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Dissipative frequency converter: From Lindblad dynamics to non-Hermitian topology
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A topological frequency converter represents a dynamical counterpart of the integer quantum Hall effect,
where a two-level system enacts a quantized time-averaged power transfer between two driving modes of
incommensurate frequency. Here, we investigate as to what extent temporal coherence in the quantum dynamics
of the two-level system is important for the topological quantization of the converter. To this end, we consider
dissipative channels corresponding to spontaneous decay and dephasing in the instantaneous eigenbasis of the
Hamiltonian as well as spontaneous decay in a fixed basis. The dissipation is modelled using both a full Lindblad
and an effective non-Hermitian (NH) Hamiltonian description. For all three dissipation channels, we find a
transition from the unperturbed dynamics to a quantum watchdog effect, which destroys any power transfer in
the strong coupling limit. This is striking because the watchdog effect leads to perfectly adiabatic dynamics in the
instantaneous eigenbasis, at first glance similar to the unperturbed case. Furthermore, it is found that dephasing
immediately leads to an exponential decay of the power transfer in time due to loss of polarization in the mixed
quantum state. Finally, we discuss the appearance in the effective NH trajectory description of nonadiabatic
processes, which are suppressed in the full Lindblad dynamics.
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I. INTRODUCTION

The influence of dissipation on physical phenomena is
ubiquitous given that real physical systems are to some ex-
tent coupled to their environment [1,2]. Nevertheless, we
tend to model idealized scenarios such as perfect isolation,
so as to contain complexity and comprehensively explain
observations with theory. One of the most fascinating phe-
nomena understood with mathematical precision for closed
systems at zero temperature is the topological quantization
of physical observables, such as the Hall conductance of a
two-dimensional electron gas in a strong perpendicular mag-
netic field [3–8]. The impressive accuracy to which theory
and observation agree in this case has inspired a paradigm
shift in the classification of phases of matter [9–12]. By now,
the resulting notion of topological matter has been general-
ized from quantum materials to a broad range of physical
settings [13–16]. Interestingly, going beyond closed systems
and thermal equilibrium has not only revealed undesirable
challenges to topological robustness, but has also led to the
discovery of new topological phenomena without a direct
zero-temperature counterpart [17–23].
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An intriguing example of a genuinely nonequilibrium
topological system is provided by a topological frequency
converter [24–37]. There, a two-level system driven by two
modes of incommensurate frequency enacts a quantized time-
averaged power transfer between the two modes. This is
formally reminiscent of the aforementioned integer quantum
Hall effect as both phenomena are governed by a topological
invariant known as the first Chern number [14,24]. However,
the inherent long-time character of this phenomenon naturally

FIG. 1. Schematic illustration of the driven spin (yellow circle
with Ŝ) being affected by two different dissipation channels. The
red and blue arrows on the left demonstrate the energy transfer
W1,W2 provided by the topological frequency conversion due to the
Hermitian Hamiltonian HS (t ). The grey (purple-grey) arrows on the
right illustrate the energy flow WB (W̃B) from the system to a bath
when the system state ρ(t ) spontaneously decays in a fixed σz basis
(in the instantaneous eigenbasis of HS (t )) into the (instantaneous
ground) state |↓〉 (|⇓〉), respectively.
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raises the question as what extent quantum coherence is rele-
vant to dynamical topological quantization.

Below, we study a dissipative extension of the topological
frequency converter (DFC) in which the driven two-level sys-
tem (or spin 1/2) is exposed to various sources of decoherence
(cf. Fig. 1). We investigate the temporal dynamics of the
DFC both by solving a full quantum master equation [38,39]
and within an effective non-Hermitian (NH) Hamiltonian ap-
proximation [40]. In the absence of dissipation, topological
quantization of the frequency transfer occurs in the slow driv-
ing limit, where the spin orientation adiabatically follows the
Hamiltonian ground state, thus tracing out a state manifold
with nonvanishing Chern number over time [24]. As a natural
source of decoherence in this adiabatic limit, we consider both
pure dephasing and relaxation of the spin in its instantaneous
eigenbasis. While any of the studied dissipative channels is
found to immediately prevent a strict topological quantization,
we observe a rich competition between coherent dynamics
and decoherence. For pure dephasing, the quantum state of
the spin becomes increasingly mixed over time, thus leading
to an exponential decay of the power transfer with a vanishing
long-time average, independently of the dephasing strength.
By contrast, spin relaxation processes act as a repeated
re-purification to the instantaneous ground state, thus enabling
a finite long-time average of the power transfer. Its magnitude
only significantly deviates from the quantized value when the
decay strength becomes comparable to the driving frequen-
cies. In the opposite limit of strong decay, both dephasing and
relaxation exhibit a quantum watchdog effect [41,42] pinning
the spin to its instantaneous ground state. While this in some
sense corresponds to perfectly adiabatic dynamics [43,44],
we find a vanishing power transfer in this scenario. This ob-
servation highlights the fact that the response of the system
is eventually carried by first dynamical corrections to the
adiabatically evolved state [35,45–47]. While an effective NH
Hamiltonian approach cannot capture pure dephasing, we are
able to qualitatively and quantitatively confirm our findings
for the spin relaxation channel there. Finally, we consider
dissipation in a constant σz-basis, for which the transition
between weak and strong decoherence is accompanied by
exceptional points (EPs) in the NH Hamiltonian [48]. While
the EPs themselves do not seem to have a striking effect on the
power transfer, the concomitant complex energy landscape is
found to strongly affect the onset of nonadiabatic processes.

II. MODEL

We consider a coherently driven spin that dissipatively
interacts with its environment. Within the Born-Markov ap-
proximation such open quantum systems are often described
by Lindblad master equations [1,38,39]

d

dt
ρ = L[ρ] = −i[H, ρ] +

∑
α

γα

(
LαρL†

α − 1

2
{ρ, L†

αLα}
)

(1)

with the density matrix ρ, the system Hamiltonian H, dissi-
pation rates γα and the so-called jump operators Lα . In this
work, we consider a time-dependent Hamiltonian H = HS (t )
in a slow (adiabatic) driving limit, slow as compared to the

instantaneous level spacing [49]. In this regime, it is natu-
ral to assume the Lindblad dynamics with its instantaneous
quantum jumps to be significantly faster than the external
time dependence of the Hamiltonian. Along these lines, the
Lindblad master equation (1) is assumed to be valid at all
times, and the adiabatic time dependence of the Hamiltonian
may be reflected in slowly time-dependent jump operators
Lα (t ) that refer to the instantaneous eigenbasis of HS (t ).

