to aperiodic fluctuations due to
the compact range of the angular parameter space.

What are the implications of these findings for the appli-
cation of the transmon array as an information processing
device? Specifically, the reliable storage of information re-
quires that a qubit initialized in either of the computational
states |0〉 or |1〉 maintains this state under the evolution gov-
erned by the time independent Hamiltonian Eq. (3). In the

FIG. 6. Divergence of classical trajectories. Shown is the differ-
ence �ϕ1 between the angular coordinates of the first qubit in a
10-qubit chain for two trajectories initialized with a starting mis-
match ϕ′

1(0) = 1.001ϕ1(0). The two trajectories are initialized to
mimic a |1010101010〉 quantum state via their angular displace-
ment. System parameters: (a) T = 5 MHz, δEJ = 0.5 GHz, (b) T =
10 MHz, δEJ = 0.1 GHz, and in both cases EC = 250 MHz and EJ ≈
10 GHz. The magenta lines show exponential fits to the envelopes of
�ϕ1. For (a) the fit stretches out to a linear function, while for (b) the
fit gives a strong exponential growth of �ϕ1. The corresponding
maximal Lyapunov exponents are (a) λ ≈ 0 and (b) λ ≈ 0.03.

classical reading, this situation corresponds to a transmon ini-
tialized in one of the energies E0,1 matching the qubit energies.
The maintenance of the state translates to the condition that
the time dependent energy Ei(t ) = Hi(t ), i.e., the instanta-
neous value of the ith transmon’s Hamilton function, remain
close to its initial value. (We note that the total energy of
the array is dynamically conserved, but that of its constituent
transmons is not.) At the very least, it should not cross E0 if
initialized in E1 and vice versa.

Figures 4(b), 4(c) and 4(d), 4(e) show the energies E5 and
E6, respectively, for an array initialized in a configuration
with energies (E1, E0, E1, . . . ) corresponding to the quantum
state |1, 0, 1, . . . 〉. The left and right panels correspond to
parameter values marked by a green and blue star in panel
(a). We observe that for near-integrable dynamics (green),
the initial energies E5(0) = E1 and E6(0) = E0 remain ap-
proximately conserved. In the chaotic case (blue), however,
there are erratic fluctuations, exceeding the energy spacing
E1 − E0. These fluctuations build up after a few nanoseconds,
far shorter than characteristic qubit coherence times. We con-
jecture, and will discuss in more detail below, that in this
regime the functioning of the storage is compromised.

Figure 7 shows the generalization of the Lyapunov data to
different transmon configurations. In Fig. 7(a), we plot λ for a
variety of (classical analogs of) computational states. The data
shows a general trend towards larger Lyapunov exponents for
increasing state energy, i.e., larger numbers of E1 ↔ |1〉 ini-
tializations. All curves exhibit the same qualitative behavior as
a function of T as that discussed above, the reaching of a max-
imum value followed by saturation. Figure 7(b) shows data for
states, (Ea, E0, Ea, . . . ), with a = 0, 1, 2, 3. (The generaliza-
tion to noncomputational states, a > 1, is practically relevant
as transmon gate operations transiently couple to states out-
side the computational sector [44].) Two features stand out:
The Lyapunov exponents reach (i) larger values, however,

033128-5



SIMON-DOMINIK BÖRNER et al. PHYSICAL REVIEW RESEARCH 6, 033128 (2024)

FIG. 7. Influence of the state energy on the dynamics. (a) Lya-
punov exponents for computational states of increasing energy.
(b) Lyapunov exponents for configurations including transmons ini-
tialized in states E0,1,2,3 including values outside the computational
sector. Values given are from a 10 -qubit transmon chain with EC =
250 MHz, EJ = 10 GHz, and δEJ = 559 MHz. Each point is the
mean value of 20,000 disorder realizations. For discussion, see text.

these maximal values are attained (ii) only for larger values
of the coupling. We reason that the relatively higher inertia to
changes in T has to do with the fact that for larger energies
of individual transmons the coupling represents a relatively
weaker perturbation. We note that these findings are consistent
with a recent study [45] of a (quantum) Bose-Hubbard model,
that finds a suppression of the effective interaction between
states with large occupation numbers on individual transmon
sites.

