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Single-site DFT + DMFT for vanadium dioxide using bond-centered orbitals

Peter Mlkvik ,* Maximilian E. Merkel , Nicola A. Spaldin , and Claude Ederer
Materials Theory, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland

(Received 28 February 2024; revised 1 July 2024; accepted 9 July 2024; published 31 July 2024)

We present a combined density-functional theory and single-site dynamical mean-field theory (DMFT) study
of vanadium dioxide (VO2) using an unconventional set of bond-centered orbitals as the basis of the correlated
subspace. VO2 is a prototypical material undergoing a metal-insulator transition (MIT), hosting both intriguing
physical phenomena and the potential for industrial applications. With our choice of correlated subspace basis,
we investigate the interplay of structural dimerization and electronic correlations in VO2 in a computationally
cheaper way compared to other state-of-the-art methods, such as cluster DMFT. Our approach allows us to treat
the rutile and M1 monoclinic VO2 phases on an equal footing and to vary the dimerizing distortion continuously,
exploring the energetics of the transition between the two phases. The choice of basis presented in this work
hence offers a complementary view on the long-standing discussion of the MIT in VO2 and suggests possible
future extensions to other similar materials hosting molecular-orbital-like states.

DOI: 10.1103/PhysRevResearch.6.033122

I. INTRODUCTION

Vanadium dioxide (VO2) is a prototypical example of a
system undergoing a coupled structural and metal-insulator
transition (MIT). This transition, occurring near room tem-
perature at around Tc = 340 K, has been heavily studied
for decades, both due to the intriguing physics present in
the system [1–5] and due to its potential for industrial uses
[6–9]. Recently, VO2 has also been identified as an obstructed
atomic insulator [10]. Because of the complex interplay of
electronic and structural effects involving dimerization and
potential correlation effects, multiple studies have focused
specifically on methods for correctly simulating VO2 [11–19].
Here we present a method based on dynamical mean-field
theory (DMFT) applied to a bond-centered orbital basis that
is complementary to current state-of-the-art approaches and
allows us to vary the structure continuously through the MIT
between the two main VO2 phases.

The first-order transition in VO2 structurally transforms
the system from a high-temperature high-symmetry rutile (R)
phase into a low-temperature low-symmetry monoclinic (M1)
phase [20]. At this transition, the nominally d1 V4+ cations
undergo a dimerization along the c direction of the R structure
accompanied by the formation of a zig-zag pattern perpen-
dicular to c. In the original picture proposed by Goodenough
[1], the lowest-lying a1g orbitals, with lobes pointing along the
dimerized chain, split into a bonding-antibonding pair, while
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the other two t2g orbitals, the so-called eπ
g ,1 with lobes pointing

away from the dimerized chain, are shifted upwards in energy
and thus are depleted. However, this picture does not account
for the fact that single-particle approaches such as density-
functional theory (DFT) using standard local or semilocal
functionals do not open a gap in the material [20] and do
not capture the more exotic insulating monoclinic M2 phase
which hosts separate dimers and zigzagged chains [21–23].
This has led to a long-standing discussion in the literature
about the character of the MIT in VO2 with a pure Peierls-like
distortion description thought to be insufficient and electronic
correlations needed for a comprehensive description [22,24].

Many crucial developments in understanding the MIT
in VO2 have stemmed from the use of the DFT + DMFT
methodology to account for strong local electron-electron in-
teraction in the material. Early DFT + DMFT studies [25]
established that although the R phase of VO2 could be cor-
rectly described by effective single-particle approaches, a
coherent treatment of the structural and electronic dimers
is necessary to describe the M1 phase. The latter was first
achieved in the seminal work by Biermann et al. [11], in which
a single-site DFT + DMFT approach was used to study the
R phase, while a DFT + two-site cluster DMFT approach
encompassing the two dimerizing vanadium atoms was used
for the M1 phase. In Ref. [11], the authors described VO2

as a “dynamical-singlet insulator” undergoing a correlation-
assisted Peierls transition.

In follow-up works [26–28], it was shown that including
a frequency-independent interatomic self-energy between the

1We acknowledge that this is strictly not the correct symmetry label
for the V site in both the R and M1 phases of VO2. All three t2g levels
are split and hence the two “eπ

g ” levels are not degenerate in energy.
However, we choose to continue the standard nomenclature as used
in other references in the field.
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vanadium atoms in a dimer captures the main behavior of the
cluster DMFT approach, achieving remarkably similar results
to the prior cluster DMFT study for the M1 phase. This avenue
of research was further explored by Belozerov et al. [29],
who studied the M1 phase by employing an empirical intersite
interaction using the DFT + V approach plus a single-site
DMFT on top, again yielding remarkably similar results to the
prior cluster DMFT study. In contrast, a DFT + cluster DMFT
study by Weber et al. [30], using highly localized orbitals as
the basis set, showed strong Mott effects suggesting that M1
VO2 is a product of a Peierls-assisted orbital-selective Mott
transition. More recently, another DFT + cluster DMFT study
by Brito et al. [16,31], again using a localized atomic-like
orbital basis, replicated some of the findings of Ref. [11], but
the authors concluded that VO2 is primarily a Mott material.
They also performed calculations of the M2 monoclinic phase
and single-site DMFT for the R phase. Last, there have been
multiple studies with other advanced methods such as GW ,
additionally highlighting the importance of interaction effects
in VO2 [12,19].