A. Coherent topological frequency converter

The Hamiltonian is given by the topological frequency
converter introduced in Ref. [24], modeling a spin coupled
to a time-dependent quasi-periodic magnetic field B(�ϕt ), i.e.,

HS (t ) = g∗μBB(�ϕt ) · Ŝ, (2)

where Ŝ = 1
2σ represents the spin-1/2, μB is Bohr’s magneton

and g∗ is the effective g-factor of the spin. The time-dependent
magnetic field B(�ϕt ) = Bcd(�ϕt ) reads as

d(�ϕt ) =

⎛
⎜⎝

sin ϕ1t

sin ϕ2t

m − cos ϕ1t − cos ϕ2t

⎞
⎟⎠ (3)

with a static magnetic field Bs = Bcm in the z-direction and
two circularly polarized drives with amplitudes Bc and time-
dependent phases �ϕt = (ϕ1t , ϕ2t ) = �ωt + �φ. The offset phases
and incommensurate frequencies are parameterized by �φ =
(φ1, φ2) and �ω = (ω1, ω2). This model may be regarded as
a temporal version of the half BHZ model, introduced by
Bernevig, Hughes and Zhang, which is usually considered
as a standard Chern insulator in two spatial dimensions [50].
Here, the parameters �k are replaced with the time-dependent
phases �ϕt . Similar to Ref. [24], we combine the prefactors
to η = 1

2 g∗μBBc such that the Hamiltonian can be written as
HS (t ) = η(d · σ ) where η describes the overall energy scale.

In Ref. [24], it was shown that this model in the slow-
driving limit (described by HS (t ) = h1(ϕ1t ) · σ + h2(ϕ2t ) · σ

with h1(ϕ1t ) = η(sin(ϕ1t ), 0, m
2 − cos(ϕ1t ))T and h2(ϕ2t ) =

η(0, sin(ϕ2t ), m
2 − cos(ϕ2t ))T ) exhibits an average energy

transfer between the two driving modes written as

1

2

∂ (E1 − E2)

∂t
= |��q|ω1ω2. (4)

Here Ei = hi(ϕit ) · 〈σ〉 are the individual beam energies,

�q(t ) = �ωt and ��q = ẑi 1
2 tr(P�q[ ∂P�q

∂q1
,

∂P�q
∂q2

]) is the Berry curvature
with P�q a projector onto the instantaneous ground state pa-
rameterized by �q(t ) [51]. Using Floquet theory for multiple
driving frequencies [52,53], this model can be mapped into a
two-dimensional tight-binding model with an intrinsic electric
field �E = �ω, where the time evolution of the spin can be
understood as a hopping process on the so-called Floquet
lattice [54]. Note that these two extra dimensions of the
spatially zero-dimensional two-level system only emerge by
mathematical analogy.

Semiclassical equations of motion [55] connect the energy
transfer to the Berry curvature [see Eq. (4)] in a way that is
analogous to the Hall response in a two-dimensional electron
gas [14]. Furthermore, since the spin homogeneously probes
the entire Floquet-Brillouin zone over time, the time-averaged
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response is given by ��q = ∫ d2q
(2π )2 ��q = C

2π
where C is the first

Chern number [51,56]. Thus the average energy transfer is
indeed topologically quantized and proportional to the Chern
number of the synthetic 2D Floquet lattice space by analogy
to the integer quantum Hall effect [24].

B. Dissipative generalization and energy transfer

In this work, we extend the topological frequency converter
model (2) by introducing dissipative channels so as to arrive
at a Lindblad master equation of the form (1). In particular,
we study spontaneous decay and dephasing in the eigenbasis
of the Hamiltonian as well as spontaneous decay in a fixed σz

basis. Since HS (t ) is Hermitian, it is diagonalizable with

HS (t ) = U (t ) · D(t ) · U †(t ) (5)

with a unitary matrix U (t ) and a real-valued diagonal matrix
D(t ) = α(t )1 + β(t )σz. Thus the Pauli matrices in the basis
of the instantaneous Hamiltonian are given by

σ̃i(t ) = U (t ) · σi · U †(t ). (6)

We denote the two instantaneous eigenstates of the Hamilto-
nian by |⇑〉 and |⇓〉 where ⇑ (⇓) indicates the upper (lower)
band of the Hamiltonian. The double arrows are used to
visually distinguish the (time-dependent) instantaneous eigen-
states from the usual σz eigenstates |↑〉 and |↓〉 in a fixed
basis. The three considered dissipation channels are mod-
eled by the jump operators L1 = σ̃−(t ) with σ̃−(t ) |⇓〉 =
0 and σ̃−(t ) |⇑〉 = |⇓〉, L2 = σ̃z(t ) with σ̃z(t ) |⇓〉 = − |⇓〉
and σ̃z(t ) |⇑〉 = |⇑〉, and L3 = σ− with σ− |↓〉 = 0 and
σ− |↑〉 = |↓〉.

While the dissipative channels influence the time evolution,
they generally also draw energy from the system [1]. For this
reason, we introduce a bath current WB using the common
open quantum system approach, i.e., we separate the energy
flows of the Lindblad master equation into internal (taking
place in the system) and external (system-bath coupling)

d〈E〉
dt

= d

dt
tr[HSρ] = tr[ḢSρ]︸ ︷︷ ︸

internal

+ tr[HSρ̇].︸ ︷︷ ︸
external

(7)

The internal current is divided into two energy currents cor-
responding to the given sources. Consider HS (t ) = h1(ϕ1t ) ·
σ + h2(ϕ2t ) · σ. Then (omitting the arguments for readability
and brevity)

tr[ḢSρ] = tr

[(
∂h1

∂t
· σ + ∂h2

∂t
· σ

)
ρ

]
(8)

= ∂h1

∂t
· 〈σ〉 + ∂h2

∂t
· 〈σ〉 (9)

≡ dW1

dt
+ dW2

dt
(10)

The two terms dW1
dt and dW2

dt are interpreted as the energy
change due to one of the energy sources [24].

The external current dWB
dt = tr[HSρ̇] induced by the bath

depends on the time evolution of the system ρ̇. Here we have
three different cases.

(1) Hermitian time evolution (γα = 0) governed by
the von Neumann equation ρ̇ = −i[HS, ρ] [51] leads to

tr[HSρ̇] = 0, i.e. no current to the bath. So the Hermitian case
is exactly the case treated in Ref. [24].

