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Time-domain interferometry of electron weak localization through terahertz nonlinear response
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We study theoretically the nonlinear optical response of disordered electrons in the regime of weak
(anti)localization. Our analytical and numerical calculations reveal that in orthogonal/symplectic class systems,
two consecutive, phase-coherent optical pulses generate an electric current echo that appears after the second
pulse, and at a time equal to the pulse delay time. The current echo reflects the quantum interference between a
self-intersecting electron path and its time-reversal partner, and, therefore, provides a time-domain interferometry
of weak (anti)localization. Our results can be potentially tested on disordered metal films by using terahertz
two-dimensional coherent spectroscopy or ultrafast transport measurements.
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I. INTRODUCTION

Weak localization is the quintessential quantum inter-
ference phenomenon that features prominently in two-
dimensional disordered conductors [1–4]. In such systems, the
charge transport is determined by the sum over electron tra-
jectories. Provided that the time-reversal symmetry is present
and the spin-orbit coupling is weak, a pair of time-reversed,
self-intersecting trajectories has equal quantum amplitude
and, therefore, would interfere constructively [5]. Electron
weak localization emerges from this constructive interference
process in that the latter reduces the electrical conductivity
from the Drude conductivity. In the opposite limit of strong
spin-orbit coupling, the weak antilocalization occurs due to
the destructive interference of the trajectory pairs, resulting in
an excessive conductivity [6].

A powerful diagnostic for the electron weak localization
is the magnetoresistance [1,7]. Applying a weak magnetic
field perpendicular to the conductor film breaks the time-
reversal symmetry in a controlled way. The time-reversed
trajectory pair now picks up Aharonov-Bohm (AB) fluxes
that are opposite in sign. The magnetic field suppresses the
weak localization by partially destroying the phase coherence
between the pair of trajectories. The suppression results in
a characteristic magnetoresistance curve, from which a key
physical quantity such as the electron phase coherence length
can be extracted.
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The magnetoresistance has been the canonical diagnostic
for electron weak localization since the latter’s discovery.
Yet, other mechanisms for magnetoresistance, such as the
Coulomb interaction [8,9], the superconducting fluctuation
[10], as well as their interplay with weak localization, can
significantly complicate the analysis of experimental data.
Therefore, it is desirable to develop alternative diagnostics,
which may allow for a cross examination of the data from
independent experimental probes, thereby offering a more
comprehensive view of the weak localization phenomenon.

In this work, we address the above problem by propos-
ing that the terahertz nonlinear optical response is up for
the task. It has long been recognized that the nonlinear
optical response and the quantum interference are deeply
linked [11–13]. We thus anticipate that the nonlinear optical
response from disordered electrons may develop unique sig-
natures tied to the weak localization. Meanwhile, the terahertz
frequency window matches well with the timescale for elec-
tron weak localization, namely, the phase coherence time τφ ,
which is of the order of a few picoseconds at a temperature
∼O(10) Kelvin [1,14].

Specifically, we analyze the nonlinear electric current gen-
erated by two consecutive, phase-coherent terahertz pulses,
with polarization parallel to the conductor film [Fig. 1(a)]. The
two pulses are separated by a delay time τ . For the sake of
simplicity, we omit the electron-electron and electron-phonon
interactions at the outset. Their impact on weak localization
is subsumed in a phenomenological electron phase coherence
time τφ added by hand. We focus on two prototypical symme-
try classes of the disorder [15], i.e., the orthogonal class and
the symplectic class, which describe a disordered metal in the
limit of zero and strong spin-orbit coupling, respectively.

Our field theory analysis, as well as numerical simulations,
reveal that the nonlinear current, measured as a function of
time tg after the second pulse (dubbed the gating time), ex-
hibits a peak [Fig. 1(b)]. Crucially, the peak appears at the
gating time tg = τ . As the pulse delay time τ increases, the
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FIG. 1. (a) Two linearly polarized, phase-coherent terahertz
pulses (Ea and Eb) with delay time τ generates a nonlinear electric
current ( j) in the disordered metal film. (b) j exhibits an echo at
gating time tg = τ . (c) The current echo arises from the interference
between a pair of time-reversed trajectories (blue and yellow). When
tg �= τ , the trajectory pair acquires different dynamical phases as the
electrons are at different locations when Eb kicks in. The loss of
phase coherence suppresses weak localization. The weak localization
is reinstated when tg = τ , which produces the echo.

peak appears later and later. This echo behavior originates
from the interference of time-reversed trajectory pairs, the
very same process responsible for weak localization. Heuris-
tically, the first pulse launches electron trajectories at time 0.
Among them, those that self-intersect at tg + τ contribute to
the nonlinear current at the time of measurement. For each
trajectory, there is a time-reversed trajectory that also con-
tributes. When tg �= τ , the electrons are at different positions
when the second pulse kicks in. As a result, the time-reversed
pair would pick up different dynamical phases, thereby sup-
pressing the weak localization. However, when tg = τ , the
weak localization reemerges due to the restoration of time-
reversal symmetry. This revival of weak localization gives rise
to the echo.

The current echo signal, which is also on the picosecond
scale, can be potentially detected by the terahertz two-
dimensional coherent spectroscopy [16,17]. In this kind of
experiment, one uses two phase-coherent terahertz pulses to
excite the metal film, and measures the terahertz electromag-
netic field radiated by the nonlinear current. Alternatively, the
nonlinear current may be generated and measured on chip
by using the latest time-resolved transport measurement tech-
niques [18,19].

The nonlinear optical response utilizes the delay time τ and
the gating time tg as knobs to control the coherence between
the pair of time-reversed trajectories. Therefore, it works
as a time-domain interferometry for electron weak localiza-
tion, which complements the magnetoresistance measurement
since the latter, employing the AB effect, can be viewed as a
space-domain interferometry.

Similar to the magnetoresistance, the nonlinear optical
response provides a means to probe electron phase decoher-
ence in disordered conductors. Inelastic scatterings due to
electron-electron and electron-phonon interactions result in
the phase decoherence. Consequently, the current echo fades
away exponentially when the pulse delay time τ increases.
In particular, the echo must disappear when τ is much larger

than the electron phase coherence time τφ as the interference
is no longer viable. One may then extract τφ by carefully
monitoring the echo decay.

The study of the nonlinear optical response of disordered
electrons has a rich and dynamic history [20–22]. It is there-
fore necessary to put our work in an appropriate context.
The current echo in the nonlinear optical response of an An-
derson insulator, namely, the strong localization regime, was
revealed in Ref. [23] by drawing analogy with an ensemble
of molecules subject to an inhomogeneous environment. The
echo mechanism in this case is quite different from the weak
localization regime. It is most easily understood in one di-
mension, where the strong disorder effectively breaks up the
conductor into disconnected segments. Each segment can be
viewed as a molecule, whose energy spectrum is drawn from
a distribution. The echo then arises from the dephasing and
rephasing processes triggered by the pulses akin to the Hahn
echo [24,25]. Apparently, this mechanism requires no time-
reversal symmetry since it does not rely on the interference of
time-reversed electron trajectory pairs.