IV. PREDICTIVE POWER OF CLASSICAL SIMULATIONS

At this point, we have discussed key signatures of the
classical dynamics of small scale transmon arrays. The big
question now of course is what bearings these findings have
for our actual subject of interest, the quantum processor. In
this section, we formulate an answer in a succession of steps.
First, as a warmup, we show that several of the observations of
the previous section afford a quantum interpretation. We then
compare our results above with those of quantum simulations
for the 10-transmon array, and for identical material param-
eters (except that now h̄ �= 0, of course), to observe a high
level of agreement: classical chaos implies quantum chaos,
and vice versa. We finally turn to the trump card of the classi-
cal approach, namely the option to reliably simulate arrays
of thousands of transmons. Assuming that the quantum-to-
classical fidelity extends to large numbers, we thus have a
tool to obtain stability measures for realistic quantum hard-
ware outside the reach of quantum simulation on classical
computers. In Sec. V, we substantiate this point by simulating
large scale two-dimensional transmon arrays of current IBM
design.

A. Quantum to classical correspondence (qualitative)

Quantum mechanically, the passage from integrable to
chaotic dynamics upon increasing T is a manifestation of
a Fock space (de)localization transition: In the transmon

regime, EJ � EC , Eq. (3) is well approximated by the at-
tractive Bose-Hubbard model [46]. Thinking of the Fock
basis, defined by the occupation numbers of the transmons
(n1, n2, . . . , nL ), as a lattice whose sites are connected through
the capacitive interaction, one expects that wave functions de-
localize if the hopping amplitude t between these lattice sites
is larger than the on-site (in Fock space) energy difference
�ε. In terms of the transmon array parameters, the hopping
amplitude reads t = T

√
EJ/

√
32EC [4,7]. The many-body

level spacing depends on the total anharmonicity of the Fock
space lattice sites and the disorder in the qubit frequencies. In
our simulations, both contributions are proportional to EC and
independent of EJ , see Appendix 2, i.e., �ε ∝ EC . For the
scaling variable, this yields t

�ε
∝ T

√
EJ/

√
E3

C . Since EC is
kept constant in the simulations, one expects that the contour
lines separating regimes of (integrable) many-body localized
and extended chaotic regimes, scale as t

�ε
∝ T

√
EJ = const.

Below, we will demonstrate this scaling for the system’s wave
function statistics. The finding that the classical Lyapunov
exponents scaled with the same parameter is consistent with
the paradigm that quantum and classical chaos condition each
other.

In the classical context, delocalization is delocalization
away from the integrable orbits of the oscillator motion of
individual transmons. Quantum mechanically, it stands for the
spreading of many body wave functions over a large set of
occupation number sites. To illustrate this phenomenon, we
consider the quantum evolution of the states corresponding to
the classical initial conditions discussed in connection with
Fig. 6. The resulting Fock space structure is visualized in
Fig. 8(a), where the the circles are centered around an arbi-
trary mapping of Fock space sites of total occupation number
5 (e.g., |01130 . . . 〉) to the two-dimensional plane, and circle
areas quantify the square amplitude of the states at these sites.
The left (right) panels map four stages in the time evolution
of an initial state with parameters previously used in the left
(right) panel of the classical Fig. 6. We observe that a van-
ishing (large) Lyapunov exponent corresponds to approximate
state stationarity (fragmentation) in the quantum system. In
the following, we discuss inverse participation ratios as a
means to quantify these structures.

B. Quantum to classical correspondence (quantitative)

In the following, we consider the wave function IPR as a
sensitive measure of quantum chaotic dynamics [47]. For a
many-body wave function |ψ〉, this quantity is defined as

IPR =
∑

k

|〈k|ψ〉|4, (8)

where the sum is over the Fock state basis. The limiting cases
to be distinguished are IPR ≈1 indicating localization in the
k basis, and IPR = 1/dim H for chaotic states ergodically
spread over Hilbert space [23]. An IPR<1 indicates the rise
of ZZ couplings and longer-ranged correlations, e.g., second-
neighbor ZZ and contiguous ZZZ couplings [7] between
dressed qubits, adding substantial overhead to the operation
of quantum gates.