(2) Liouvillian time evolution governed by the Lindblad
master equation ρ̇ = L[ρ] [see Eq. (1)] leads to nonvanishing

current dW L
B

dt = ∑
α γα (tr[L†

αHSLαρ] − 1
2 tr[{HS, L†

αLα}ρ]).
(3) Non-Hermitian time evolution governed by the non-

linear differential equation (15) leads to a nonvanish-

ing current of the form dW NH
B

dt = ∑
α γα (tr[L†

αLαρ]tr[HSρ] −
1
2 tr[{HS, L†

αLα}ρ]).
The time integral Wi(t ) = ∫ t

0
dWi
dt (t ′)dt ′ is the total work

performed by a drive after time t . With these definitions, we
can derive a Kirchhoff-type law for the currents from the sys-
tem dynamics. We find that the averaged sum of the currents
over a longer time t goes to zero

lim
t→∞

W1(t ) + W2(t ) + WB(t )

t
= 0 (11)

This law only holds in the infinite time limit because the
spin acts as a memory for a small amount of energy, which
naturally leads to small temporary deviations from W1(t ) +
W2(t ) + WB(t ) = 0.

We also define the total effective energy transferred by

�E = |W1(t ) − W2(t )| − |WB(t )|. (12)

Note that the term energy transfer only makes sense if the
signs of the two internal energy flows are opposite because
otherwise, the two energy beams just transfer energy to the
bath. In the coherent case, this quantity satisfies ∂

∂t �E =
2|��q|ω1ω2 with ��q = ∫ d2q

(2π )2 ��q = C
2π

, such that the time-
averaged (denoted by the overline) effective energy transfer
∂t (�E ) is topologically quantized [24,51].

C. Effective non-Hermitian Hamiltonian

Finally, we introduce the effective non-Hermitian approx-
imation to the Lindblad master equation [Eq. (1)], which
naturally emerges from the quantum trajectory picture [40,57–
59]. There, the Lindblad master equation is understood as
an average of stochastically evolved wave functions that
include so-called quantum jumps. Defining the effective non-
Hermitian Hamiltonian as

HNH = HS − i� (13)

with � = 1
2

∑
α γαL†

αLα allows us to rewrite the Lindblad
master equation as

d

dt
ρ = L[ρ] = −i(HNHρ − ρH†

NH) +
∑

α

γαLαρL†
α. (14)

For a (pure) state |ψ〉, one naively identifies Pα (�t ) =
〈ψ |γαL†

αLα|ψ〉�t as the probability of a jump with Lα

occurring in the short time-interval �t . This immediately
allows the stochastic evolution of the system state by
propagating with the effective non-Hermitian Hamiltonian
(|ψ (t + �t )〉 = 1

N exp(−iHNH�t ) |ψ (t )〉) until a quantum
jump occurs |ψ (t + �t )〉 = 1

N Lα |ψ (t )〉 [40,57–59]. The
probability of such a transition appearing depends on the
non-Hermitian time evolution. Especially, an increase in
the coupling strength usually comes with an increase of those
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sudden transitions. In this sense, the evolution according to
the effective non-Hermitian Hamiltonian describes a quantum
trajectory conditional on no occurring jumps. The comparison
between this non-Hermitian and the full Lindbladian dynam-
ics may thus provide insights into the importance of the actual
quantum jump processes.

To keep the states during the non-Hermitian time evolution
normalized, one can either renormalize the state after each
incremental time step (see normalization factor N ), or, equiv-
alently, use the nonlinear equation of motion [60]

d

dt
ρ = −i[HS, ρ] − {�,ρ} + 2ρtr[�ρ]. (15)

III. METHODS

In the following section, we will give a brief summary of
the numerical approaches used to solve the Lindblad master
equation and state the initial conditions of the simulation.
Afterwards, we introduce the Fidelity as a measure of how
close two states are. This will allow us to quantify the drastic
changes that happen in the system due to the increase of
dissipation.

A. Numerical approach to dissipative dynamics

The Lindblad master equation (1) is a linear differential
equation in the density matrix ρ, even though the jump op-
erators Lα act on the density matrix ρ from both sides. By
vectorizing the density matrix ρ → �r, we may transform the
Lindblad master equation into the usual form d

dt �r = L · �r of
a linear equation. Here, the so-called Lindblad superoperator
L is transformed into a square matrix L which acts on the
density matrix vector �r from the left only [61,62]. This well-
known procedure can be used to solve open systems with a
small Hilbert space. In the system presented, the 2 × 2 density
matrix ρ is transformed into a vector �r of length 4 and the
Lindblad superoperator L into a 4x4 matrix L.

Since the investigated system is quasiperiodically driven,
the matrix L is time-dependent and therefore cannot be solved
by simple exponentiation. A standard method to solve this
kind of equations is given by commutator-free exponential
time propagators, also known as Magnus expansion. Here
we used an optimized fourth-order Magnus expansion (see
Eq. (21) in Ref. [63]). The Magnus expansion in combination
with a step-wise renormalisation of the wave function was
also used for the numerical evaluation of the effective NH
Hamiltonian dynamics.

To allow for direct comparison with the coherent topolog-
ical frequency converter, we use the same parameters for the
Hermitian Hamiltonian as in Ref. [24], i.e., the incommen-
surate frequencies are given by ω1 = 0.1 and ω2

ω1
= 1

2 (
√

5 +
1) ≈ 1.618, the golden ratio, and the offset phases are chosen
φ1 = π

10 and φ2 = 0, and the overall energy scale η = 2. The
time evolution is performed with an incremental time step
of �t = 0.01 up to times tmax = 104. In sections IV and V
we present the results for m = 1, where the system is in the
topological region characterized by the Chern number C =
+1. For other values of m within the topologically nontrivial
region 0 < |m| < 2, we obtain qualitatively similar results (cf.
Appendix E). In the topologically trivial region, no energy

transfer occurs. To obtain fast convergence to the long-time
dynamics, we used the instantaneous ground state as initial
state ρ(0) = |⇓〉 〈⇓|.

B. Fidelity as a diagnostic tool

A well-known quantity often used in quantum informa-
tion theory to measure how “close” two states are is the
fidelity [64]. For the states ρ and σ it is defined as

F (ρ, σ ) =
(

tr
√√

ρσ
√

ρ
)2

. (16)

For qubits this simplifies to

F (ρ, σ ) = tr[ρσ ] + 2
√

det[ρ] det[σ ]. (17)

Further, if one of the states is pure σ = |ψ〉 〈ψ | then det[σ ] =
0 and the fidelity reduces to

F (ρ, σ ) = 〈ψ | ρ |ψ〉 . (18)

The fidelity can take values between 0 and 1 with F (ρ, σ ) = 1
if ρ = σ [64].