Much closer to the spirit of this work is Ref. [26], where
an echo spectroscopy for weak localization was first proposed
in the context of cold atoms in optical lattices. It was shown
that the breaking and restoration of the time-reversal sym-
metry by a time-dependent perturbation can lead to the echo
phenomenon. Yet, Ref. [26] focuses on physical observables
such as position correlation or momentum distribution, which
are natural in cold-atom experiments [27], but challenging to
access with solid-state experimental tools. A main message of
the present work, therefore, is that the echo from the electron
weak localization can be directly observed through an ultra-
fast nonlinear optical response.

The rest of the manuscript is organized as follows. In
Sec. II, we describe the problem setup and the main results,
and provide a quick, heuristic derivation of these results. We
give a more rigorous derivation of the results based on the
nonlinear σ model in Sec. III. In Sec. IV, we test our analyt-
ical predictions by numerical simulations. Finally, we discuss
issues with experimental feasibility and a few important open
questions in Sec. V.

II. MAIN RESULTS

In this section, we present the main results from our ana-
lytical calculations. We first present a general expression for
the electric current response to an arbitrary electric field in
Sec. II A. We then specialize to the case of two consecu-
tive optical pulses, and analyze the resulted current echo in
Sec. II B. Finally, in Sec. II C, we give a heuristic derivation
of the results.

A. Nonlinear current response

We set the stage by first describing the setup used in this
work [Fig. 1(a)]. It is sufficient for our purpose to consider
a dirty metal film consisting of noninteracting electrons. The
interaction effects on weak localization are absorbed into a
phenomenological constant, i.e., the electron phase-coherence
time τφ . We assume the following hierarchy of timescales:
h̄/EF � τe � τφ , where EF is the Fermi energy and τe is the
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elastic scattering time. Note that the timescale of the terahertz
pulse is less or comparable with τφ , but much greater than τe.
In this diffusive metal regime, we may focus on the universal
behavior of the weak localization as described by the nonlin-
ear σ model.

We set the metal film in the xOy plane. The film is infinite
in both the x and y directions and has zero thickness in the
z direction. The linearly polarized, terahertz pulses propagate
in z with their polarization ‖ x. The electric field, measured
on the film, is denoted by E (t ). This electric field generates a
current, which is ‖ x and uniform in the xOy plane. We denote
the sheet current density by j(t ).

With this setup, the current density j(t ) is given by

j(t ) = σDE (t ) − η
G0

2π

∫ t

−∞

e
− f (t,t ′ )− t−t ′

τφ

t − t ′ E (t ′)dt ′. (1)

Here, σD is the Drude conductance. The second term describes
the weak localization correction. The parameter η encodes the
underlying symmetry class [6],

η =
{

1 (orthogonal)
− 1

2 (symplectic).
(2)

Here, η reflects the weak localization and antilocalization in
the limit of zero and strong spin-orbit coupling, respectively.1

G0 = 2e2/h is the conductance quantum.
The coherence factor f (t, t ′) captures the suppression of

the weak localization by a dynamical electric field,

f (t, t ′) = De2

h̄2

∫ t

t ′
[A(s) + A(t + t ′ − s) − 2A]2ds, (3a)

where

A = 1

t − t ′

∫ t

t ′
A(s)ds. (3b)

Here, A is the vector potential in the Coulomb gauge, namely,
E = −∂A/∂t . A is the “moving average” of the vector poten-
tial over the time window (t ′, t ). It is easy to check that f is
gauge invariant in the sense that shifting A(t ) by an arbitrary
constant does not change its value. D is the electron diffusion
constant of the metal.

Equation (1) is applicable to arbitrary electric field E (t ) as
long as its timescale is much larger than the elastic scattering
time τe. In the limit of E (t ) → 0, f → 0. Eq. (1) reduces to
the familiar expression for the weak localization conductivity
in the time domain. Said differently, the nonlinear response
to a strong electric field is encoded in the coherence factor f .
Furthermore, the effect of a dynamical electric field is nonper-
turbative in the sense that expanding j(t ) in powers of E yields
secular terms. For instance, expanding exp(− f ) to the first
order in f results in a third-order nonlinear conductivity σ (3),
whose magnitude grows with its time arguments, invalidating
the naive perturbative expansion in E . Crucially, f depends

1We use a simplified model where the spin-orbit coupling mani-
fests in the skewed impurity scattering that mixes electron spin [6].
Although this model cannot capture the rich spin-orbit coupling phe-
nomenon in real materials, it is sufficient for analyzing the universal
features of weak localization at low energy.

on the temporal profile of A as well as its time reversal with
respect to (t + t ′)/2. This structure is responsible for the echo
phenomenon described in Sec. II B.

B. Current echo

We apply Eq. (1) to the case of two consecutive optical
pulses. We illustrate the echo phenomenon by assuming that
the optical pulses are sufficiently short so that they may be
modeled as Dirac-δ functions,

E (t ) = Ea	δ(t ) + Eb	δ(t − τ ). (4)

Here, Ea,b and 	 are, respectively, the peak electric field
strength and the pulse duration. The pulse A arrives at the film
at time 0 and the pulse B at time τ . The vector potential is
given by

A(t ) = −Ea	
(t ) − Eb	
(t − τ ). (5)

Substituting the above into Eq. (1), we find the nonlinear
current measured at the time τ + tg,

jab(τ + tg) = −η
G0

2π

	

tg + τ
e
− f (τ+tg,0)− τ+tg

τφ Ea. (6)

Here, jab is the nonlinear current that depends on both Ea and
Eb, i.e., the cross effect of the two pulses. We have dropped
terms that depend on Ea or Eb alone. The coherence factor is
given by

f (τ + tg, 0) = 2De2E2
b 	2

h̄2

|τ − tg|
τ + tg

min{tg, τ }. (7)

Here, min{tg, τ } refers to the lesser of the two arguments.
Figure 2(c) shows jab calculated from Eq. (6) for the

orthogonal class (η = 1). Results for the symplectic class
(η = −1/2) can be obtained by multiplying the corresponding
results by a factor of −1/2. We use representative material
and pulse parameters: D = 1 cm2/s, τφ = 10 ps, Ea = Eb =
1 kV/cm, and 	 = 1 ps. For fixed pulse delay time τ , we ob-
serve a peak in the current response at tg = τ . This peak is the
current echo signal described in Sec. I. Mathematically, this
peak stems from the coherence factor: When |tg − τ | is large,
f 	 1, which, in turn, suppresses jab exponentially. However,
when τ = tg, f = 0, thereby exposing the contribution due to
weak localization.