In this work, we build on these previous works and,
in particular, attempt to solve a key shortcoming in the
literature—the distinct treatment of the two main VO2 phases
in prior DFT + DMFT studies and the lack of an unbiased
method for treating the R, M1, and in-between phases on an
equal footing. To do so, we exploit the flexibility of the DFT +
DMFT approach to choose an appropriate basis to describe
interaction effects within the correlated subspace, motivated
also by previous works on molecular-orbitals [32–35] or
vacancy-centered orbitals [36,37]. We perform calculations
based on bond-centered Wannier orbitals (examples can be
seen in Fig. 3) that capture a combination of both intra-
and interatomic effects when combined with DFT + DMFT
at the single-site level. A bond-centered orbital set is a nat-
ural choice for VO2 since it allows for the formation of a
molecular-dimer-like singlet state that forms between dimer-
ized V atoms in the monoclinic M1 phase [38]. We construct
bond-centered orbitals as the bonding combinations of atom-
centered orbitals, directly capturing the bonding nature of
the highest occupied valence band [39]. Additionally, we
construct our basis to offer the possibility to, in principle,
condense an electronic singlet on either of the bonds in VO2.
This approach allows for a comprehensive treatment of VO2

across the full range of distortion from R to M1 phase, without
introducing a bias for dimerization by an a priori grouping
of V atoms into dimer-forming pairs. At the same time, it is
computationally less demanding than cluster DMFT. In Fig. 1
we compare our bond-centered approach to the standard atom-
centered single site and the previously used cluster DMFT
methods, highlighting in particular the ability to describe
singlet formation while providing an unbiased treatment of
dimerization.

II. METHODS

A. Construction of the bond-centered orbitals

As outlined in the Introduction, we perform DFT + single-
site DMFT calculations for VO2 using a basis of Wannier
functions that are centered in between neighboring V atoms
along the c direction (see Fig. 3). We construct this basis from

FIG. 1. A schematic comparison of the differences between dif-
ferent DMFT-based methods for simulating VO2: atom-centered
single-site DMFT, two-site cluster DMFT, and—the method pre-
sented in this work—bond-centered single-site DMFT. We note that
the bond-centered approach is unbiased because it considers orbitals
for each V-V pair, whereas in the cluster DMFT only short-bond V-V
pairs in the M1 structure are treated as clusters.

the V t2g-dominated bands in the energy region between −0.5
and 2.5 eV around the Fermi level, which are only slightly
entangled with higher-lying V eg-dominated bands (see the
DFT band structure in Fig. 2).

FIG. 2. (a) DFT (Wannier) band structure of M1 VO2 shown
in black (grey). (b) Total DFT density of states (DOS) as well as
orbital-projected DOS, with black (light blue) lines indicating the
a1g (eπ

g ) component. The total DOS is shown in gray. The horizontal
dashed line indicates the Fermi level EF . Note that since each bond-
centered Wannier function is constructed (with equal weights) from
two atom-centered Wannier functions corresponding to neighboring
vanadium atoms with the same orbital character, the orbitally pro-
jected densities of states are identical for the two basis sets.
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FIG. 3. Bond-centered orbitals within the unit cells of the VO2 structures. [(a) and (b)] M1 short-bond (SB) and long-bond (LB) a1g orbitals.
[(c) and (d)] a1g orbitals for both bonds (B1 and B2) in the R structure, and [(e)–(h)] corresponding eπ

g orbitals. V (O) atoms are shown in light
(dark) gray and yellow (blue) isosurfaces at identical values for all plots show the positive (negative) phase of the orbital.

We first construct a standard atom-centered basis using
V-centered t2g orbitals as initial projections for the Wannier
functions. We use this basis mainly as an intermediate step
before constructing the bond-centered basis, but we also cal-
culate the corresponding local interaction parameters using
the constrained random-phase approximation (cRPA) [40,41]
for comparison with those of the bond-centered orbitals.

To construct the bond-centered basis from these atom-
centered orbitals, we then perform a pairwise unitary trans-
formation U (k) on the corresponding atom-centered Wannier
functions in k space, acting always on a pair of either a1g or
eπ

g -type Wannier functions corresponding to the two neighbor-
ing V sites,

U (k) = 1√
2

[
ei(π/4−kzc/4) ei(−π/4+kzc/4)

ei(−π/4−3kzc/4) ei(π/4−kzc/4)

]
. (1)

Here c is the lattice parameter of the monoclinic structure
along the dimerization directions, which is twice that of the
standard rutile cell. In Appendix B, we show that the Wannier
functions resulting from this transformation are indeed cen-
tered in the middle between consecutive V atoms along the c
direction.

We note that this transformation can either be performed
by postprocessing the final Wannier transformation matrices
Umn(k) or by transforming the initial projection overlap matri-
ces Amn(k) (see Ref. [42] for the definition of these matrices)
without performing a subsequent spread minimization.

The bond-centered Wannier functions combine two atom-
centered orbitals corresponding to neighboring V atoms (see
Fig. 3). This allows us to construct a single-site impurity

problem involving all three (one a1g-type and two eπ
g -type)

bond-centered orbitals centered on the same V-V pair within
the DFT + DMFT framework [43–45]. We point out that we
construct “bond-centered” Wannier functions for each V-V
pair along c, i.e., for both the dimerized short bond (SB) pair
and the nondimerized long-bond (LB) pair in the M1 structure
(and for both equivalent V-V pairs in the R structure). There-
fore, the atom-centered and bond-centered bases span exactly
the same correlated subspace [marked by the thick grey lines
in Fig. 2(a)], since they are constructed from the same set of
bands in the same energy window. The key difference lies in
the way the interactions are included on the DMFT level: A
local interaction on the bond-centered orbitals corresponds to
both onsite and intersite interactions within the atom-centered
basis.

For brevity, we refer to the bond-centered orbitals formed
from the a1g (or eπ

g ) atom-centered orbitals simply as the a1g

(or eπ
g ) orbitals. Selected constructed bond-centered orbitals

are shown in Fig. 3. In particular, we show the key a1g Wannier
orbital for both SB and LB V-V pairs in the M1 structure
[Figs. 3(a) and 3(b)], and for the two identical bonds (B1 and
B2) in the R structure [Figs. 3(c) and 3(d)]. In Figs. 3(e)–
3(h), we also show the eπ

g orbitals for the R structure, which
complete the orbital basis set used in our DFT + DMFT cal-
culations, emphasizing that we treat all orbitals within the
bond-centered approach.