Further, we define the projected Fidelity Fp(ρ, σ ) as the
fidelity of the (mixed) states ρ and σ projected onto their
respective pure states ρ → 1

2 (1 + d̃ · σ ) with d̃ = d
|d| . In the

picture of the Bloch sphere, the respective pure states are
the projections of the states onto the surface of the Bloch
sphere. This quantity allows us to measure the “closeness”
of any mixed state ρ with a pure state |ψ〉 independent of
the purity of the mixed state, as the fidelity can be written
as F (ρ, |ψ〉) = |d|Fp(ρ, |ψ〉) + 1

2 (1 − |d|). This construction
will allow for deeper insights into the effect of the Lindblad
jump operators on the energy transfer.

IV. DECOHERENCE IN INSTANTANEOUS EIGENBASIS

In this section, we discuss the DFC with decoherence in
the instantaneous eigenbasis of the Hamiltonian [cf. Eq. (6)],
both in the full Liouvillian description and the effective NH
approximation. We model spontaneous decay and dephasing
with the Lindblad jump operators L−(t ) = σ̃−(t ) and Lz(t ) =
σ̃z(t ), respectively.

A. Full Liouvillian description

Before we dive into the discussion of our results, we
give a brief discussion of the two types of decoherence.
In the quantum trajectory picture [40,57–59], the action of
the jump operators lead to sudden transitions ρ(t + dt ) =
Lα (t )ρ(t )L†

α (t ) up to normalization, and the probability of
such a transition is governed by the NH time evolution en-
compassing the dissipation rates γα . Specifically, spontaneous
decay leads to ρ(t + dt ) = |⇓〉 〈⇓|, i.e. a projection to the
instantaneous ground state. By contrast, dephasing results
in ρ(t + dt ) = c1 |⇓〉 〈⇓| + c2 |⇑〉 〈⇑|, thus destroying all the
off-diagonal elements in the instantaneous eigenbasis while
leaving the diagonal entries untouched. With increasing dissi-
pation rates γα these jumps are happening more often, leading
to a transition from a regime where the coherent motion of
the spin is not altered significantly (small coupling limit) to
a regime where we find signatures of a quantum watchdog
effect (large coupling limit), i.e. the state becomes pinned to
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FIG. 2. Energy currents as a function of dissipation rate γ− for
spontaneous decay in the instantaneous eigenbasis of HS (t ) [see
Eq. (2)]. (Top) Temporal average of the energy and bath currents
N ∂Wi

∂t with N = 2π

ω1ω2
. (Bottom) Temporal average of the effective

energy transfer ∂ (�E )
∂t = N

2 | ∂W1
∂t − ∂W2

∂t | − | ∂WB
∂t |. Note the accurate

agreement between full Liouvillian (solid lines) and effective non-
Hermitian dynamics (dotted lines) in all shown plots. For further
parameter choices see Sec. III A.

the target state Lα (t )ρ(t )L†
α (t ). Since the target state is the

ground state of the spin, we may consider this pinning to
the instantaneous eigenstates as supporting an ideal evolution
according to the adiabatic theorem [43]. Remarkably, as we
demonstrate below, the power transfer between the two driv-
ing modes completely vanishes in this strong coupling regime,
despite the ideal adiabatic evolution tracing out topologically
nontrivial state manifold.

In order to study the transition from weak to strong dis-
sipation, we calculate the currents W1(t ),W2(t ) and WB(t ),
as well as the fidelity of the system state ρ(t ) with both the
instantaneous groundstate of the Hamiltonian |⇓〉 and the state
|ψ0〉 of an unperturbed (i.e., coherently evolving) system. For
spontaneous decay, the bath current takes the form

d

dt
W L

B = −2γ (1 − F (ρ, |⇓〉))β(t ) (19)

with 2β(t ) = tr[HSσ̃z] = 〈⇑|HS|⇑〉 − 〈⇓|HS|⇓〉 the energy
splitting between the instantaneous eigenstates. For the sys-
tem state being exactly the instantaneous eigenstate ρ(t ) =
|⇓〉 〈⇓| (perfectly adiabatic) this evaluates to W L

B = 0. The
dephasing channel does not consume energy from the system,
since d

dt W
L

B = 0. The results for spontaneous decay are illus-
trated in Figs. 2 and 3 and the results for dephasing in Fig. 4.

In Fig. 2 we see the slopes of the three currents
W1(t ),W2(t ) and W L

B (t ) (solid lines) as the decay rate γ−
increases. The slopes appear to be near constant at the topo-
logically quantized value up to γ− ≈ 10−1, where the bath
current starts to increase significantly, until it vanishes again
at large γ−. Due to the approximate Kirchhoff-type law [see
Eq. (11)], the sum of the energy currents W1(t ) + W2(t ) be-
haves in a similar way but with opposing sign. Interestingly,
the individual currents behave differently, as W1(t ) vanishes
almost solely and W2(t ) peaks and even changes its sign before

FIG. 3. Fidelities and the γ−-normalized bath current as func-
tions of the dissipation rate γ− for spontaneous decay in the
instantaneous eigenbasis of HS (t ) [see Eq. (2)]. (Top) Temporal
averaged fidelities (and 0.25- and 0.75-quantils) of the state ρ(t )
with unperturbed state |ψ0〉 and with instantaneous eigenstate of
the Hamiltonian |⇓〉. (Bottom) Temporal average of γ−-normalized
bath current N

γ−
∂WB
∂t . Note the simulationeous transitions from ρ(t ) =

|ψ0〉 〈ψ0| → |⇓〉 〈⇓| and N
γ− ∂tWB → 0.

it also vanishes. With the change of sign of W2(t ), there is
no more energy transfer between the driving modes, and all
energy is transferred to the bath.