The maximum of jab, located at tg = τ , is given by

jab(2τ ) = −η
G0

2π

	

2τ
e−2τ/τφ Ea. (8)

We see that the height of the peak traces the electron de-
coherence. As the pulse delay τ increases, the peak appears
later and later; meanwhile, its magnitude decreases. The peak
eventually vanishes when τ 	 τφ . Thus, we may extract the
coherence time τφ by carefully monitoring how the echo fades
away with τ .

The width of the peak, W , can be tuned by the pulse
parameters Eb and 	, namely, W ∝ 1/(Eb	)2. Specifically,
a stronger pulse makes the peak sharper. Experimentally, one
may choose appropriate Eb such that the width of the peak
matches the time resolution of the instrument.
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FIG. 2. (a) Nonlinear current density jab as a function of the
pulse delay time τ and the gating time tg for the orthogonal class
(η = 1) and Dirac-δ pulses. [(b),(c)] The real and imaginary parts of
the two-dimensional coherent spectrum, obtained by Fourier trans-
forming the time-domain data shown in (a). Only the first and fourth
quadrants are shown as the spectrum in the other half plane is related
by complex conjugation. (d) tg scan of the time-domain data for
representative values of τ . Dashed line traces the peaks of the current
echo. Note that the data in [(a)–(c)] are in arbitrary units, whereas
(d) shows the original data without any rescaling.

The echo signal can be measured by using the terahertz
two-dimensional coherent spectroscopy [16,17]. The experi-
mental setup is identical to the one considered in this section.
The spectroscopy detects the current echo through the lat-
ter’s terahertz electromagnetic radiation. Scanning both tg and
τ produces a two-dimensional plot for the nonlinear signal
[Fig. 2(a)]. The echo manifests itself as the diagonal fea-
ture extending up to τφ . The two-dimensional spectrum is
then obtained by Fourier transforming the time-domain data
[Figs. 2(b) and 2(c)]. The echo appears as a highly anisotropic
peak in the fourth quadrant. The width of the peak in the
antidiagonal direction is approximately proportional to 1/τφ ,
whereas the width of the peak in the diagonal direction is
controlled by 1/W .

Having illustrated the current echo phenomenon, we now
show that the phenomenon is robust with more realistic pulse
profiles. To this end, we use single-cycle pulses: E (t ) =
Eae− t2

2	2 cos(ω0t ) + Ebe− (t−τ )2

2	2 cos[ω0(t − τ )]. Figure 3 shows
the nonlinear current jab obtained by numerical integration of
Eq. (1). We set the central frequency ω0 = 3 THz. Ea = Eb =
1 kV/cm. 	 = 0.707 ps. The material parameters are D =
2 cm2/s and 1/τφ = 0. The current echo peak is clearly vis-
ible, but the overall magnitude of the signal is weaker than
that of the Dirac-δ pulses. This is due to the fact that the
single-cycle pulse with the same value of Ea and 	 has less
area under the pulse.

FIG. 3. Nonlinear current density jab as a function of gating time
tg (solid lines) induced by single-cycle pulses (inset) for representa-
tive values of pulse delay time τ .

C. Heuristic derivation

We derive Eq. (1) heuristically by adapting the semiclassi-
cal treatment of Ref. [2] to the problem at hand. We consider
the orthogonal class (η = 1) for simplicity. To this end, we
consider the probability density for the electron to start at time
t ′ from some position and return to the same position at later
time t , dubbed W (t, t ′). W (t, t ′) may be expressed as a double
path integral,

W (t, t ′) =
∫

Dr′Dre
i
h̄ (S[r]−S[r′]), (9)

where r and r′, respectively, correspond to the forward and
backward time evolution. r(t ) = r(t ′) = 0, and the same holds
for r′. S is the action,

S[r] =
∫ t

t ′

[
mṙ2

2
− V (r) + eAα (s)ṙα (s)

]
ds, (10)

where V (r) represents the disorder potential. Aa(s) is the
time-dependent, spatially uniform vector potential due to the
terahertz pulse. α = x, y labels the Cartesian components.

Due to the disorder potential, the paths r and r′ are
phase incoherent, except for two special cases. The first
case is r(s) = r′(s), i.e., the forward and backward paths
are identical. They are always in phase because S[r] = S[r′].
Responsible for the weak localization is the second case,
r(s) = r′(t + t ′ − s), i.e., the two trajectories are time-reversal
partners. We have

i(S[r] − S[r′]) = ie
∫ t

t ′
Aα (s)[ṙα (s) − ṙ′α (s)]ds

= ie
∫ t

t ′
[Aα (s) + Aα (t + t ′ − s)]ṙα (s)ds.

(11)

Therefore, they are almost in phase barring the dynamical
vector potential. We may express its contribution to W as

W̃ (t, t ′) = 〈ei e
h̄

∫ t
t ′ [A

α (s)+Aα (t+t ′−s)]ṙα (s)ds〉, (12)

where the average is over closed paths r. W̃ is a measure of
weak localization correction to electron transport [2].

As the electron essentially undergoes random walk due to
disorder potential scattering, we may well approximate r as
Brownian motion. We discretize the time evolution into slices.
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Over a time slice dt , the electron displacement is given by
drα , where drα is a Gaussian random vector with variance
〈drαdrβ〉 = 2Ddtδαβ , with D being the electron diffusion
constant. We thus have

W̃ (t, t ′) =
〈
δ

(∑
s

drs

)
ei e

h̄

∑
s[A

α (s)+Aα (t+t ′−s)]drα
s

〉
. (13)

The average is now over dra
s . The Dirac-δ function enforces

the constraint that r starts from and returns to the same loca-
tion. It can be replaced by an integration over the Lagrange
multiplier qα ,

W̃ (t, t ′) =
〈∫

d2q

(2π )2
ei

∑
s{qα+ e

h̄ [Aα (s)+Aα (t+t ′−s)]}drα
s

〉
=

∫
d2q

(2π )2
e−D

∫ t
t ′ {qα+ e

h̄ [Aα (s)+Aα (t+t ′−s)]}2ds. (14)

In the second line, we average over drα
s and then take the

continuous limit dt → 0. Integrating over qα , we obtain

W̃ (t, t ′) = e− f (t,t ′ )

4πD(t − t ′)
, (15)

where f is the coherence factor given by Eq. (3). Up to a
constant prefactor, W̃ is essentially the same as the weak
localization part of Eq. (1). The phase-coherent time τφ in
Eq. (1) is added by hand.