B. Computational procedure

Next, we describe how we implement the DFT + DMFT
calculations in the bond-centered basis. For all calculations,
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we use a monoclinic cell constructed from the lattice vectors
of the experimental R structure [46] doubled along the c
direction (see Fig. 3). In our treatment of the M1 phase, we
vary only the internal coordinates of atoms compared to the
R phase. Considering only the internal degrees of freedom
allows us to embed R and M1 structures in the same unit
cell with fixed lattice vectors and systematically monitor the
change in properties as a function of the internal structural
distortion. In test calculations, we did not observe any relevant
differences in the band structure if we also included the ex-
perimentally observed unit cell expansion along c or the other
strain components relative to the R phase [47].

We perform DFT calculations using the QUANTUM

ESPRESSO (v7.0) package [48,49] within the generalized gra-
dient approximation using the Perdew-Burke-Ernzerhof [50]
exchange-correlation functional. We use the scalar-relativistic
ultrasoft pseudopotentials from the GBRV library [51] with
semicore 3s and 3p states included as valence for the V atoms.
For good convergence, we use a wavefunction plane-wave
kinetic energy cutoff of 70 Ry (≈816 eV) and a 12-times
higher cutoff for the charge density. We converge the total
energies to 10−8 eV and use a �-centered 6 × 6 × 8 k-point
grid.

To construct Wannier functions, we use WANNIER90
(v3.1.0) [52,53]. We use a frozen energy window from −0.5 to
1.7 eV around the Fermi level, which encompasses most of the
t2g-dominated band manifold. These bands are not entangled
with the O 2p-dominated bands below, and only very weakly
with the higher-energy V eg-dominated bands [see the density
of states (DOS) in Fig. 2(b)]. For disentanglement, we hence
include these higher-lying bands until around 4 eV. As seen
in Fig. 2(a), the resulting Wannier bands closely reproduce
the DFT band structure in the relevant energy range. We
work with the Wannier functions obtained directly after the
disentanglement without any further spread minimization.

We then perform one-shot as well as charge self-consistent
DFT + DMFT calculations in the bond-centered basis using
solid_dmft [45,54] within the TRIQS (v3.1.0) package [55].
We describe the local interaction within the bond-centered
orbitals on each bond center by a Hubbard-Kanamori Hamil-
tonian, Hint, that includes spin-flip and pair-hopping terms;

Hint = U
∑

m

nm↓nm↑ + (U − 2J )
∑
m �=m′

nm↓nm′↑

+ (U − 3J )
∑

m<m′,σ

nmσ nm′σ

+ J
∑
m �=m′

c†
m↑c†

m↓cm′↓cm′↑ − J
∑
m �=m′

c†
m↑cm↓c†

m′↓cm′↑,

(2)

where U and J are the intraorbital Coulomb interaction and
Hund’s coupling, respectively, nmσ is the occupation of orbital
m with spin σ and c†

mσ is the corresponding electron creation
operator. This form of the interaction Hamiltonian will be
justified a posteriori in Sec. III A.

We solve the resulting DMFT impurity problem with
the continuous-time quantum Monte Carlo solver [56,57]
CT-HYB [58] at the inverse electronic temperature β =
(kBT )−1 = 40 eV−1, corresponding to approximately room

temperature. We use 104 warm-up cycles and 4 × 108 Monte
Carlo cycles with 120 steps each. We represent the Green’s
functions using 30 Legendre coefficients [59], which leads to
a smooth self-energy on the imaginary-frequency axis.

To allow for symmetry lowering relative to the R phase,
we treat each bond center as an independent impurity prob-
lem, even in the R phase itself, where both bond centers
are in principle identical. The DMFT problem is solved self-
consistently, i.e., requiring the local lattice Green’s function
to be equal to the impurity Green’s function. For one-shot
calculations, we converge the orbital and site occupations to
10−2 electrons. For charge self-consistent calculations, we
first converge the DMFT observables to the same standard as
in the one-shot case, and then consecutively perform one DFT
iteration with updated charge density followed by one DMFT
iteration, until the total energy is converged to 5 × 10−2 eV.
We give the final values averaged over the last 10 iterations.
We average over both spin channels to ensure a paramagnetic
solution.

The DFT + DMFT framework necessitates a double-
counting correction, and we use the “fully localized limit,”
�DC = (U − 2J )(n − 1/2) [44], which depends on the to-
tal site occupation n. For consistency with the charge
self-consistent calculations, DMFT occupations are used to
evaluate the double counting correction in our one-shot
calculations.

From the local Green’s function, Gmm′ (τ ), where m, m′
label different orbitals and τ is imaginary time, we obtain
the local occupations on a given site (bond center), nmm′ =
Gmm′ (τ = 0−), as well as the averaged spectral weight around
the Fermi level, Ā(ω = 0) = −(β/π )TrG(τ = β/2). We also
calculate the orbital-specific quasiparticle weight from the
imaginary part of the local self-energy, by fitting with a third-
order polynomial in the lowest five Matsubara frequencies and
then interpolating Zm = [1 − ∂Im�m(iω)/∂ (iω)]−1 to iω =
0. Finally, we use the maximum-entropy method [60,61] to
obtain the k-averaged spectral functions on the real frequency
axis.