The bottom left panel of Fig. 9 color-codes the IPR for
the ten transmon quantum array in the occupation number
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FIG. 8. Visualization of Fock space state fragmentation in the
time evolution, |ψ (t )〉, of a state initialized as |ψ (0)〉 = |1010 . . .〉,
i.e., the quantum state corresponding to the classical initial condition
considered in Fig. 6. The system parameters, EJ , EC, T , too, are those
previously used in Fig. 6(a), blue, integrable and (b), yellow, chaotic.
(a) Circles are centered around randomly chosen assignments of
occupation number states to coordinates in the plane, and their areas
quantify the probability to find |ψ (t )〉 in these states. The four rows
illustrate how the integrable (chaotic) state retains its structure (frag-
ments) in a succession of four discrete time steps. (b) The continuous
time evolution of the inverse participation ratio of |ψ (t )〉.

eigenbasis of the T = 0 system, where dark blue and bright
yellow encode the above limiting cases of localization and
ergodicity, respectively. The upper left panel shows the
previously computed Lyapunov exponents in the same repre-
sentation. The two measures evidently show similar behavior
as a function of the material parameters. In particular, the lines

FIG. 9. Quantum to classical correspondence. Comparison of the
classical and the quantum dynamics of ten coupled transmon oscilla-
tors, averaged over at least 3000 realizations of disorder of increasing
strength δνq = c · EC with (left to right), c = 1/2 (fixed-frequency
transmons, as in Fig. 4, c = 1, c = 2, c = 4, c = 6 (frequency-
tunable transmons). The desired frequency disorder is realized by
scaling δEJ ∝ √

EJ , as discussed in Appendix A 2. For the classical
simulation, the system is initialized in the (E1, E0, E1, . . .), in the
quantum case, the IPR is averaged over states with total Fock space
occupation number L/2.

FIG. 10. Correlation plot of maximal Lyapunov exponent and
IPR. Each of the dots represents one individual disorder realiza-
tion for a 10 qubit transmon chain for different coupling strengths
(indicated by the colors). The figure contains 2000 data points per
coupling strength. We set EJ = 12.5 GHz and EC = 250 MHz. The
IPRs are averaged over all relevant wave functions, as explained in
Fig. 9.

of constant IPR/λ both follow the parametric EJ ∝ 1/
√

T
dependence, as discussed above.

The remaining panels extend this comparison to larger
values of the disorder, from the natural disorder in the left
column, as also discussed in Fig. 4, to about ten times larger
disorder, δνq > 1 GHz, realized, e.g., in recent flux-tunable
architectures [13]. The main point here is that, at first counter-
intuitively, disorder may support integrable dynamics: Upon
increasing disorder the chaotic regions retract and eventually
vanish. The physics behind this observation is that increasing
disorder means a diminished susceptibility for the transmons
to be driven into a chaotically resonant regime by transmon
coupling.

We finally remark that the presence of a shallow maxi-
mum of the classical Lyapunov exponent at intermediate T
observed in the last section is consistent with the proposal [48]
of a domain of maximal chaos in-between the localized and
the ergodic regime. The statement is that in transit from
integrable to chaotic phases one passes a regime with expo-
nentially enhanced eigenvector susceptibility. Eigenstates in
this intermediate terrain, although not yet fully extended over
Hilbert space, show higher sensitivity to perturbations than in
the usual ergodic quantum chaotic phase. This behavior may
be the quantum manifestation of an intermediate regime of
exceptional classical Lyapunov sensitivity.

The above discussion qualitatively demonstrates
quantum-to-classical correspondence in the parameter
space (EJ , T, δEJ ). However, ultimately, one would like
to turn the classical analysis into a prognostic tool for,
e.g., optimal quantum system parameters. To this end,
the relationship between Lyapunov exponent and IPR –
yardsticks for classical and quantum chaos, respectively –
need to be understood in quantitative terms. As a first attempt
in this direction, Fig. 10 displays the correlations between
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FIG. 11. Histograms of inverse participation ratio (a) and max-
imal Lyapunov exponent (b) of Fig. 10, for different coupling
strengths. The black lines indicate the position of the peak maxima.

the Lyapunov exponent and the IPR for coupling strengths
stepwise increased between 5 and 50 MHz (color code).
For each value, we explicitly show 2000 distinct disorder
realizations (each corresponding to a single point in the
figure).