This heuristic derivation shows that the coherence factor
captures the suppression of the phase coherence between a
pair of time-reversed electron trajectories by a time-dependent
electric field. Specializing to the case considered in Sec. II B,
we may compare the dynamical phases picked up by r(s) and
its time-reversal partner r(τ + tg − s) [Fig. 1(b)] [26]. For the
former path, the dynamical phase due to pulse B is given
by e

∫
Aα (s)ṙα (s)ds/h̄ ∼ eh̄

∫
rα (s)Eα (s)ds/h̄ = ex(τ )Eb/h̄.

For the latter path, the phase is ex(tg)Eb/h̄. Therefore, the
two paths accumulate different phases when tg �= τ . However,
when tg = τ , the two paths acquire the same dynamical phase.
The loss and reinstatement of phase coherence leads to the
suppression and resurgence of the weak localization, which,
in turn, produces the current echo.

III. FIELD THEORY

In this section, we justify Eq. (1) by field theory [28].
Although it can be obtained by adapting the classic analysis
of Ref. [29], the present treatment provides a rigorous and
systematic derivation from the perspective of the effective
action. As we shall see, Eq. (1) results from the one-loop ap-
proximation to the effective action, which, in principle, can be
improved by going to high orders in the loop expansion. Our
derivation is also partly pedagogical in that it serves to connect
the field theory approach to more well-spread methods such
as the quantum kinetic equation and Cooperon equations. We
illustrate the procedure for the orthogonal class. Since the
calculations for the symplectic class are largely in parallel, we
refer the interested reader to Appendix A for a brief discussion
of this class.

In the orthogonal class, it is sufficient to consider spinless
electrons because spin-up and -down states are decoupled.

The starting point is the nonlinear σ model defined by the
action (we use h̄ = e = 1 in this section),

iS[Q] = πNF

2
Tr

(
∂̌t Q̌ − D

4
∇α

A Q̌∇α
A Q̌

)
, (16)

where NF is the density of states per spin at the Fermi level.
Tr denotes the trace over all the matrix indices as well as
integration over space.

Q̌(r) is the 4Nt × 4Nt matrix field in the time-reversal ⊗
Keldysh space, where Nt is the number of time slices. Q̌ is
subject to the following constraints:

Q̌2 = Ǐ; Q̌† = Q̌; Y̌ Q̌Y̌ = −Q̌T ; Y̌ ≡
(

0 Î
−Î 0

)
. (17)

We use the convention that M̌ stands for a 4Nt × 4Nt matrix
in the time-reversal ⊗ Keldysh space, whereas M̂ stands for
a 2Nt ⊗ 2Nt matrices in the Keldysh space. Furthermore, M̌ts

refers to the 4 × 4 block of M̌ with designated time arguments
t and s, whereas M̂ts refers to the 2 × 2 block of M̂.

∂̌t is the time-derivative matrix written in the time-reversal
space: ∂̌t ≡ diag(∂t , ∂t ,−∂t ,−∂t ). ∇α

A Q̌ is the gauge covariant
derivative, ∇α

A Q̌ ≡ ∇aQ̌ − i[Ǎα, Q̌]−, where [·, ·]− stands for
the matrix commutator. Ǎα ≡ diag(Aα, Aα,−Aα,−Aα ). We
use the Coulomb gauge, ∇αAα = 0.

We seek the effective action �[Q̌0], where Q̌0 stands for
the expectation value of Q̌. This strategy is motivated by the
observation that the charge density is related to Q̌0 through the
following relation:

ρ(r, t ) = πNF Ns

4
tr[γ̌qQ̌0,tt (r)]. (18)

Here, Ns = 2 is the number of spin species. γ̌q is the 4 × 4
charge density vertex: γ̌q = diag(τ̂ 1, τ̂ 1), where τ̂ 1 is the first
Pauli matrix. As a result, the stationary point of the effective
action, δ�[Q̌0]/δQ̌0 = 0, encodes the charge transport equa-
tion. In what follows, we illustrate the procedure step by step.

A. Parametrizing the stationary point

We write the stationary point as

Q̌0(r) = Ř(r)�̌Ř(r)−1. (19a)

�̌ ≡ diag(I,−I, I,−I ) is a constant matrix. Ř(r) is a block
diagonal matrix that parametrizes the stationary point,

Ř(r) = diag[R̂(r), R̂(r)T,−1], (19b)

where the block R̂, in turn, is given by

R̂(r) =
(

I 0
Z (r) I

)(
I F (r)
0 −I

)
. (19c)

F (r) and Z (r) are Nt × Nt matrix fields parametrizing the
stationary point. F plays the role of distribution function,
whereas Z describes the deviation of Q̌0 from the causal form.
When Z = 0, Q̌0 is causal.

We bring in the fluctuations by writing

Q̌(r) = Ř(r) exp

[
i

2
Ǧ(r)

]
�̌ exp

[
− i

2
Ǧ(r)

]
Ř(r). (20)

Ǧ generates soft fluctuations about the stationary point. The
constraints on Q̌, as well as the requirement that Ǧ must
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induces nontrivial rotations on �̌, fixes Ǧ to the following
form:

Ǧ(r) =

⎛⎜⎜⎝
0 d (r) 0 c(r)

d (r)† 0 c(r)T 0
0 c(r)∗ 0 −d (r)∗

c(r)† 0 −d (r)T 0

⎞⎟⎟⎠, (21)

where c(r) and d (r) are Nt × Nt matrix fields corresponding
to the diffusion and Cooperon, respectively.

B. Finding the stationary point

We substitute Eq. (20) and Eq. (21) into the action, and
expand it to quadratic order in c and d:

iS[Q̌] = iS0[F, Z] + iS1[F, Z, c, d] + iS2[F, Z, c, d]. (22)

iS0[F, Z] is the value of the action at the stationary point. S1

and S2 are, respectively, linear and quadratic in c, d . At one
loop, the effective action is given by [30]

i�[F, Z] = iS0[F, Z] + ln
∫

DcDdeiS2[F,Z,c,d]. (23)

The first term is the tree level contribution; the second term is
the one-loop correction.

In principle, we may find the stationary point by first com-
puting i�[F, Z] and then taking derivatives with respect to
F, Z . Here, we take a shortcut. Setting Z = 0, the stationary
point is causal and, consequently, all closed loops vanish.
This fact implies i�[F, 0] = 0 for any F . We deduce that the
stationary point is located at (F, 0), with F being determined
by

i
δ�

δZ

∣∣∣∣
Z=0

= 0. (24)

Substituting Eq. (23) into the above equation, we obtain

i
δS0

δZ

∣∣∣∣
Z=0

+
〈
i
δS2

δZ

∣∣∣∣
Z=0

〉
c,d

= 0. (25)

The average is performed with respect to the fluctuations in c
and d , which are governed by the action S2[F, Z = 0, c, d].