C. cRPA calculations

We calculate the screened Coulomb interaction at zero
frequency using the cRPA [40,41] both for the atom-
centered and bond-centered basis. Within cRPA, screening
is treated within the random phase approximation and is
divided into contributions stemming from electronic tran-
sitions completely within the correlated subspace, between
the correlated subspace and all other bands, and completely
within the other bands. The last two contributions then de-
fine the frequency-dependent partially screened interaction
experienced by the electrons within the correlated subspace.
Matrix elements of the screened interaction are then evaluated
with the specific Wannier basis representing the correlated
subspace.

We conduct the cRPA calculations using the RESPACK pack-
age [62] and the interface tool wan2respack [63] to use
our custom Wannier functions. For the DFT step, we use an
identical k-point mesh and energy cutoff as outlined above
and find we obtain good convergence if we include 150 empty
bands and set the polarization function cutoff to 10 Ry.
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TABLE I. The Hubbard-Kanamori screened and unscreened pa-
rameter values in eV as obtained from cRPA for the bond-centered
(BC) and atom-centered (AC) basis for the R phase.

(All in eV) U U ′ J

Screened 3.02 1.93 0.55
AC basis Unscreened 15.38 14.12 0.63

Ratio 0.20 0.14 0.86

Screened 1.35 0.97 0.19
BC basis Unscreened 7.64 7.21 0.22

Ratio 0.18 0.14 0.86

We extract the reduced interaction matrices U σσ
mm′ =Umm′mm′

and U σ σ̄
mm′ = Umm′mm′ − Umm′m′m corresponding to equal and

opposite spins, respectively, for further analysis. Finally,
we evaluate averaged parameters corresponding to a simple
Hubbard-Kanamori parametrization directly from the reduced
interaction matrices, where for three orbitals (N = 3) [64]:

U = 1

N

N=3∑
m=1

Ummmm,

U ′ = 1

N (N − 1)

N=3∑
m �=m′=1

Umm′mm′ ,

J = 1

N (N − 1)

N=3∑
m �=m′=1

Umm′m′m. (3)

The validity of the Hubbard-Kanamori parametrization for the
bond-centered orbital basis is discussed in Sec. III A.

III. RESULTS AND DISCUSSION

A. cRPA results

We first present and analyze the results of the cRPA
calculations for both the atom- and bond-centered basis, to
better estimate the strength of the electron-electron interac-
tions within this unconventional basis set and to motivate the
parametrization of the local interaction used in our subsequent
DFT + DMFT calculations.

Our calculated reduced screened interaction matrices for
the atom-centered (AC) basis in the R structure are [ordered
as a1g, eπ

g (1), and eπ
g (2)]:

U σ σ̄
AC =

⎛
⎝3.04 1.91 1.94

1.91 2.91 1.93
1.94 1.93 3.11

⎞
⎠eV, (4)

U σσ
AC =

⎛
⎝0.00 1.39 1.38

1.39 0.00 1.37
1.38 1.37 0.00

⎞
⎠eV. (5)

The averaged Hubbard-Kanamori parameters U , U ′, and J are
listed in Table I, together with the corresponding unscreened
values. One can see that the different interorbital elements of
both U σσ ′

AC and U σσ
AC show almost no variation and are well

described by the averaged U ′ and U ′ − J . The intraorbital
interactions in U σσ ′

AC show slightly more variation, with de-
viations of up to 0.11 eV from the averaged U , but overall

the screened interaction matrices obtained from cRPA are well
approximated by the simplified Hubbard-Kanamori form.

The Hubbard parameter U is strongly screened to 20%
of its unscreened value, while J is only weakly screened to
86% of the unscreened value (see Table I). We thus obtain
a moderate value of U = 3.02 eV. This is consistent with
previous studies working in a similar atom-centered basis,
where U = 3.5 − 4.2 eV was used, leading to a correct as-
signment of the R metallic and M1 singlet-insulating regimes
[11,25,65]. cRPA calculations for VO2 by Shih et al. [66]
used a different definition for the orbitals and the correlated
subspace, preventing a direct comparison. We also note that
we obtain almost identical values for the parent R phase as for
the distorted and dimerized M1 phase (see Appendix A).

We now present the screened interaction matrices for the R
phase in the bond-centered (BC) basis:

U σ σ̄
BC =

⎛
⎝1.38 0.98 0.99

0.98 1.30 0.96
0.99 0.96 1.36

⎞
⎠eV, (6)

U σσ
BC =

⎛
⎝0.00 0.80 0.80

0.80 0.00 0.78
0.80 0.78 0.00

⎞
⎠eV. (7)

Similarly to the atom-centered basis, the interorbital off-
diagonal elements show only very weak variations, whereas
the intraorbital diagonal elements of U σ σ̄

BC show slightly more
variation. The maximum deviation of 0.05 eV of the intraor-
bital elements from the averaged U is even smaller than for
the atom-centered basis. Thus, also for the bond-centered
orbitals, the Hubbard-Kanamori parametrization offers a good
approximation to the cRPA-calculated interaction matrices.

The averaged interaction parameters in the bond-centered
basis (listed in Table I) are notably smaller than those of the
atom-centered basis. This is clearly due to the reduction of the
corresponding unscreened parameters, which are reduced by a
factor of two compared to the atom-centered case, consistent
with the larger spatial spread of the bond-centered orbitals.
However, the screening is almost exactly as strong as for the
atom-centered case, with U and J reduced to 18% and 86% of
the corresponding unscreened values. This is understandable,
since the division of the bands into screening and correlated
subspaces is identical in the two cases, and only the orbital
representation of the correlated subspace differs.

Surprisingly, we note that for both basis sets, the relation
U ′ = U − 2J holds to a good approximation, even though this
is in principle only valid in the spherically symmetric case.