The take-home message of this analysis is that the rela-
tionship between the two quantifiers of chaos is statistical
in nature. For example, a single shot numerical measure-
ment of a small exponent λmax = 0.02 can be consistent with
IPRs distributed almost over the full range, and hence is of
not much predictive value. However, extreme value statistics
applied to a large set of values of λ obtained for different
disorder realizations does produce valuable information. The
well developed linear bound visible in the figure implies a
quantitative relation between the largest Lyapunov exponent
of the ensemble and the expected maximal value of the IPR.

We further note that, with the exception of the smallest val-
ues of the coupling, the IPRs show lesser statistical variation
than the Lyapunov exponents. This feature shows in the ver-
tical stripelike pattern visible in Fig. 10, and in an alternative
representation in Fig. 11. That figure shows the distribution
of the measured values of Lyapunov exponents (lower panel)
and IPRs (upper panel). We observe that for large values of
the coupling, the IPRs are comparatively narrowly distributed.
For smaller values, the distribution widens, but even there
remains benign in the sense that average value and width of
the distriubtion are of the same order.

We conclude that knowledge of a distribution of Lyapunov
exponents contains information on the spread of quantum
wave functions over the transmon Hilbert space. It is probably

FIG. 12. Classical chaos in chain geometries of varying length.
Lyapunov exponents for linear arrays of L = 2x, x = 1, . . . , 12
transmons. (EJ = 10 GHz and disorder strength, δνq = EC

2 , the ar-
rays are initialized in the |E1, E0, E1, . . .〉 state.) The number of
disorder realizations varies from 2000 (x = 12) to 20 000 (x = 1–6).

safe to say that IPRs larger than 1/2 are required to safeguard
the integrity of quantum storages. (Current IBM efforts (see
Sec. V) strive to reach values close to the optimal value
unity.) Our analysis shows that, for all array realizations con-
sidered in this paper, this conservative estimate translates to
the condition λ < 0.04. In practical terms, the need to harvest
Lyapunov ensembles to establish these upper bounds for the
IPR is not a big issue. As discussed in the next section the
computation of exponents including for systems way beyond
current NISQ era extensions is relatively effortless.

C. Simulation of large arrays

The discussion so far was formulated for an array of ten
transmons, a system size comfortably in reach of both clas-
sical and quantum simulation (on classical computers). The
computational cost of quantum simulations grows exponen-
tially in system size, limiting it to system sizes of perhaps
twice or thrice that value, but not much larger. Currently
exisiting transmon hardware with 50–100 qubits can no longer
be simulated on classical machines. Our discussion above
underpins that this may be an actual limitation. Tendencies
to instability and chaos increase with system size (for more
on this, see below), and conclusions drawn on the quantum
simulation of a subunit of a transmon array may not fully
capture the physics of the whole.

The computational cost of classical simulation, on the other
hand, grows only linearly in size, implying that arrays up to
and beyond current hardware designs are comfortably within
reach. For more details on the algorithmic scaling and actual
compute times of our classical simulations we refer to Ap-
pendix 3. Figure 12 shows the disorder-averaged Lyapunov
exponent λ for chain geometries between 2 and 212 = 4096
transmons. We observe a tendency to more pronounced symp-
toms of classical chaos at larger system size. Beginning with
the integrable (flat line) two-transmon arrays, the Lyapunov
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FIG. 13. Heavy-hexagon geometry and IBM processors. A 1121-
transmon heavy hexagon layout with control (green) and target
(black) qubits. The colored cutouts indicate the growth of IBM’s
monolithic processor families, starting with the 27-qubits Falcon
(pink, introduced in 2019), continued by Hummingbird (yellow, 65
qubits, 2020), Eagle (orange, 127 qubits, 2021), and Osprey (blue,
433 qubits, 2022), and Condor (entire lattice, 1,121 qubits, 2023).

exponents show increasingly sharp increase at larger L. In
the next section, we will apply the classical analysis to trans-
mon architectures modeled after existing hardware layouts,
including two-dimensional geometries.