We now need the explicit expression for iS0 and iS2 to
progress further. After some algebra, we find

iS0 = 2πNF Tr
{
[∂t , Z]−F − D

(∇α
A F

)(∇α
A Z

)}
, (26a)

iS2 = −πNF

2
Tr

{
c†[∂t , c]+ + Dc†(−∇′

A)2c

− 2D
(∇α

A Z
)
c
(∇α

A F
)T

c∗} + · · · . (26b)

We have dropped from S2 terms that do not contribute to the
kinetic equation. [·, ·]+ denotes the anticommutator. ∇′α

A ≡
∇α − i[A, ·]+ is the covariant derivative for the Cooperon
field.

Substituting the above expressions into the stationary point
condition given by Eq. (25), we obtain the kinetic equation,

[∂t , F (r)]− + ∇α
A Jα

F (r) = 0. (27a)

Jα
F can be interpreted as a current associated to the distri-

bution function,[
Jα

F (r)
]

t1t ′
1
= − D

[∇α
A F (r)

]
t1t ′

1
+ D

πNF

∫
dt2dt ′

2

× [∇α
A F (r)

]
t2t ′

2
Ct1t ′

2,t2t ′
1
(r, r). (27b)

The first term comes from the classical action iS0; the
second arises from the correction due to the fluctuations in the
Cooperon field, namely, i〈δS2/δZ〉c,d . The Cooperon propa-
gator is

Ct1t ′
1,t2t ′

2
(r1, r2) ≡ πNF

2

〈
ct1t ′

1
(r1)c∗

t2t ′
2
(r2)

〉
. (28)

It obeys the Cooperon equation [29]{
∂t1 − ∂t ′

1
+ D[−i∇α − Aα (r1, t1) − Aα (r1, t ′

1)]2

+ 1

τφ

}
Ct1t ′

1,t2t ′
2
(r1, r2) = δt1t2δs1s2δr1r2 . (29)

Equation (29) can be read off from the kernel of the quadratic
action iS2. Here, we have added a mass term 1/τφ by hand to
account for electron decoherence effects.

C. Charge transport equation

The next step is to extract a charge transport equation from
the kinetic equation given by Eq. (27). It is convenient to per-
form a change of time variables to the central time T = (t1 +
t ′
1)/2 and the time difference s = t1 − t ′

1 [29]. The Cooperon
propagator is diagonal in T ,

CT T ′
ss′ ≡ CT + s

2 ,T − s
2 ;T ′+ s′

2 ,T ′− s′
2

= CT
ss′δ

T T ′
. (30)

The superscripts (subscripts) correspond to the central times
(time differences). The Cooperon equation now acquires a
simplified form,{

2∂s + D
[ − i∇α − Aα,T

s (r)
]2 + 1

τφ

}
CT

ss′ = δss′δrr′ . (31)

The shorthand notation Aα,T
s (r) = Aα (r, T + s/2) +

Aα (r, T − s/2). Meanwhile, the kinetic equation reads

∂T F T
s + [∇α

A Jα
F (r)

]T

s = 0, (32a)[
Jα

F (r)
]T

s = −D
(∇α

A F
)T

s + 2D

πNF

∫
dT ′

× [∇α
A F (r)

]T ′

s C
T +T ′

2
T −T ′+s,T ′−T +s(r, r).

(32b)

To make contact with the charge density, we substitute
Eq. (19) (with Z = 0) into Eq. (18),

ρ(r, T ) = πNF NsF
T

s=0(r). (33)

Therefore, the charge density is given by the s = 0 component
of the distribution function F T

s . We observe that s appears as a
parameter in the kinetic equation. Setting s = 0 and massag-
ing the equations a little, we obtain the charge conservation
law,

∂tρ + ∇α jα = 0. (34a)
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The electric current ja obeys a generalized Fick’s law,

jα (r, t ) = −
∫

Dtt ′ (r)(∇αρ − NF NsE
α )(r, t ′)dt ′. (34b)

The nonlocal diffusion constant is given by

Dtt ′ (r) = Dδtt ′ − 2D

πNF
C

t+t ′
2

t−t ′,t ′−t (r, r). (34c)

Equation (34) is the key result of this section.
Finally, we apply Eq. (34) to the case considered in Sec. II.

∇αρ = 0 because the electric field E is spatially uniform. The
electric current reads

j(t ) = σDE (t ) − 2NsD

π

∫
C

t+t ′
2

t−t ′,t ′−t (r, r)E (t ′)dt ′. (35)

Here, σD = NF NsD is the Drude conductance. Solving the
Cooperon equation by a spatial Fourier transform, we find the
equal-position Cooperon propagator,

C
t+t ′

2
t−t ′,t ′−t (r, r) = θ (t − t ′)

e−(t−t ′ )/τφ

8πD(t − t ′)
e− f (t,t ′ ), (36)

where f (t, t ′) is the coherence factor given by Eq. (3). Substi-
tuting the above into the expression for the current, we obtain
Eq. (1) for the orthogonal class after restoring h̄ and e.

IV. NUMERICAL TESTS

In this section, we test the analytic predictions from Sec. II
by a direct numerical simulation. We describe our numer-
ical methodology in Sec. IV A. The numerical results are
presented in Sec. IV B. Throughout this section, we use the
natural units h̄ = e = 1.

A. Model and method

We model the disordered electrons by a tight-binding
model on an L × L square lattice subject to periodic boundary
conditions,

H = −
∑
〈mn〉σ

R(m, n)σσ ′c†
mσ cnσ ′ +

∑
nσ

hnc†
nσ cnσ . (37)

Here, cnσ (c†
nσ ) annihilates (creates) an electron with spin σ

on site i. 〈mn〉 labels the oriented nearest-neighbor bonds on
the square lattice. We rescale the unit of energy such that
the hopping amplitude is 1. hn describes the on-site disorder
potential; it is drawn uniformly from [−V,V ].

R(m, n) ≡ R(n, m)† is a 2 × 2 matrix in the spin space
[31]. Its form depends on the symmetry class,

R(m, n) = eiAmn (t ) ×
{

I (orthogonal)
g ∈ SU(2) (symplectic). (38)

Here, g is a random SU(2) matrix uniformly drawn from the
Haar measure. Amn(t ) = Aα (t )(rα

m − rα
n ) is the time-dependent

vector potential on the bond mn, through which the electro-
magnetic field pulse acts on the electrons.

The quantity of interest is the electric current density gen-
erated by the time-dependent electric field,

jα (t ) =
∫

dεn f (ε)tr[U (t )†Jα (t )U (t )δ(ε − H0)]. (39)

Here, n f (ε) is the Fermi-Dirac distribution function. Jα (t ) and
U (t ) are, respectively, the current density operator and the
time evolution operator in the one-electron state space. H0 is
the initial Hamiltonian before the impact of the electric field.