Finally, the choice of the bond-centered basis leads to large
intersite elements in the Coulomb tensor [see Appendix A,
Eq. (A4)]. In particular, the nearest-neighbor interaction terms
between the bond-centered orbitals are similar in magnitude
to the on-site interaction terms, which we capture by the
Hubbard-Kanamori approximation. The size of these nearest-
neighbor interaction terms comes partially from the overlap
of the bond-centered functions on the atomic site that they
have in common, so that the nearest-neighbor terms in the
bond-centered basis are in fact composed of both interdimer
interactions and conventional atom-center on-site interactions.
Since one of the key ideas of this work is to perform compu-
tationally relatively undemanding single-site DFT + DMFT
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FIG. 4. The key observables of one of the identical R bond
sites within the DFT + DMFT method as a function of U and J .
A star indicates cRPA values and the labels (1, 2) correspond to
the different regimes as described in the text. (a) Spectral weight
at zero frequency. (b) Occupation of the a1g orbital in number of
electrons, ne.

calculations, a key approximation that we assume here is
that the correlation effects stemming from inter-bond-center
interactions are weak and thus we only treat them at the DFT
level. Based on all of the above, we use a Hubbard-Kanamori
parametrization with two parameters U and J (with U ′ = U −
2J) to represent the local Coulomb interaction between the
bond-centered orbitals within our DFT + DMFT calculation.

B. Phase diagram in U and J

We now perform simple one-shot2 DFT + DMFT calcula-
tions for a wide range of interaction parameters to explore the
overall behavior of the bond-centered description, which is the
only basis we consider from now on. In particular, we present
selected observables as a function of the Hubbard-Kanamori
model parameters U and J . To facilitate a cleaner compari-
son with the charge self-consistent results, we calculate the
double-counting correction using DMFT occupations.

We first discuss the R phase within the bond-centered de-
scription, where we always obtain identical results for both
bond-centers, due to the equidistant V atoms. We find that
the R phase hosts two different regimes, which we illustrate
in Figs. 4(a) and 4(b) with two observables—the spectral
weight around zero frequency and the a1g orbital occupa-
tion. In regime 1, at small U , we observe a metallic regime
[Ā(0) > 0] with fractional occupation of all orbitals. Regime
2 occurs at U � 3 eV and corresponds to a conventional Mott
insulator with a single electron in each of the lowest-lying a1g

2We have verified that in the most relevant insulating regime ex-
plored in detail in Sec. III C charge self-consistency does not lead to
substantial changes in the results. This is due to the fact that in this
regime, we only observe charge transfer between different orbitals
on the same atom. We also do not expect any changes in the metallic
regimes.

FIG. 5. The key observables of the M1 short-bond site obtained
within the bond-centered DFT + DMFT method as a function of U
and J . A star indicates the cRPA values of U and J and the labels
(1–4) correspond to the different regimes as described in the text.
(a) Spectral weight at zero frequency. (b) Occupation of the a1g

orbital in number of electrons, ne. (c) Local occupation in number
of electrons, ne. (d) The a1g orbital quasiparticle weight.

bond-centered orbitals. As indicated by the star in Figs. 4(a)
and 4(b), the cRPA values lie deep in the metallic regime.
We note that we obtain identical regimes but for different
values of U within atom-centered DFT + DMFT, validating
the applicability of our bond-centered approach for the R
phase.

In the distorted M1 structure, we have inequivalent SB and
LB sites. Since the main physics occurs on the short V-V
bonds, we mostly discuss the SB observables, referring to the
LB sites or global observables only where necessary. For the
M1 phase, we observe a richer phase diagram than for the
R structure, noting four distinct regimes in the relevant part
of the U -J phase diagram, denoted 1–4 in Fig. 5. Here in
addition to the spectral weight at zero frequency and the SB
a1g orbital occupation, we plot the total occupation on the SB
site and the corresponding a1g orbital quasiparticle weight Z ,
representative of the behavior of the self energy around zero
frequency. To further characterize the different regimes, we
also depict representative spectral functions for regimes 1–4
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FIG. 6. Total spectral functions summed over both SB and LB
sites for a1g (eπ

g ) orbitals shown in black (light blue) lines. The
gray line indicates the sum over all orbitals and area shaded in
gray corresponds to the SB site. The figure illustrates specific points
corresponding to the different regimes of Fig. 5. (a) Regime 1, a
metal. (b) Regime 2, a conventional Mott insulator. (c) Regime 3,
a charge-disproportionated Mott insulator. (d) Regime 4, a singlet
insulator.

in Figs. 6(a)–6(d), including also information about the LB
site.

In regime 1, at low values of U (and also depending on J),
we observe a metallic state [Fig. 5(a)] in which the electron-
electron interaction is not sufficiently large to open a Mott-
like gap. Although the detailed occupancies of the different
orbitals, and also the distribution between SB and LB sites,
differ depending on the precise U and J values within this
regime, Fig. 6(a) shows that all orbitals on both SB and LB
sites contribute to the metallicity.

In regime 2, at relatively large values of U and not too
small J , we observe a typical Mott-insulating state, analogous
to that in the R phase, with identical SB and LB occupations
of exactly one electron each [Fig. 5(c)]. Within this regime,
the single electron on each site resides in the lowest-lying a1g

orbital, leading to vanishing spectral and quasiparticle weights
[Figs. 5(a) and 5(d)]. The spectral function in this regime

shows one broad feature consisting of two lower Hubbard
peaks below the Fermi level, both of the a1g type from the
two respective sites [the lower Hubbard peak belonging to the
SB site is shown in gray in Fig. 6(b)].