Figure 3 will help interpreting the bare results of Fig. 2
and connect the insights with the aforementioned transition
from weak to strong coupling. In particular, in Fig. 3, the
slope of N

γ−
W L

B (t ) and the mean fidelities with the (0.25, 0.75)
quantiles of the state ρ(t ) with the unperturbed state |ψ0〉
as well as the instantaneous ground state |⇓〉 are plotted
over γ−. At first glance, one can recognize a similar behav-
ior of all three curves, albeit the Fidelity of ρ(t ) with the

FIG. 4. Projected fidelities and the γz-normalized purity decay
exponent as functions of dissipation rate γz for dephasing in the
instantaneous eigenbasis of HS (t ) [see Eq. (2)]. (Top) Temporal
average of the projected fidelities (and 0.25- and 0.75-quantils) of
the state ρ(t ) with unperturbed state |ψ0〉 and with instantaneous
eigenstate of the Hamiltonian |⇓〉. (Bottom) γ−-normalized purity
decay exponent �

γz
with |d(t )|2 ≈ exp(−�t )|d(0)|2 [see Eq. (22)].
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instantaneous ground state being upside down. In more detail,
we can see that the slope of N

γ−
W L

B (t ) decreases in three steps
from around 1.75 to 0.35 to 0. Including the two fidelities
into our analysis, we can see that these steps are accompa-
nied by a transition from ρ(t ) ≈ |ψ0〉 〈ψ0| to an intermediate
state to ρ(t ) ≈ |⇓〉 〈⇓|. This behavior is exactly the transition
described above from a regime where the adiabatic dynamics
of the spin are not altered by the coupling to the bath to
a regime where we find signatures of a quantum watchdog
effect.

Returning to Fig. 2, we see that the behavior of the currents
up to their peaks is explained by the proportionality to γ− with
an exponential increase shown in logarithmic scale. Further,
the fact that all three currents vanish at even stronger dissi-
pation can be explained with the watchdog effect. For this,
we calculated W1(t ) and W2(t ) specifically for the hypotheti-
cal ideally adiabatic state ρ(t ) = |⇓〉 〈⇓|, where we find that
both currents vanish individually. In other words, although
the spin being pinned to the instantaneous ground state of the
Hamiltonian at all times, not only the bath current vanishes but
also the power transfer which would be naively expected to
exhibit perfect topological quantization for perfect adiabatic
dynamics. This observation highlights the fact that the first
nonadiabatic deviations are a necessity for the appearance
of the topologically quantized energy transfer, even though
the corresponding topological invariant (Chern number) is
defined by the adiabatic state manifold.

Next, we describe our findings for the DFC with pure de-
phasing, where we find both similarities and key differences to
the spontaneous decay. In particular, we will see that there are
also signatures of a watchdog effect which destroys the energy
transfer. However, the main difference to the spontaneous de-
cay is the dynamics of the purity of the quantum state. As the
target state of the spontaneous decay is the pure groundstate
of the Hamiltonian, there the system state ρ(t ) remains a
pure state in the long time limit (see Appendix B). For pure
dephasing, by contrast, each quantum jump reduces the purity
of the state (see Appendix A) which leads to the convergence
of the system state to the fully mixed state ρ(t ) → 1

21 in the
long time limit. Thus, independent of the coupling strength γz,
pure dephasing leads to a vanishing long-time average of the
power transfer.

In particular, we find that the length of the state Bloch
vector d(t ) is monotonically decreasing

d

dt
|d(t )|2 = 4γz|d(t )|2[cos�(d(t ),β(t )) − 1] � 0 (20)

with β(t ) the Bloch vector of the Hamiltonian, i.e., H (t ) =
α(t ) + β(t ) · σ. From this differential equation, we can see
that

|d(t )|2
|d(0)|2 = exp

(
4γz

∫ t

0
[cos�(d(t ′),β(t ′)) − 1]dt ′

)
(21)

and thus exp(−8γzt ) � |d(t )|2
|d(0)|2 � 1. Approximating the angle

of the vectors by an mean angle �(d(t ′),β(t ′)) ≈ �(d,β)
gives

|d(t )|2 ≈ exp(−�t )|d(0)|2 (22)

with � = 4γz[1 − cos�(d,β)]. Numerically, we find that this
approximation describes the behavior of |d(t )| very well.

As the ground state and the exited state have opposing
Chern numbers C = ±1 and ρ(t ) → 1

21 may be understood
as a classical mixture of the two energy bands, the energy
currents W1(t ) and W2(t ) should behave as Wi(t ) ≈ 2α0

�
(1 −

exp(−�
2 t )) where α0 is the slope of the unperturbed system.

Interestingly, this formula does not give the full picture of the
dephasing as it does not catch the aforementioned watchdog
effect.

In Fig. 4, we illustrate the fit of the exponent �
γz

and, similar
to the case of spontaneous decay, the (projected) fidelities
with its (0.25, 0.75)-quantiles of the system state ρ(t ) with
both, the unperturbed state |ψ0〉 and the ground state |⇓〉
over the dephasing strength γz. One can see that the projected
fidelities behave similarly to the fidelities of the spontaneous
decay. Thus, irrespective of the purity of ρ(t ), we can see a
transition from the unperturbed state to an intermediate state
to the ground state of the system.

Furthermore, the purity decay exponent �
γz

behaves similar

to the slope of the bath current N
γ−

W L
B as it goes stepwise from

around 0.012 to 0.003 to 0. Interestingly, � being close to
zero indicates that the system state ρ(t ) stays pure over time,
which, at first glance, gives hope for a nonvanishing energy
transfer. However, as this regime corresponds to the aformen-
tioned watchdog effect ρ(t ) ≈ |⇓〉 〈⇓|, no power transfer is
possible there.

From above analysis, we can conclude that both sponta-
neous decay and dephasing exhibit a quantum watchdog effect
in the strong coupling limit where the system state ρ(t ) gets
pinned to the instantaneous ground state |⇓〉 of the Hamil-
tonian. We have shown that this state does not support any
power transfer indicating that the topological response is car-
ried by first dynamical corrections to the adiabatically evolved
state. In addition, we find that spontaneous decay, in contrast
to dephasing, allows for the long-time average of the power
transfer to be finite and arbitrarily close to the topologically
quantized coherent value at weak dissipation. With dephasing,
this is prohibited due to the continuous reduction of the purity
of ρ(t ). Comparing the dephasing case with the discussion
in Ref. [65], we find a major difference between systems
with two spatial dimensions and our present Floquet-lattice
dimensions. Specifically, for a 2D Chern insulator, dephasing
not only does not destroy the Hall response, but may actu-
ally stabilize it [65]. This effect is due to the locality of the
dephasing in the 2D Chern insulator. There, dephasing only
significantly affects states with kx, ky near the Dirac point. In
our present two-frequency driving case, however, the reduc-
tion of the purity (shrinking of the Bloch sphere) affects the
state at all times. Furthermore, purity cannot be restored by
the Hamiltonian evolution, and thus inevitably ρ → 1

21.
When both dephasing and spontaneous decay in the in-

stantaneous eigenbasis are present, we find that the long-time
averaged power transfer between the two driving modes sur-
vives the onset of dephasing since the dephasing-induced loss
of purity (or polarization) of the quantum two-level system
is reversed by each spontaneous decay event. For quantitative
numerical data regarding the interplay of the two dissipation
channels, we refer the reader to Appendix D.