V. STATE-OF-THE-ART TRANSMON CHIPS

We now move away from the linear transmon chains
studied so far to two-dimensional geometries and, in particu-
lar, a selection of recently introduced processor generations.
Our conclusions will include suggestions for future design
modifications.

A. Large-scale IBM transmon chips

We study classical transmon dynamics on the heavy-
hexagon lattice, a design proposed by IBM as advantageous
when upscaling the number of qubits in cross-resonance ar-
chitectures [12,24]. Its layout consists of a hexagonal qubit
lattice with an additional transmon on each edge, as shown in
Fig. 13. (The cross-resonance two-qubit gate involves a target
and a control qubit whose correlation is microwave activated.
The above geometry with target qubits at nodes connected
via control qubits on the links of the lattice is tailored to this
design principle.) The colored segments illustrate the evolu-
tion of IBM’s processor families according to their quantum
roadmap [25], from Falcon (27 qubits, introduced in 2019) to
the 1121-qubit Condor chip (introduced in 2023).

The main difference compared with our previous analysis
is that now we are considering a two-dimensional geom-
etry with a higher transmon connectivity (which in our
simulations, however, does not imply a serious setback in
computational reach). We use the same Gaussian disorder
distribution as before, and choose initial configurations of in-
termediate energy density within the computational subspace.
To be specific, we will monitor the fate of two initial states,
one with all control qubits initialized in E1 and targets in E0,

FIG. 14. Lyapunov exponents of Falcon and Hummingbird pro-
cessors. Shown is a disorder-averaged Lyapunov exponent λ for
(a) the Falcon and (b) the Hummingbird processor geometry, respec-
tively. Data is for three different values of EJ , and states initialized
in the high (solid) and low (dotted) energy configuration. (EC =
250 MHz.)

the other one with exchanged roles E0 ↔ E1. Since there are
more control than target qubits (asymptotically by a factor
3/2), we refer to the former (latter) as the high-E (low-E )
configuration.

In Fig. 14, we compare the Lyapunov exponent for these
two distinct density patterns for (a) the Falcon and (b) the
Hummingbird layout and three different values of the Joseph-
son energy EJ . The data shows many commonalities with that
of the chain geometry: single parameter scaling in the variable
T

√
EJ , a steep increase towards a maximum, followed by

a gradual diminishing towards a plateau value, and larger
chaotic instability for states of higher energy. The Lyapunov
exponents of the two processors are similar. Both are larger by
about 30% than those of the linear geometry, i.e., the extension
to two dimensions leads to a noticeable, but not dramatic
increase in chaoticity. The earlier reaching of threshold values
such as λ � 0.04 implies that for larger chips one may need
to work with smaller intertransmon coupling to guarantee
stability.

In Fig. 15, we extend the analysis to all monolithic IBM
processors and show λ as a function of the coupling T for
each of the geometries shown in Fig. 13, and for the arrays
initialized in the high-E state. (The data for low-E initial-
ization looks qualitatively similar.) The tendency towards
dynamic instabilities rises with the total number of qubits in
the chip, e.g., the threshold value of λ = 0.04 (indicated by
the dotted line) is reached for smaller intertransmon coupling
T with increasing chip size, decreasing by about a factor
of two between the Falcon and Condor chips. This calls for
additional engineering efforts to avoid chaotic instabilities in
larger transmon chips.

B. Frequency-engineered transmon arrays

The fidelity of cross-resonance processor layouts may
be increased by introducing engineered frequency pat-
terns via the recently introduced laser-annealing technique
(LASIQ) [12]. The idea behind such patterning is similar
to that of engineered disorder. A detuning of neighboring
qubit frequencies avoids degeneracies, so-called frequency
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FIG. 15. Classical chaos in IBM quantum processors. Lyapunov
exponents of states initialized in the high-E configuration averaged
over ∼700 (Condor) to ∼15,000 (Falcon) realizations for all layouts
shown in Fig. 13. (EJ = 10 GHz and EC = 250 MHz.)

collisions, and their unwanted resonance effects. However,
there needs to remain a residual random frequency spread
(see Ref. [7] for details), the reason being that in a perfectly
engineered A-B-A-B pattern, the blocking of A-B degeneracies
would come at the price of a perfectly realized resonance
between next-next-neighbor A-A’s and B-B’s. Some degree of
frequency variation is required to prevent these next-nearest-
neighbor resonances. We are thus led to investigate a situation
with weak disorder on top of a regularly patterned back-
ground.