Lowering the U value for J � 0.2 eV favors the formation
of an unconventional Mott insulator in regime 3, where we
observe a charge-disproportionated Mott state with a doubly
occupied SB site [Fig. 5(c)] with one electron in the a1g

[Fig. 5(b)] and one electron in the next-lowest-lying orbital,
eπ

g (1) [shown in Fig. 6(c) as a part of the eπ
g ]. Similarly to

regime 2, we see two merged occupied Hubbard peaks in
the spectral function, but now both derive from the SB site
and have different orbital character. In both of these Mott-like
states (regimes 2 and 3), we observe a vanishing a1g orbital
quasiparticle weight [Fig. 5(d)]. While in regime 2, the a1g

orbital quasiparticle weight is zero for both sites, in regime
3 this is only true for the SB site. We also note a metallic
boundary between regimes 2 and 3, as seen in Fig. 5(a) for two
data points with nonzero spectral weight, persisting to larger
values in J .

Finally, in regime 4, we observe an insulating state where
the SB site hosts two electrons [Fig. 5(c)], both within the
a1g bonding orbital [Fig. 5(b)]. Despite the insulating char-
acter, the self-energy of this state remains small and hence
the system still retains a finite a1g orbital quasiparticle weight
Z ≈ 1. The finite quasiparticle weight can also be traced to
the relatively sharp quasiparticle-like feature in the occupied
part of the spectral function, shown in Fig. 6(d). This rather
weakly correlated regime is the singlet insulator state which
corresponds to the experimentally observed M1 ground state.
At small values of J , this region spans a wide range of U
values which is likely due to the almost insulating nature of
the DFT calculations [see the dip in the DOS at the Fermi
level in Fig. 2(a)]. We also note that close to the boundary
to the metallic state, the occupations change gradually, i.e.,
the a1g and local occupations are less than two. The shape
of the spectral function in this region [Fig. 6(d)] is in good
agreement with previous works simulating the M1 structure
of VO2 with more expensive cluster-DMFT methods such as
those from Refs. [11,29].

Our bond-centered method thus offers a substantial re-
alistic U and J parameter range for which we are able to
describe a metallic R phase and an insulating M1 phase. This
region spans essentially the whole singlet insulator regime
of M1 below U � 3 eV, above which the R phase changes
into a Mott insulator. Out of the regimes discussed, the cRPA
calculations from Sec. III A [denoted by stars in Figs. 4(a)
and 4(b) and Figs. 5(a)–5(d)] fall directly into the metallic
regime in the R phase and on the boundary of the metallic and
singlet-insulator regimes in M1. However, we note that cRPA
values should merely be taken as a guideline since the fre-
quency dependence of the screened interaction is neglected in
the DFT + DMFT calculations with only the zero frequency
component used, and since the cRPA method is known to
overscreen in some cases [67].

C. Variation of the M1 structural distortion

Having identified the regime within our U and J phase
diagrams that matches the experimental observations, we now
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FIG. 7. Selected DFT(+DMFT) observables corresponding to
bond-centered orbitals and represented by empty (filled) markers
along the distortion interpolating between and extrapolating beyond
the R and M1 VO2 phases. (a) Short-bond spectral weight at zero
frequency. (b) Short-bond occupation of the a1g (eπ

g ) orbitals in black
(light blue). (c) Total energy relative to the R phase.

perform a variation of the structural distortion in this regime
to analyze the onset of the MIT with distortion. We use in-
teraction parameters of U = 2.0 eV and J = 0.1 eV, which
are slightly modified from the zero-frequency cRPA values to
account for the aforementioned limitations. To counteract the
lack of frequency dependence and the potential overscreening
of cRPA, we slightly increase the U parameter, in line with the
common practice in the field. We also marginally adjust our
choice of the J parameter to fit better into the singlet-insulator
regime. These values are clearly within the singlet insula-
tor regime for the M1 structure and still within the metallic
regime for the R case. We linearly interpolate between and ex-
trapolate beyond the atomic positions of the R (corresponding
to d = 0%) and M1 (corresponding to d = 100%) structures
with fixed lattice vectors. We perform charge self-consistent
DFT + DMFT so that we also have access to the total energy
of the system. In Figs. 7(a)–7(c), we present the results for
the SB (or one of the bond sites for R) spectral weight at zero

FIG. 8. Total spectral functions at four specified distortions, d ,
summed over both SB and LB sites for a1g (eπ

g ) orbitals shown in
black (light blue) lines. The gray line indicates the sum over all
orbitals and the area shaded in gray corresponds to the SB site.

frequency, SB occupations, and the total energy as function
of the structural distortion, together with the respective DFT
counterparts (empty circles in Fig. 7). We do not show data
for the LB site (or the other bond site for R) as it quickly
depletes its electrons as the distortion increases. Similarly to
the previous section, we also show the spectral function plots
of both sites in Figs. 8(a)–8(d) at particular points along the
distortion path.

At small distortions away from the R structure, the metal-
lic phase persists [Fig. 7(a)], characterized by the a1g and
eπ

g orbitals with similar occupations [Fig. 7(b)]. At around
d = 50% distortion, we start seeing the electrons strongly
localizing in the a1g orbital of the SB, with the eπ

g spectral
weight shifting to higher energies [Fig. 8(b)]. In this regime
close to the R structure, DFT gives similar results, with a
slightly lower population of the a1g orbital compared to the
DFT + DMFT case.

Between around d = 50% and d = 70%, in the DFT +
DMFT results, we observe an abrupt change in the spectral
weight at the Fermi level, corresponding to a change from a
metal to an insulator, and a strong increase of the occupation
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of the SB a1g orbital, which saturates at a value close to 2
(∼1.8). Thus, the two electrons of the two V atoms essentially
completely localize on the SB, while the LB becomes nearly
empty, indicating singlet formation on the dimerized V-V pair.
We also see a clear change in the curvature in the total energy
[Fig. 7(c)]. These sharp changes are in stark contrast to the
DFT results on multiple fronts. First, DFT + DMFT predicts
a sharp MIT at d = 70% [Fig. 7(a)], whereas DFT predicts
that the system stays metallic until a large distortion of around
d = 120%. Second, the very large increase of the a1g SB
occupation at the MIT predicted by DFT + DMFT [Fig. 7(b)]
is not present in the DFT results. Finally, while DFT predicts
two energy minima, one for the undistorted structure and
another slightly higher-energy one at around 125% distortion
[Fig. 7(c)], we obtain only a single energy minimum for the
distorted case within DFT + DMFT.