033124-6



DISSIPATIVE FREQUENCY CONVERTER: FROM … PHYSICAL REVIEW RESEARCH 6, 033124 (2024)

B. Effective non-Hermitian description

The effective non-Hermitian Hamiltonian is given by
Eq. (13), where the anti-Hermitian part for spontaneous de-
cay reads � = 1

4γ−(1 + σ̃z(t )) and for dephasing � = 1
2γz1.

Since a uniform damping term (� ∝ 1) does not alter the
(conditional on no jump) dynamics up to normalization, it
can be ignored. Hence, the effective NH description of the
dephasing channel does not change the results of the unper-
turbed topological frequency converter, and thus cannot even
capture the basic physical phenomenology of the full dephas-
ing dynamics studied above. In particular, the quantized power
transfer is preserved here indicating that both the loss of purity
and the watchdog effect solely arise in the full Liouvillian
description that includes quantum jumps.

For the case of spontaneous decay, after subtracting the
aforementioned overall imaginary energy shift the effective
NH Hamiltonian reads as [cf. Eq. (5)] HNH(t ) = S(t )[D(t ) −
i
4γmσz]S†(t ), where the anti-Hermitian part gives the upper
(lower) level a negative (positive) imaginary part leading to
an exponential decrease (increase) of the level in the time
evolution, respectively. This allows the NH time-evolution of
ρ(t ) to relax the spin into its instantaneous ground state even
without performing actual quantum jumps. Thus we expect
qualitatively similar behavior of time evolution and energy
transfer as compared with the full Liouvillian dynamics. This
intuition is confirmed by the results of our numerical analysis
shown in Fig. 2. Here, the energy current into the bath can be
shown to take the form

d

dt
W NH

B =
(

d

dt
W L

B

)
F (ρ, ρ⇓), (23)

which, as in the full Liouvillian case, vanishes in the limit
of ρ(t ) = |⇓〉 〈⇓|. This observation is in agreement with
our numerical finding that the Lindblad and non-Hermitian
dynamics exhibit full qualitative and even quite accurate
quantitative agreement. Thus the effective NH Hamiltonian
dynamics neglecting the jump terms provides a reason-
able approximation for spin relaxation in the instantaneous
eigenbasis.

V. SPONTANEOUS DECAY IN A FIXED BASIS

We now discuss a dissipation channel in the form of
spontaneous decay in a fixed basis which is modeled by the
jump operator L− = σ−. This scenario may correspond to a
two-level system which microscopically has a large energy
splitting ω0 and is subject to an inherent relaxation mech-
anism in this static energy eigenbasis. The driven coherent
Hamiltonian HS is then understood in a frame rotating with
frequency ω0, and thus defines a much lower energy scale
in the spirit of a Jaynes-Cummings model within rotating
wave approximation. Again, we find a watchdog effect in
the limit of strong coupling, this time pinning the spin to
the time-independent state |↓〉. In addition, here the effective
NH Hamiltonian approximation exhibits exceptional points
which in themselves do not seem to have a striking qualitative
effect on the dynamics of the system. However, we observe
that the concomitant complex structure of the effective energy
landscape, in particular line-degeneracies of the imaginary

FIG. 5. Energy currents as a function of dissipation rate γ− for
spontaneous decay in a fixed σz basis. (Top) Temporal average of the
energy and bath currents N ∂Wi

∂t with N = 2π

ω1ω2
. (Bottom) Temporal

average of the effective energy transfer ∂ (�E )
∂t = N

2 | ∂W1
∂t − ∂W2

∂t | −
| ∂WB

∂t |. Note the significant differences between full Liouvillian (solid
lines) and effective non-Hermitian dynamics (dotted lines) in all
shown plots.

part known as imaginary Fermi-arcs are affecting the onset
of nonadiabatic processes [48].

Our numerical results are presented in Figs. 5–7. The
presented plots are similar in scope to the other illustrations
regarding the shown quantities and parameter regimes. In
particular, in Fig. 5, we see a transition from the quantized
topological frequency converter to a region where the energy
is fully consumed by the bath (around the peaks of Wi(t )) to
a vanishing of all the currents. Figures 6 and 7 show that this
transition is accompanied by a transition from ρ(t ) = ρ0(t ) to

FIG. 6. Projected fidelities, γ−-normalized bath current and tem-
poral averaged purity as functions of the dissipation rate γ− for
spontaneous decay in a fixed σz basis in a fully Liouvillian descrip-
tion. (Top) Temporal average of the projected fidelities (and 0.25- and
0.75-quantiles) of the state ρ(t ) with unperturbed state |ψ0〉 and with
instantaneous eigenstate of the Hamiltonian |⇓〉. (Center) Temporal
average of the γ− normalized bath current N

γ−
∂WB
∂t . (Bottom) Temporal

average of the purity pur[ρ] = tr[ρ2] of the system state ρ(t ).
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FIG. 7. Fidelities and γ−-normalized bath current as functions
of the dissipation rate γ− for spontaneous decay in a fixed σz basis
for the effective non-Hermitian description. (Top) Temporal average
of the fidelities (and 0.25- and 0.75-quantiles) of the state ρ(t )
with unperturbed state |ψ0〉 and with instantaneous eigenstate of the
Hamiltonian |⇓〉. (Bottom) Temporal average of the γ− normalized
bath current N

γ−
∂WB
∂t .

an intermediate state to ρ(t ) = |↓〉 〈↓| where |↓〉 is the time-
independent lower eigenstate of σz (σz |↓〉 = − |↓〉). Clearly,
|↓〉 does not provide any power transfer. In Fig. 6, we plot the
mean purity of the system state ρ(t ) in order to show that the
competition of adiabatic dynamics and decoherence leads to a
nontrivial mixing of both target states, as expected.

An interesting finding for spontaneous decay in a fixed
basis is the appearance of an anomalous peak of the slope
of N

γ−
W NH

B (t ) in Fig. 7 (at around γ− ≈ 5) that only shows
up within the effective NH approximation but not in the full
Liouvillian description. The reason for its appearance can be
found in nonadiabatic processes which are connected to the
aformentioned imaginary Fermi arcs. Specifically, the state
ρ(t ), which follows the pure state |ψ0〉 closely for smaller
coupling strengths γ−, suddenly shows transitions between the

instantaneous eigenstates |⇓〉 and |⇑〉 to the one closer (with
respect to 〈σz〉) to |↓〉. As soon as these sudden transitions
between the two instantaneous eigenstates occur, the energy
entering the bath is increased by orders of magnitude, the
reason being that these jumps cover a large distance on the
Bloch sphere in a short time and thus collect a large dynamical
phase, which leads to a step-like increase of the bath current.