In Ref. [7], some of us considered the many-body physics
of a toy model of a 3 × 3 transmon array subject to A-B
sublattice patterning. In a nutshell, the combined effect of an
order-of-magnitude reduction of disorder and the A-B pattern-
ing leads to a restructuring of the Hilbert space into smaller
subspaces, denoted as permutation multiplets. Individual mul-
tiplets harbor all Fock spaces of a definite distribution of
occupations on the two sublattices. For example, {A11B111}
is the forty-dimensional multiplet defined by all states with
two A sites and three B sites in state |1〉 all others in |0〉. Multi-
plets are energetically separated by energy scales defining the
underlying A-B substructure. The intra-multiplet state struc-
ture is determined by the degree of residual disorder: from
Bloch state extended (asymptotically weak disorder), over
chaotically extended (weak disorder) and intra multiplet Fock
space localized (moderate disorder), to random hybridization
between multiplets (strong disorder), see Ref. [7].

Pattern-engineered transmon arrays with a residual fre-
quency randomness given by the current LASIQ precision hit
the desired spot of intramuliplet state localization (i.e., sup-
pression of nearest-neighbor resonances, but no hybridization
within the multiplets). This sweet spot is visible as a local
maximum in the IPRs shown in the right panel of Fig. 16,
where the four alternating vertical strips represent the regimes
of increasing disorder mentioned above. The colors repre-
sent multiplets of Hilbert space dimension between 1 and 60
defined by the different excitation patterns indicated in the
legend. The IPR ≈1 indicates a high level of state definition
for all multiplets at intermediate disorder.

FIG. 16. State localization in precision engineered transmon ar-
rays Lyapunov exponents (left) and IPRs (right) of computational
multiplets in a nine qubit AB patterned transmon array averaged
over 8000 realizations of disorder. (EJ,A = 12.58 GHz, EJ,B =
13.80 GHz, EC = 330 MHz [12] and T = 6 MHz.)

The left panel shows that the Lyapunov exponents of this
system (in its classical limit) do not fully reveal the quantum
mechanical state structure. However, they still define a use-
ful diagnostic tool. Upon increasing disorder, the Lyapunov
exponents remain structureless up until the point where the
optimal disorder concentration is reached. Pragmatically, one
may thus gather evidence on the preferred level of randomness
by running a Lyapunov analysis for a variety of multiplet
occupation patterns.

Following the general strategy of this paper, we have
pushed this analysis to system sizes beyond the reach of quan-
tum simulation. Figure 17 shows data for a 54-qubit C-A-C-B
patterned Hummingbird chip with 37 transmons initialized in
E1, and the remaining ones in E0. The blue line shows the

FIG. 17. Classical chaos in frequency-engineered Hummingbird
chips. Lyapnonov exponents of the C-A-C-B patterned Hum-
mingbird chip, with 37 (17) transmons in the E1 (E0) state.
(Adopting IBM parameters, we set EC = 330 MHz, and EJ =
(11.05, 11.33, 10.76) GHz for transmons on the (A, B,C) sites. The
coupling is set to T = 6 MHz and all results are averaged over 20 000
disorder realizations.
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Lyapunov exponents for the specific initial condition where
the 37 excited transmons are the 37 C’s, i.e., a configuration
corresponding to a one-dimensional quantum multiplet. We
observe structural similarity to the one-dimensional config-
uration shown in Fig. 16, and similarly low-lying Lyapunov
exponents. For the other configurations, with random distri-
bution of the excited transmons, the exponents assume larger
values. There is a gradual tendency to increased chaoticity
compared to that of the smaller system, following the general
trend observed in this paper. Finally, the more elaborate three-
frequency patterning does not appear to have a positive effect
on the stability of the system.