Above d = 70%, DFT + DMFT retains the singlet insu-
lating state and we see a shift of the bonding a1g peak to
lower energy, leading to an increasing gap in the spectral
function [Figs. 8(c) and 8(d)]. At distortions above d = 120%,
DFT also converges into an insulating state with the SB a1g

orbital population saturating at 1.5 electrons. It is further
interesting to note that the position of the energy minimum for
nonzero distortion does not change significantly with the dif-
ferent methods. Instead, the minimum is considerably deeper
in the DMFT case, stabilizing the M1 ground state, con-
sistent with experimental observations. Note, however, that
for both DFT and DFT + DMFT the calculated minimum
occurs at a larger structural distortion than that of the ex-
perimental M1 structure (d = 100%). Last, we note the good
qualitative agreement between the spectral functions of both
end-point phases (R at d = 0% and M1 at d = 100%) within
our bond-centered approach and previous works [11,16,29].
This demonstrates that, although the inclusion of on-site and
intersite interactions is fundamentally different in our work
compared to these previous studies, our bond-centered single-
site approach is indeed able to capture the relevant physical
effects.

IV. SUMMARY AND OUTLOOK

In this work, we presented a DFT + single-site DMFT
study of VO2 using an unconventional set of bond-centered
orbitals to represent the correlated subspace. This allowed us
to treat the R and M1 structures in a consistent manner, and
thus to distort the system continuously between the two end-
point structures. Thus, we can observe and analyze the MIT
as a function of distortion at a greatly reduced computational
cost compared to cluster-based methods.

We defined a k-dependent transformation matrix that we
used to form the bond-centered orbitals from the standard
atom-centered ones, and we performed cRPA calculations
of the screened electron-electron interaction for both the
atom- and bond-centered basis sets. We observed that the
bond-centered basis has much smaller values of interaction
parameters compared to the atom-centered basis, stemming
from its larger spatial spread.

Performing DFT + DMFT calculations for the bond-
centered basis, we then identified key regimes in the U
and J phase space for both R and M1 structures, and

showed that it is possible to obtain a metallic R phase and
singlet-insulator M1 phase consistent with the cRPA results.
With the results of the cRPA method, our ab initio pro-
cedure replicates the experimental findings for the different
phases.

Finally, we performed calculations as function of the struc-
tural distortion between the R and M1 structures, observing
an MIT indicated by a sharp change in spectral weight at
the Fermi level and orbital occupations. Furthermore, whereas
DFT exhibits a global energy minimum for the R structure,
in contradiction with the experimentally verified M1 ground
state, DFT + DMFT correctly predicts a global energy mini-
mum for M1.

In conclusion, we find that use of a bond-centered basis set
combined with DFT + DMFT offers results complementary
to the current state-of-the-art cluster-based methods for VO2

and allows convenient analysis of VO2 as function of the
structural distortion. In addition, the bond-centered approach
is bias free, since it, in principle, allows the singlet to form
on any of the V-V pairs. While the bond-centered approach
is particularly well-suited to describe the physics of VO2, we
also expect it to be useful in other materials hosting molecular-
orbital-like states that necessitate such a special treatment of
interatomic correlations.
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APPENDIX A: cRPA RESULTS FOR THE M1 STRUCTURE

In addition to the results described in Sec. III A, here we
present the reduced Coulomb matrices obtained within cRPA
for the M1 phase. First, we show the results for the atom-
centered basis:

U σ σ̄
AC =

⎛
⎝3.12 1.98 1.98

1.98 2.93 1.99
1.98 1.99 3.10

⎞
⎠eV, (A1)

U σσ
AC =

⎛
⎝0.00 1.47 1.43

1.47 0.00 1.46
1.43 1.46 0.00

⎞
⎠eV. (A2)

Here the matrices still follow the Hubbard-Kanamori form
very well with slightly larger orbital dependencies than for
the R phase, cf. Eqs. (4) and (5).

Next, we also present the results for the bond-centered
orbitals in the distorted M1 phase, using 6 × 6 matrices
containing both inequivalent sites. Here the 3 × 3 blocks
in the diagonal correspond to the local interactions on the
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bond-centers, and the off-diagonal blocks indicate the inter-
actions between neighboring bond-centers:

U σ σ̄
cRPA =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.46 1.03 1.04 1.02 0.75 0.75
1.03 1.33 1.01 0.75 0.93 0.73
1.04 1.01 1.38 0.75 0.73 0.96
1.02 0.75 0.75 1.33 0.93 0.93
0.75 0.93 0.73 0.93 1.24 0.92
0.75 0.73 0.96 0.93 0.92 1.30

⎞
⎟⎟⎟⎟⎟⎟⎠

eV,

(A3)

U σσ
cRPA =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.00 0.85 0.85 0.50 0.64 0.64
0.85 0.00 0.83 0.64 0.44 0.62
0.85 0.83 0.00 0.63 0.62 0.44
0.50 0.64 0.63 0.00 0.76 0.75
0.64 0.44 0.62 0.76 0.00 0.74
0.64 0.62 0.44 0.75 0.74 0.00

⎞
⎟⎟⎟⎟⎟⎟⎠

eV.

(A4)

Again, the Hubbard-Kanamori form is approximately ob-
served for the local interactions, both in the short-bond and
long-bond blocks. We also note that the difference between
the two bond centers is relatively small, and comparable to
the orbital dependencies in the R phase, cf. Eqs. (7) and (6).
Overall, the differences in the local interaction parameters
between the M1 and R phases are not significant for the com-
parison between the DFT + DMFT results for the two cases,
and the use of constant U and J values for the variation of the
structural distortion in Sec. III C appears justified. Finally, we
note the large intersite elements which exhibit similar orbital
dependence as the onsite terms.