Moreover, we find that these jumps can occur when-
ever the phase of the complex energy difference E+ − E− =
2
√

Re[β]2 − Im[β]2 + 2iRe[β] · Im[β] of the NH Hamilto-
nian HNH(t ) = α(t )1 + β(t ) · σ (β ∈ C3) changes its sign. If
we identify ωit + φi as ki, then �k(t ) is a ray in kx, ky space.
The above phase changes its sign on a closed one-dimensional
curve Re[β(kx, ky)] · Im[β(kx, ky )] = 0 corresponding to the
imaginary Fermi arc. Whenever �k(t ) crosses such a one-
dimensional curve and spends a sufficient time (compared to
the coupling γ−) within the region with the opposite-signed
phase, a nonadiabatic process may appear. This is because the
time-evolution generated by the NH Hamiltonian exponen-
tially favors the preferred eigenstate, i.e., the eigenstate with
positive imaginary part.

In Fig. 8, we show part of a state trajectory as it develops
over time. During this time evolution, the trajectory passes
the aforementioned condition Re[β(kx, ky)] · Im[β(kx, ky)] =
0 twice leading to two nonadiabatic jumps of the state. The
left panel of Fig. 8 shows the time-dependent phases �ϕt as
they evolve in the (kx, ky )-plane and the right panel shows the
z component of the Bloch vector 〈σz〉, the imaginary energy
difference Im[E+ − E−] and the bath current ∂WB

∂t of the state
|ψ〉. One can clearly see the correspondence of the imaginary
energy crossing and the nonadiabatic jumps of the state. Note
that in this case, the real part of the energy spectrum is gapped
for all times, i.e., Re[E+ − E−] > 1.9, proving that this tra-
jectory does not pass through an exceptional point but only
crosses the imaginary Fermi arc.

FIG. 8. Correspondence of nonadiabatic jumps between the instantaneous eigenstates of the Hamiltonian with the imaginary Fermi arcs for
spontaneous decay in a fixed σz-basis for the effective non-Hermitian description. Left panel: imaginary part of the complex energy difference
Im[E+ − E−] as a function of kx, ky (red-white-blue colors) and time-dependent phases �ϕt (rainbow colors) in (kx, ky )-plane crossing the
imaginary Fermi arc (dashed black line) defined by the curve Re[β(kx, ky )] · Im[β(kx, ky )] = 0. Right panel (from top to bottom): bath current
∂WB
∂t , imaginary energy difference Im[E+ − E−] and z component of the Bloch vector 〈σz〉 of the state |ψ〉 as functions of time t . The circles in

both panels mark the crossing of the imaginary Fermi arc. The parameters are chosen as in Sec. III A and γ = 7.
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The drastic effects of these nonadiabatic processes are a
phenomenon exclusively found for individual (conditional on
no jump) trajectories as described NH Hamiltonian dynamics,
since the statistical ensemble ρ(t ) studied in the full Liou-
villian description may reduce its purity so as to reduce the
visibility of such processes. We note that the occurrence of
imaginary Fermi arcs is a topological necessity in the pres-
ence of exceptional points, which thus provide a sufficient
condition for the observed nonadiabatic jumps. However,
exceptional points are not a necessary condition for this phe-
nomenon as lines of imaginary degeneracies also appear in
parameter regimes without exceptional points [48,66,67].

VI. CONCLUDING DISCUSSION

In summary, we have shown how dissipation in the form of
spontaneous decay and dephasing affects the topological fre-
quency converter and specifically its quantized power transfer.
We found that continuous deviations from the topologically
quantized value may occur with the onset of dissipation. These
deviations become noticeable at least when the dissipation
strength is comparable to the coherent energy scale (level
splitting). For even stronger dissipation, the power transfer
completely vanishes due to quantum watchdog effects, even
if the watchdog pins the state to perfectly adiabatically trace
out a topological state manifold.

Interestingly, pure dephasing immediately leads to an ex-
ponential decay of the power transfer with time and thus, a
vanishing of the long-time power transfer. We have shown that
this is due to the progressive loss of purity of the quantum state
following from the combination of temporal driving with the
recurring destruction of the off-diagonal elements. We empha-
size that this behavior may be specific for quasiperiodically
driven system and has not been found in a corresponding
system with two spatial dimensions. In particular, in Ref. [65]
the half-BHZ model has also been investigated with pure
dephasing in the instantaneous eigenbasis. In contrast to the
vanishing of the power transfer observed in our present work,
there a stabilization of the quantized Hall response from pure
dephasing has been found. We attribute this difference to the
temporal character of the (formal) Floquet lattice dimensions
in our present system. The influence of dephasing in the in-
termediate case of a one-dimensional Floquet system with a
single driving frequency remains an interesting direction of
future work.

Finally, we elaborate on the relation of our results to the
findings of Ref. [27], where a spin in a cavity coupled to a
circularly polarized cavity mode and a circularly polarized
driving mode has been discussed as an extended topological
frequency converter model taking into account some sources
of decoherence. There, the topological frequency transfer has
been expressed as an average increase in the number of cavity
photons 〈n〉 connected to the Chern number C. The influence
of cavity dissipation and spin relaxation is then modeled using
the so-called Universal Lindblad equation [68]. In Ref. [27],
dissipation can support a steady state with a topologically
quantized photon emission rate by stabilizing fluctuations in
the cavity photon number. By contrast, our model can be un-
derstood as a classical limit of the cavity mode (keeping only
the two-level system quantum), i.e., the cavity state is replaced

by a coherent state |α〉 with â |α〉 = α |α〉 and |α|2 � 1. In this
limit, fluctuations in the cavity photon number have no natural
counterpart.
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APPENDIX A: DERIVATION OF PURITY DYNAMICS
WITH DEPHASING

We derive Eq. (20) in the index notation

d

dt
pur[ρ] = d

dt
tr[ρ2] (A1)

= 2tr

[
ρ

d

dt
ρ

]
(A2)

= 2tr

[
ρ

(
− i[H, ρ] + γzσ̃zρσ̃z − γz

2

{
ρ, σ̃ 2

z

})]

(A3)

= 2γz(tr[ρσ̃zρσ̃z] − tr[ρ2]). (A4)

Using ρ = 1
2 (1 + d(t ) · σ ) and σ̃ 2

z = 1 one can see that the
terms with exactly one 1 vanish because a traceless Pauli ma-
trix remains and the terms with exactly two 1 give tr[1] = 2
which also vanishes due to the opposite signs. Thus the term
above simplifies to (extracting the factor 1

4 )

2

γz

d

dt
pur[ρ] = tr[(d(t ) · σ)σ̃z(d(t ) · σ)σ̃z] − tr[(d(t ) · σ)2]

(A5)

= tr[(d(t ) · σ)σ̃z(d(t ) · σ)σ̃z] − 2d(t ) · d(t ).