VI. SUMMARY

In this paper we have proposed simulations in the classical
limit h̄ → 0, but otherwise realistic system parameters, as
a potent benchmarking tool for the resilience of transmon-
based superconductor quantum information hardware against
chaotic instability. Our analysis proceeded in a succession
of four conceptual steps: (1) the demonstration of classical
chaos even in small-sized arrays and energies relevant to quan-
tum computation, (2) the construction of a correspondence
showing that classical chaos evidenced by finite Lyapunov
exponents implies quantum chaos evidenced by decreasing
wave function participation ratios, and the extension of this
correspondence to a quantitative tool, (3) the demonstration
that classical simulation is feasible for array sizes well beyond
current hardware limits (and orders of magnitude beyond the
reach of quantum simulations), and (4) application of this
toolbox to layouts modelled after current IBM chip designs.

The overall conclusion of this analysis is that the cur-
rent engineering of fixed coupling/fixed frequency transmon
architectures operates in a comparatively narrow corridor be-
tween insufficient and dangerously resonant coupling. We
observe a tendency to growing instability for larger arrays,
and for growing energy of computational states (more |1〉’s
than |0〉’s.) To fully understand the potential ramifications of
chaos in this setting, it may be necessary to extend the anal-
ysis from time independent signatures of wave functions to
dynamical protocols describing multiqubit structures in oper-
ation. Simulating the corresponding nonautonomous classical
dynamical system will be a subject of future research. We
finally remark that additional hardware overhead can signif-
icantly mitigate the effects discussed in this paper: The large
detunings in frequency-tunable transmons suppresses chaotic
behavior, and tunable couplers appear to provide lasting im-
munization against chaotic instabilities.

The numerical data shown in the figures are available on
Zenodo [49].
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APPENDIX

We complement our discussion of the main text with
three short Appendices. The first one provides a compact
introduction to the concept of Lyapunov exponents in clas-
sical chaos theory, a concept routinely used in our analysis,
and its numerical computation. The second Appendix gives
supporting documentation of the level of fluctuations of
Josephson energies in current-generation IBM devices. The
third Appendix provides technical background information
on the algorithmic scaling of our numerical approach and
the required compute times to simulate systems with 4000+
coupled transmons.

1. Lyapunov exponents

In the main body of this paper, we quantify classical in
terms of the maximal Lyapunov exponent λ, i.e., the rate of
divergence of initially nearby trajectories, see Fig. 18. Con-
sider the difference vector δπ = π − π ′ of two trajectories
π = (q, p) and π ′ = (q′, p′) in the 2S dimensional phase
space. Linearizing the equations of motion for small δπ yields

δπ̇ = Mδπ. (A1)

The matrix M contains the second derivatives of the Hamilton
function with respect to q and p. With the ansatz δπ (t ) =
π0 exp(λt ), one arrives at the eigenvalue equation

Mπ0 = λπ0. (A2)

The eigenvalues λ are referred to as Lyapunov exponents.
Phase space area conservation (Liouville theorem) imply that
the spectrum of exponents is organized in pairs of opposite
sign ±λ, where the existence of nonzero eigenvalues is an
indication of chaos. The exponent of the largest modulus then
determines the rate at which generic phase space separations
δπ diverge, and therefore is the prime quantifier of chaotic
instability. We refer to this maximal exponent as λ throughout.

In the main text, we compute the exponents by a method
proposed by Benettin [51], where two nearby trajectories are
evolved in time and the distance vector is repeatedly rescaled
at preserved direction. The time after the divergence exceeds a
certain phase space distance threshold ||δπ || then determines
λ, for details see the original paper [51] or Ref. [52]. To cross
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FIG. 19. Examples of IBM’s fixed frequency architectures.
Shown is the distribution of Josephson energies for one instance
of each processor generation, Falcon (27 qubits), Hummingbird
(65 qubits) and Eagle (121 qubits), available in the IBM Quantum
Cloud [18]. The EJ spreading is consistent with Gaussian disorder
(despite some postfabrication fine tuning).

check the results, we also compute the complete Lyapunov
spectrum via an alternative method, known as H2 [53,54]. In
either case, we use the implementation provided by the soft-
ware library DynamicalSystems.jl [52] that in turn is based
on DifferentialEquations.jl [55]. The equations of motion are
solved using the implementation of Tsitouras 5/4 Runge-
Kutta method [56]. It was checked that the results for λ are
unchanged if higher-order methods (Verner’s “Most Efficient”
7/6 Runge-Kutta method [57]), lower error thresholds and
longer evolution times (the exact λ is obtained as a t → ∞
limit) are used.