APPENDIX B: CENTERS OF THE TRANSFORMED
WANNIER FUNCTIONS

Here we show that the pairwise unitary transformation
defined by Eq. (1) indeed leads to Wannier functions that are
centered on the mid-point between two consecutive V atoms
along the c direction.

The unitary transformation acting in k space was defined
as:

U (k) = 1√
2

[
ei( π

4 − c
4 kz ) ei(− π

4 + c
4 kz )

ei(− π
4 − 3c

4 kz ) ei( π
4 − c

4 kz )

]
, (B1)

where c is the lattice parameter of the monoclinic structure
along the ẑ direction, i.e., along the dimerization direction,
and U (k) always acts on a pair of k-space Wannier functions
corresponding to atom-centered Wannier functions with the
same orbital character on both atoms, |w1,k〉 and |w2,k〉. The
transformation into the “bond-centered” k-space Wannier or-
bitals, |w̃1,k〉 and |w̃2,k〉 can thus be written as(|w̃1,k〉

|w̃2,k〉
)

= U (k)

(|w1,k〉
|w2,k〉

)
. (B2)

The corresponding real-space Wannier functions are then ob-
tained, as usual, by a simple Fourier transform [42]

|w̃n,R〉 = V

(2π )3

∫
dk e−ik·R|w̃n,k〉, (B3)

where V is the unit cell volume.

For convenience, we also define two additional sets of
partially transformed Wannier functions

|w′
1,R〉 = V

(2π )3

∫
dk e−ikR−ikz

c
4 |w1,k〉, (B4)

|w′
2,R〉 = V

(2π )3

∫
dk e−ikR+ikz

c
4 |w2,k〉, (B5)

and

|w′′
1,R〉 = V

(2π )3

∫
dk e−ikR−ikz

3c
4 |w1,k〉, (B6)

|w′′
2,R〉 = V

(2π )3

∫
dk e−ikR−ikz

c
4 |w2,k〉. (B7)

With this, the fully transformed Wannier functions can now be
written as

|w̃1,R〉 = ei π
4 |w′

1,R〉 + e−i π
4 |w′

2,R〉, (B8)

|w̃2,R〉 = e−i π
4 |w′′

1,R〉 + ei π
4 |w′′

2,R〉. (B9)

For the following, it is important to note that if the original
atom-centered Wannier functions, |wn,R〉, are real, then the
partially transformed functions, |w′

n,R〉 and |w′′
n,R〉 are also

real. This can be seen as follows. A real-valued Wannier
function |wn,R〉 implies the following condition on the cell-
periodic part of the corresponding function in k space (see
Eq. (65) from Ref. [42]):

un,k(r) = u∗
n,−k(r), (B10)

where un,k(r) = e−ik·rwn,k(r). Since the partially transformed
functions in Eqs. (B4)-(B7) differ from the original func-
tions only by a phase factor with a linear k dependence, the
condition in Eq. (B10) is retained for the corresponding cell-
periodic functions, and thus the partially transformed Wannier
functions are also real valued.

We can now calculate the center of the fully transformed
Wannier function |w̃1,R=0〉:
〈w̃1,R=0|r|w̃1,R=0〉 = 〈w′

1,R=0|r|w′
1,R=0〉 + 〈w′

2,R=0|r|w′
2,R=0〉

+ e−i π
2 〈w′

1,R=0|r|w′
2,R=0〉

+ e+i π
2 〈w′

2,R=0|r|w′
1,R=0〉. (B11)

Using the fact that the functions |w′
n,R=0〉 are real and that r

is a Hermitian operator, we can see that the last two terms in
Eq. (B11) cancel each other:

e−i π
2 〈w′

1,R=0|r|w′
2,R=0〉 + e+i π

2 〈w′
2,R=0|r|w′

1,R=0〉
= (e−i π

2 + e+i π
2 )〈w′

1,R=0|r|w′
2,R=0〉 = 0. (B12)

Then, for the diagonal terms, we use the general expression
for the expectation value of the position operator for Wannier
functions [42]:

rn = 〈wn,R=0|r|wn,R=0〉 = i
V

(2π )3

∫
dk〈un,k|∇k|un,k〉.

(B13)

Thus, a phase transformation of the k-space Wannier func-
tions with a linear kz-dependence simply shifts the center of
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the corresponding real-space Wannier function according to

r′
n = i

V

(2π )3

∫
dk〈e−ikzαun,k|∇k|e−ikzαun,k〉

= i
V

(2π )3

∫
dk[〈un,k|∇k|un,k〉 − iαẑ〈un,k|un,k〉]

= rn + αẑ. (B14)

With this, one can see that the corresponding phase shifts of
the first two terms in Eq. (B11) cancel each other and one
obtains

〈w̃1,R=0|r|w̃1,R=0〉 = 1
2 (r1 + r2), (B15)

i.e., the center of the first transformed Wannier function in-
deed lies on the midpoint between the centers of the two
original Wannier functions. Thus, if these original Wannier
functions are centered on two consecutive V sites, the trans-
formed Wannier function is centered on the corresponding
bond center.

An analogous calculation for the second transformed Wan-
nier function |w̃2,R=0〉 leads to

〈w̃2,R=0|r|w̃2,R=0〉 = 1
2 (r1 + r2) + c

2
ẑ (B16)

= 1
2 ({r1 + cẑ} + r2). (B17)

Thus, this Wannier function is centered on the next bond
center along ẑ, i.e., on the midpoint between the second and
the periodically shifted first atom-centered Wannier function.
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