We employ the kernel polynomial method to evaluate
Eq. (39) [32]. To this end, we rescale the Hamiltonian such
that its entire spectrum falls inside the interval [−1, 1]. Ex-
panding the Dirac-δ function in Eq. (39) by Chebyshev
polynomials, we obtain

jα (t ) =
M∑

n=0

cngnμn(t )
∫

dε
n f (ε)

π
√

1 − ε2
Tn(ε). (40)

Here, M is the maximal expansion order. cn = 1/(1 + δn,0).
gn is a coefficient due to the Jackson kernel. Tn(ε) is the
nth Chebyshev polynomial of the first kind. μn are the nth
Chebyshev moments,

μn(t ) = Tr[U (t )†Jα (t )U (t )Tn(H0)]

= 1

R

∑
r

〈r|U (t )†Jα (t )U (t )Tn(H0)|r〉. (41)

In the second line, we have replaced the trace by an
average over random vectors |r〉, whose components are in-
dependently drawn from complex Gaussian distribution with
variance 1. R is the number of random vectors used. The state
|r′〉 = Tn(H )|r〉 can be efficiently computed using the recur-
sion relation. Meanwhile, we compute the unitary evolution
of the states U (t )|r〉 and U (t )|r′〉 by using another Chebyshev
expansion,

e−iH (t )ε |ψ〉 =
M ′∑

n=0

(−i)ncnJn(ε)Tn[H (t )]|ψ〉. (42)

Here, |ψ〉 is a state vector. cn is the same as in Eq. (40). Jn(t ) is
the Bessel function of the first kind. ε is a small time interval.
The above expansion rapidly converges when ε is small. The
action of Tn[H (t )] on |ψ〉, again, can be efficiently computed
by using the recursion relation.

In practice, we use Dirac-δ pulses with EA	 = EB	 = 1
for simplicity. The electric field is polarized along the x di-
rection. The strength of the on-site disorder potential is V = 2
in the orthogonal class, whereas it is V = 1 in the symplectic
class. The system size L = 1000. As the Hilbert space dimen-
sion is 2 × 106, R = 1 is sufficient for computing the trace.
We use M = 50 moments for computing the current density
and M ′ = 10 for time evolution with ε = 1. We average over
500 disorder samples to obtain good statistics for jx(t ).

B. Numerical results

Figure 4 shows the numerically computed electric cur-
rent generated by two consecutive Dirac-δ pulses. We set
the temperature to 0 and the chemical potential EF to the
representative value −0.6. As the echo signal is independent
of the polarization of the B pulse, we symmetrize our data
with respect to Eb and −Eb to remove undesired nonlinear
responses. The current echo is clearly seen as the diagonal
feature in the two-dimensional plot of the current as a function
of the pulse delay time τ and the gating time tg [Fig. 4(a)],
in qualitative agreement with the analytical results shown
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FIG. 4. (a) Numerically computed current density jx (t ) as a
function of the pulse delay time τ and the gating time tg in the
orthogonal class. The stronger linear response at short times is color
saturated in order to reveal the current echo. [(b),(c)] The real and
imaginary parts of two-dimensional Fourier transform of the data in
(a). (d) tg scan of the data in (a). The solid and dashed lines show,
respectively, the numerical data and the analytical results given in
Eq. (6). The shaded area denotes the error bar.

in Fig. 2. The two-dimensional spectrum also resembles its
analytic counterpart [Figs. 4(b) and 4(c)].

Figure 4(d) shows a quantitative comparison between
the numerical data (solid lines) and the analytic predictions
(dashed lines). To this end, we fit Eq. (6) to the numerical data
by adjusting the electron diffusion constant D, which is the
only free parameter. We find D ≈ 1.04 results in a good fit.
We note that Eq. (6) predicts a cusp in the current echo peak,
which is rounded off in the numerical data. This difference is
likely due to the details of the electronic structure that are not
captured by the field theory.

We find the same good agreement between the numeri-
cal data and the analytic predictions in the symplectic class
(Fig. 5). Here, we set the temperature to 0 and the chemical
potential EF = −0.57. Compared with the orthogonal class,
the echo in the symplectic class reduces by half in its mag-
nitude and changes the sign. A fit of the analytic result given
by Eq. (6) to the numerical data indicates that the diffusion
constant D ≈ 1.37.

We further corroborate our analytic results by investigat-
ing the behavior of the echo in the presence of an external
magnetic field perpendicular to the film. We expect that the
magnetic field suppresses the echo as it breaks the time-
reversal symmetry. In the presence of the magnetic field B,
the nonlinear current reads

jab(B, τ + tg) = φ[2BD(τ + tg)] jab(0, τ + tg), (43)

where φ(x) ≡ x/ sinh(x). jab(0, τ + tg) is the nonlinear cur-
rent in the absence of the magnetic field given by Eq. (6).
Note that Eq. (43) omits the magnetic field’s Zeeman coupling

FIG. 5. Similar to Fig. 4, but for the symplectic class.

to the electron spin as its impact on the weak localization is
negligible compared with the orbital effect. We derive Eq. (43)
by solving the Cooperon equation in the presence of mag-
netic field, and plugging the resulting Cooperon propagator
in Eq. (34). The details of the calculation are provided in
Appendix B.

Equation (43) indicates that the magnetic field results in the
suppression of the nonlinear current response. The mechanism
is the same as that of the magnetoresistance, namely, the time-
reversed electron trajectory pairs pick up opposite AB phases.
Figure 6 shows the current echo as a function of the magnetic
field, measured in units of the magnetic flux per plaquette, for
fixed pulse delay time τ . The model parameters are the same
as in those for Fig. 4 (orthogonal class) and Fig. 5 (symplectic
class). We see that the echo diminishes as the magnetic field
increases for both symmetry classes. Furthermore, we find
good agreement between the numerical data (solid lines) and
analytic results (dashed lines) with the same fitting parameter,
namely, D = 1.04 for the orthogonal class and D = 1.37 for
the symplectic class.

V. DISCUSSION

In summary, we have analyzed the nonlinear optical re-
sponse of a disordered metal in the weak localization regime.
Our main finding is that two consecutive optical pulses,
preferably in the terahertz range, can trigger a current echo
response. This echo reflects the quantum interference between
a pair of time-reversed electron trajectories, the same process
that produces the weak localization. In particular, one may
measure the electron coherence time by carefully monitoring
the gradual decay of the echo signal as a function of the pulse
delay.

This current echo can be detected by terahertz two-
dimensional coherent spectroscopy [16,17] or ultrafast trans-
port measurement [18,19], thereby offering an experimental
diagnostic for electron weak localization complementary to
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FIG. 6. The current echo in the presence of a perpendicular
magnetic field. (a) The orthogonal class. The solid line represents
the numerical data for three representative magnetic field strengths,
measured in units of flux per plaquette �. The dashed line denotes
the analytic result from Eq. (43). The shaded area marks the error
bar. (b) Similar to (a), but for the symplectic model.

the magnetoresistance measurement. For a single layer of
disordered metal, the current echo signal is of the order of
j ∼ 1 mA/cm with an excitation pulse Ea = 1 kV/cm
(Fig. 2). The electric field strength of the terahertz radiation
is of the order of E = Z0 j/2 ∼ 0.2 V/cm, which is weak but
should be within the reach of available terahertz technology.
We expect that stacking multiple layers would enhance the
signal strength.