2. Disordered transmon arrays

A widely used, hardware-efficient entangling gate in
fixed-frequency architectures is the cross-resonance (CR)
gate [26,58], that switches on a ZX interaction by driving one
qubit with a neighboring qubit’s frequency. Effective models
for the CR gate [59,60] show that a small ratio of anharmonic-
ity and qubit frequency detuning δνq = ν1 − ν2, i.e., EC

hδνq
< 1,

weakens the strength of the effective interaction and thereby

slows down the gate. In state-of-the-art fixed frequency pro-
cessors, one typically finds a detuning of hδνq ≈ EC

2 , which
we take to be the definition of the disorder strength. In the
transmon regime EJ � EC , the qubit frequencies are well
approximated by hνq ≈ √

8ECEJ − EC [4], such that a scal-
ing of the Josephson energy spread δEJ according to δEJ =√

EJEC/8, as exploited in Sec. III B, guarantees the desired
frequency detuning. In addition, in the experimentally core
region of EJ � 40 GHz, the above choice of δνq reproduces a
variation of several hundred MHz in the Josephson energies,
in broad agreement with typical values of the as-fabricated
natural disorder in fixed-frequency architectures, see Fig. 19.
For the data shown in Fig. 9, we consider larger disorders
while maintaining the typical square root scaling of δEJ with
the average Josephson energy.

3. Algorithmic scaling

A difficulty in the exact diagonalization of the quantum
mechanical system is the transmon’s bosonic nature leading
to faster growth of the Hilbert space dimension n than the
computational space of a qubit system. Even when exploit-
ing the approximate conservation of particle number [7], and
considering the different blocks of the Hamiltonian in Eq. (3)
of the main text with the total excitation number N separately,
the resulting matrices have dimensions (N + L − 1)!/((L −
1)!N!), where L is the number of transmons. At half-filling
(the situation most commonly studied in this work and pre-
vious studies [6,7]), this yields an approximate scaling of
n ≈ 2.6L/

√
L for large L [6] – an exponentially faster growth

than the corresponding sector with equal numbers of 0’s and
1’s in the computational subspace whose dimension scales as
2L/

√
L [61]. This naturally implies that exact diagonalization

studies of coupled transmon arrays are restricted to small
systems, i.e., L � 18 even when using shift-invert diagonal-
ization techniques to extract individual eigenvectors at high

FIG. 20. Compute times for the classical simulations. Shown are
measurements of the compute time per core [of an Intel(R) Core(TM)
i5-8400 CPU @ 2.80 GHz] of the classical simulation of different
length transmon chains, for initial state |101010...〉, EC = 250 MHz,
EJ = 10 GHz, δEJ = 559 MHz and T = 50 Mhz, with different
absolute and relative error tolerances δ. The given lines are linear
fits for the longest five time values of each data set, showing the
asymptotic behavior. All calculated Lyapunov exponents have 10 000
underlying time steps.
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energies [6,61]. For the results in Fig. 9 we average, for each
disorder realization, the IPR over many eigenstates obtained
by full diagonalization of the N = 5 block of a 10-transmon
chain.

For the classical simulation, using an explicit ordinary
differential equation solver [55] for the calculation of the Lya-
punov exponents, the effort for a single time-step propagation
grows linear in system size. Naturally, the number of steps
of the differential equation solver also enters in the computa-
tional complexity. We find that the number of steps needed for
a desired accuracy during the integration of the equations of
motion does not increase with the size of the transmon array
and is a roughly constant value, such that the overall computa-

tional complexity to determine the Lyapunov exponent should
grow linearly in the number of transmons L. This is in good
agreement with the asymptotic behavior for large system sizes
shown in Fig. 20. Note that the numerically obtained value of
λ approaches the exact result only in the limit t → ∞ where
t is the total evolution time. The computational time increases
linearly with the total evolution time t . Comparing the results
for λ obtained with different t ranging from 103 to 5 × 105, we
find that convergent results are typically obtained t ≈ O(104)
time steps, such that, for example, analyzing one of IBM’s
Hummingbird processors containing 65 qubits takes ≈3.5 s
for an error tolerance (both relative and absolute) of 10−8 in
the integration of the differential equations.
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