(A6)

Inserting σ̃z = S†(t )σzS(t ) = k(t ) · σ with |k(t )| = 1 gives
products of four Pauli matrices. These can readily be
evaluated

σaσbσcσd = (δab1 + iεabeσe)(δcd1 + iεcdf σ f ) (A7)

= δabδcd1 + iδabεcdf σ f + iδcdεabeσe

−εabeεcdf (δe f 1 + iεe f gσg) (A8)

= [δabδcd − εabeεcde]1 + O (σi ) (A9)

= [δabδcd − δacδbd + δadδbc]1 + O (σi ). (A10)

The terms which are proportional to a Pauli matrix O (σi ) van-
ish because the Pauli matrix is traceless. Thus the final result
is given by (the δi j terms become scalar products between the
corresponding vectors)

2

γz

d

dt
pur[ρ] = 4(d(t ) · k(t ))2 − 4d(t ) · d(t ) (A11)

= 4|d(t )|2(cos(∠d(t ), k(t )) − 1). (A12)
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FIG. 9. The plot shows the right-hand side of Eq. (B1) for γ = 1
and a countour line where it vanishes.

Since tr[ρ2] = 1
2 (1 + |d(t ))|2) and cos(∠d(t ), k(t )) − 1 �

0 we can see that indeed, |d(t )|2 is monotonically decreasing.

APPENDIX B: DERIVATION OF PURITY DYNAMICS
WITH SPONTANEOUS DECAY

Assume a Lindblad master equation with Lindblad oper-
ator Lα (t ) = S(t )σ−S†(t ) where S(t ) is a unitary transforma-
tion. A similar calculation as performed in Appendix A gives
the purity (expressed by the length of the Bloch vector) as

d

dt

(
k2

x + k2
y + k2

z

) = −γ

4

(
k2

x + k2
y + 2k2

z + 2kz
)

(B1)

with k · σ = S†(t )(d · σ)S(t ). The right side of the equa-
tion may take positive or negative values which would
increase or decrease the purity of the state, respectively (see
Fig. 9). Depending on the chosen basis this may lead to the
purity fluctuating or converging to 0 or 1. Indeed, the purity
fluctuates for a fixed basis (S(t ) = 1) and converges to 1

in the instantaneous eigenbasis of the Hamiltonian [H (t ) =
S(t )D(t )S†(t ) with diagonal matrix D(t )]. The fluctuations
arise because the target state to which the system tries to con-
verge is constantly changing. In contrast, in the instantaneous
eigenbasis, the target state is always the ground state of the
Hamiltonian (k = (0, 0,−1)) and thus, the purity increases
until this ground state is reached.

APPENDIX C: STATE VISUALIZATION FOR DIFFERENT
COUPLING STRENGTHS IN INSTANTANEOUS

EIGENBASIS

Figure 10 shows the evolution of the state ρ as it evolves on
the Bloch sphere for different values of γ− in case of sponta-
neous decay in the instantaneous eigenbasis. One can see that,
first (γ− = 10−6), the state oscillates around the instantaneous
eigenstate of the Hamiltonian. These oscillations are mainly
responsible for the energy transfer of the frequency converter.
At intermediate interaction with the environment (γ = 0.1)
these oscillations are damped and the state evolves in the close
vicinity of the instantaneous eigenstate but still with a finite
offset. At very strong coupling (γ = 100), the state and the
instantaneous eigenstate coincide. Note that the values of γ

are chosen such that they fall into the plateaus visible in Fig. 3.
For dephasing, the results are similar up to the additional

effect of the shrinking of the Bloch sphere.

APPENDIX D: RESULTS FOR MIXING OF DEPHASING
AND SPONTANEOUS DECAY IN INSTANTANEOUS

EIGENBASIS

Figure 11 shows the temporal mean of the effective power
transfer ∂

∂t �E [see Eq. (12)] as a function of a combination
of the dissipation rates γ− (spontaneous decay in the instan-
taneous eigenbasis) and γz (dephasing). One can see that the
spontaneous decay which favors the pure state |⇓〉 restores the
long-time energy transfer if the dephasing is small enough.
This indicates that the progressive loss of purity is reversed
by spontaneous decay.

FIG. 10. State of the system (solid line) and instantaneous eigenstate of the Hamiltonian (dotted line) as they evolve in time t on the Bloch
sphere for spontaneous decay in the instantaneous eigenbasis for different values of the dissipation strength γ−.
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FIG. 11. Temporal average of the effective power transfer ∂

∂t �E
as a function of the dissipation rates γ− (spontaneous decay in the in-
stantaneous eigenbasis) and γz (dephasing). The system is modelled
within the full Lindbladian description and the parameters chosen are
given in Sec. III A.

APPENDIX E: RESULTS FOR SPONTANEOUS DECAY
IN INSTANTANEOUS EIGENBASIS

IN DIFFERENT TOPOLOGICAL REGIMES

Figure 12 shows the temporal mean of the effective power
transfer ∂

∂t �E [see Eq. (12)] as a function of the dissipation
rate γ− (spontaneous decay in the instantaneous eigenbasis)
and the Zeeman parameter m [see Eq. (2)]. For 0 < |m| < 2,

FIG. 12. Temporal average of the effective power transfer ∂

∂t �E
as a function of the dissipation rate γ− for spontaneous decay in
the instantaneous eigenbasis and the Zeeman parameter m selecting
the topology of the system. The system is modelled within the full
Lindbladian description and the remaining parameters chosen are
given in Sec. III A.

the system is in a topological nontrivial phase with an addi-
tional phase transition at m = 0. In Fig. 12, one can clearly
see the phase transitions and the topological quantisation of
∂
∂t �E within the topological phases. Similar to Fig. 2 one can
see the transition of the power transfer from nearly quantized
to zero due to the watchdog effect.
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