Our calculation focuses on the two opposite limits, namely,
the weak (anti)localization in the limit of zero (strong) spin-
orbit coupling (SOC). One may naturally ask what happens
when the strength of the SOC does not fall into either of the
two limits. In the presence of SOC, the Cooperon comes in
two species, i.e., the spin singlet and the spin triplet. The
singlet Cooperon is always gapless. By contrast, the triplet
Cooperon acquires a gap that scales with the strength of SOC.
In the limit of strong SOC, the triplet Cooperon is irrelevant to
the electron dynamics. The singlet Cooperon alone is respon-
sible for the weak antilocalization. However, with moderate
SOC, the triplet Cooperon has a finite but small gap. In this
case, we expect a crossover from the orthogonal class to the
symplectic class, or weak localization to weak antilocalization
as the relevant energy scale decreases. Specific to the echo
phenomenon considered in the present work, we expect an
interesting sign change in the echo signal as the pulse delay
time τ exceeds the timescale set by the strength of SOC.

On the theory front, our work leaves a couple of interesting
open questions. In deriving our results, we have made the
simplifying assumption that the electrons are noninteracting.
It is well known that the Coulomb interaction can lead to an

anomalous correction to the linear conductivity; this correc-
tion has a functional dependence on the external magnetic
field and frequency similar to the weak localization [8]. These
two contributions must be carefully unravelled in the magne-
toresistance measurement. Although we expect that the echo
is robust against the Coulomb interaction, the latter might
have a nontrivial impact on the nonlinear optical response.
The approach presented in Sec. III will prove useful in treating
this problem.

Another interesting open problem is the fate of the current
echo as the system crosses over from the weak localization
to the strong localization. As discussed in Sec. I, an echo
also exists in the strong localization regime, albeit due to a
very different mechanism. It is likely that as the system enters
the strong localization regime, the mechanism discussed in
this work gradually subsides as the second mechanism sets
in. Exactly in which manner this unfolds is unclear at the
moment.

In a broader context, our work attests to the profound
connection between the nonlinear response and quantum in-
terference, which we believe produces rich physics that calls
for further exploration.
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APPENDIX A: SYMPLECTIC CLASS

The derivation of the charge transport equation in the sym-
plectic symmetry class is in the same vein as the orthogonal
class. We therefore focus on the differences between the two
classes. In the symplectic case, the spin-up and spin-down
electrons are mixed by the spin-orbit coupling. The action of
the corresponding nonlinear σ model reads

iS[Q] = πNF Tr

(
∂̌t Q̌ − D

4
∇α

A Q̌∇α
A Q̌

)
. (A1)

Compared with the action for the orthogonal class, there is an
extra factor of 2 in front of the action, which reflects the fact
that the spin-up and -down electrons both enter the action. The
matrix field Q̌ is subject to a set of constraints,

Q̌2 = Ǐ; Q̌† = Q̌; X̌ Q̌X̌ = Q̌∗; X̌ ≡
(

0 Î
Î 0

)
. (A2)

We see that the third constraint is different from the orthogo-
nal class.

As with the orthogonal class, we parametrize the stationary
point and the fluctuations about it as

Q̌(r) = Ř(r) exp

(
i
Ǧ(r)

2

)
�̌ exp

(
−i

Ǧ(r)

2

)
Ř−1(r). (A3)
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Here, the definitions of Ř and �̌ are the same as the orthog-
onal class. In particular, Ř parametrizes the stationary point
through the matrix fields F and Z . However, the matrix field
Ǧ, which describes fluctuations about the stationary point,
acquires a different form due to the different constraint men-
tioned above,

Ǧ(r) =

⎛⎜⎜⎝
0 d (r) 0 c(r)

d†(r) 0 −cT (r) 0
0 −c∗(r) 0 −d∗(r)

c†(r) 0 −dT (r) 0

⎞⎟⎟⎠. (A4)

Exponentiating Ǧ produces the symmetric space
O(4Nt )/[O(2Nt ) ⊗ O(2Nt )]. By contrast, exponentiating
the Ǧ in the orthogonal class yields the symmetric space
Sp(2Nt )/[Sp(Nt ) ⊗ Sp(Nt )].

Expanding the action up to quadratic order in c, d , we
obtain

iS0 = 4πNF Tr
{
[∂t , Z]F − D

(∇α
A F

)(∇α
A Z

)}
(A5a)

and

iS2 = − πNF Tr
{
c†[∂t , c]+ + Dc†(−∇′

A)2c

+ 2D
(∇α

A Z
)
c
(∇α

A F
)T

c∗} + · · · . (A5b)

We suppress terms in S2 that do not contribute to the kinetic
equation. Both expressions gain an extra factor of 2 compared
to the corresponding expressions in the orthogonal class. More
importantly, the sign in front of the ∇α

A Z (∇α
A F )T term has a

plus sign instead of the minus sign. This sign difference is re-
sponsible for the weak antilocalization effect in the symplectic
class.

The kinetic equation and the charge transport equation can
now be derived in the same vein. We find a slightly different
diffusion constant,

Dtt ′ (r) = Dδtt ′ + D

πNF
C

t+t ′
2

t−t ′,t ′−t (r, r). (A6)

Here, the propagator C obeys the same Cooperon equation.
We see that the Cooperon correction to the diffusion constant
has an extra factor of η = −1/2 compared to the orthogonal
class, which results in the η = −1/2 factor in the expression
for the nonlinear current.

APPENDIX B: NONLINEAR CURRENT RESPONSE
IN A PERPENDICULAR MAGNETIC FIELD

In this section, we compute the nonlinear current response
in the presence of a static magnetic field perpendicular to the
film. In the main text, we have shown that the sheet current

density induced by a dynamical electric field reads

j(t ) = σDE (t ) − 4ηG0D
∫

C
t+t ′

2
t−t ′,t ′−t (r, r)E (t ′)dt ′. (B1)

Here, σD is the Drude conductance. G0 = 2e2/h̄ is the conduc-
tance quantum. η = 1 (−1/2) in the orthogonal (symplectic)
class. Crucially, the weak localization is encoded in the
Cooperon propagator C, which is governed by the Cooperon
equation,{

2∂s+D
[−i∇α − eAα,T

s (r)
]2+ 1

τφ

}
CT

ss′ (r, r′)=δss′δ2(r − r′).

(B2)

Here, we have used the shorthand notation,

Aα,T
s (r) = Aα

(
r, T + s

2

)
+ Aα

(
r, T − s

2

)
. (B3)

Aα is the vector potential in the Coulomb gauge, ∇αAα = 0.
For the specific case considered here, we write the vector

potential as

Aα (r, t ) = Aα
1 (t ) + Aα

2 (r). (B4)

Here, Aα
1 describes a spatially uniform, linearly polarized elec-

tromagnetic field pulse,

Eα (t ) = −∂Aα
1

∂t
. (B5)

Aα
2 describes the static magnetic field perpendicular to the

film,

Ax
2(x) = −B

2
y, Ay

2(x) = B

2
x. (B6)

We now need to solve the Cooperon equation for the
specific choice of A considered above. The Cooperon
equation has the form of the imaginary-time Schrödinger
equation with the Hamiltonian,

Ĥ (s) = D
[ − i∇a − eAα,T

1,s − eAα
2 (r)

]2 + 1

τφ

. (B7)

Note that T is merely a parameter. As the Hamiltonian at
different times s commutes, the Cooperon propagator admits
the following formal solution:

CT
ss′ (r, r′)= 1

2
(s − s′)e
− s−s′

2τφ 〈r|e− D
2

∫ s
s′ [−i∇α−eAα

2 (r)−eAα,T
1,u ]2du|r′〉.

(B8)

We simplify the imaginary-time evolution operator by ex-
panding the bracket in the Hamiltonian,

∫ s

s′

[ − i∇α − eAa
2(r) − eAα,T

1,u

]2
du =

∫ s

s′

[ − i∇α − eAα
2 (r) − eAα,T

1,u + eA
α

1 − eA
α

1

]2
du

= [ − i∇α − eAα
2 (r) − eA

α

1

]2
(s − s′) + e2

∫ s

s′

(
Aα,T

1,u − A
α

1

)2
du. (B9)

Here, A
α

1 is the temporal average of Aα
1 ,

A
α

1 = 1

s − s′

∫ s

s′
Aα,T

1,u du. (B10)
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Substituting the above back to Eq. (B8), we obtain

CT
ss′ (r, r′) = 1

2

(s − s′)e− e2D

2

∫ s
s′ (A

α,T
1,u −A

α

1 )2due
− s−s′

2τφ 〈r|e− D
2 [−i∇α−eAα

2 (r)−eA
α

1 ]2(s−s′ )|r′〉

= 1

2

(s − s′)e− e2D

2

∫ s
s′ (A

α,T
1,u −A

α

1 )2due
− s−s′

2τφ eieA1·(r−r′ )〈r|e− D
2 [−i∇α−eAα

2 (r)]2(s−s′ )|r′〉. (B11)

In the second line, we have performed a gauge transformation to remove the constant vector potential A
a
1 in the Hamiltonian.

To proceed further, we insert the resolution of identity,

CT
ss′ (r, r′) = 1

2

(s − s′)e− e2D

2

∫ s
s′ (A

α,T
1,u −A

α

1 )2due
− s−s′

2τφ eieA1·(r−r′ )
∑

λ

ψλ(r)ψ∗
λ (r′)e−Dλ(s−s′ ). (B12)

Here, ψλ is the solution for the Landau level problem,

1
2

[ − i∇α − eAα
1 (r)

]2
ψλ(x) = λψλ(r). (B13)

Compared with the standard Landau level problem, the electron mass is 1 and the magnetic field strength is 2B. Therefore, the
eigenvalues are given by

λn,m = (
n + 1

2

)
2B. (B14)

The eigenstates are given by

ψn,m(z) = 1

2π l2
B

1√
n!(n + m)!

(
lB

∂

∂z
− z∗

4lB

)n(
z

lB

)n+m

e
− |z|2

4l2B . (B15)

The magnetic length lB = 1/
√

2B. z = x + iy.
We thus have obtained the general expression for the Cooperon propagator. Now, what enters the expression for the electric

current is the equal-space propagator. Owing to the translation invariance of the problem, we may set r = r′ to the spatial origin.
We note that ψn,m(0) = 0 when m > 0. Therefore, the summation is restricted to the subset with m = 0:

CT
ss′ (r, r) = 1

2

(s − s′)e− e2D

2

∫ s
s′ (A

α,T
1,u −A

α

1 )2due
− s−s′

2τφ

∑
n

ψn,0(0)ψ∗
n,0(0)e−2DB(n+ 1

2 )(s−s′ ). (B16)

We now need to evaluate ψn,0(0),

ψn,0(0) = 1

n!

1

2π l2
B

(
∂

∂z

)n

(z)ne
− |z|2

4l2B

∣∣∣∣∣
z=0

= 1

n!

1

2π l2
B

[(
∂

∂z

)n

(z)n

]
e
− |z|2

4l2B

∣∣∣∣∣
z=0

= n!

n!

1

2π l2
B

= B

π
. (B17)

Substituting the above result back, we obtain

CT
ss′ (r, r) = 1

2

(s − s′)e− e2D

2

∫ s
s′ (A

α,T
1,u −A

α

1 )2due
− s−s′

2τφ
B

π

∑
n

e−2DB(n+ 1
2 )(s−s′ )

= 
(s − s′)e− e2D
2

∫ s
s′ (A

α,T
1,u −A

α

1 )2due
− s−s′

2τφ
B

4π sinh[DB(s − s′)]
. (B18)

Setting T = (t + t ′)/2, s = t − t ′, and s′ = t ′ − t , the above expression becomes

C
t+t ′

2
t−t ′,t ′−t (x, x) = 
(t − t ′)e− f (t,t ′ )e

− t−t ′
τφ

B

4π sinh[2DB(t − t ′)]
. (B19)

Here, f (t, t ′) is the coherent factor defined in the main text,

f (t, t ′) = e2D

2

∫ t−t ′

t ′−t

[
Aα

1

(
t + t ′ + u

2

)
+ Aα

1

(
t + t ′ − u

2

)
− A

α

1

]
du

= e2D
∫ t

t ′

[
Aα

1 (u) + Aα
1 (t + t ′ − u) − 2

t − t ′

∫ t

t ′
Aα (u′)du′

]
. (B20)

Plugging the above result into the expression for the current, we find

j(t ) = σDE (t ) − η
G0

2π

∫ t

−∞
φ[2DB(t − t ′)]

e
− f (t,t ′ )− t−t ′

τφ

t − t ′ E (t ′)dt ′, (B21)
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where the function φ(x) encodes the impact of the magnetic field,

φ(x) = x

sinh(x)
. (B22)

Specializing to the case of two Dirac-δ pulses, we arrive at

jab(B, τ + tg) = φ[2DB(τ + tg)] jab(0, τ + tg), (B23)

which is the result given in the main text.
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