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Exciton interacting with a moiré lattice: Polarons, strings, and optical probing of spin correlations
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The ability to create and stack different atomically thin transition metal dichacogenide (TMD) layers on
top of each other has opened up a rich playground for exploring new and interesting two-dimensional (2D)
quantum phases. As a consequence of this remarkable development, there is presently a need for new sensors
to probe these 2D layers, since conventional techniques for bulk materials such as x-ray and neutron scattering
are inefficient. Here, we develop a general theory for how an exciton in a TMD monolayer couples to spin
and charge correlations in an adjacent moiré lattice created by a TMD bilayer. Virtual tunneling of charge
carriers, assumed for concreteness to be holes, between the moiré lattice and the monolayer combined with the
presence of bound hole-exciton states, i.e., trions, give rise to an effective interaction between the moiré holes and
the exciton. In addition to the Umklapp scattering, we show that this interaction is spin-dependent and therefore
couples the exciton to the spin correlations of the moiré holes, which may be in- as well as out-of-plane. We
then use our theory to examine two specific examples where the moiré holes form in-plane ferromagnetic or
antiferromagnetic order. In both cases, the exciton creates spin waves in the moiré lattice, which we analyze
by using a self-consistent Born approximation that includes such processes to infinite order. We show that
the competition between magnetic order and exciton motion leads to the formation of a well-defined quasiparticle
consisting of the exciton surrounded by a cloud of magnetic frustration in the moiré lattice sites below. For the
antiferromagnet, we furthermore demonstrate the presence of the elusive geometric string excitations and discuss
how they can be observed via their smoking gun energy dependence on the spin-spin coupling, which can be
tuned by varying the twist angle of the moiré bilayer. All these phenomena have clear signatures in the exciton
spectrum, and as such our results illustrate that excitons are promising quantum probes providing optical access
to the spin correlations of new phases predicted to exist in TMD materials.
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I. INTRODUCTION

Transition metal dichacogenides (TMDs) have emerged as
a new and powerful platform for exploring strongly correlated
physics in two dimensions (2D). This is due to their rich
spin-valley degrees of freedom and useful optical properties
[1–6], combined with the possibility to stack two or more
monolayers with a lattice mismatch or at a relative angle,
which creates a long wavelength moiré potential [7–9]. The
low-energy physics of such moiré lattices can be described by
a highly tunable Fermi-Hubbard model, where many different
many-body phases can be realized [10–14]. There has re-
cently been remarkable experimental progress exploring these
systems including the observation of a Mott insulating state
at unit filling [15,16] and a possible superconducting state
[17], correlated insulating states (generalized Wigner states)
at discrete fractional fillings [18–23], as well as the integer
and fractional anomalous quantum Hall effects [24,25]. Since
excitons are tightly bound in TMDs, they can for many pur-
poses be regarded as bosons, which together with the electrons
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realize intriguing new Bose-Fermi mixtures. This has led to
the observation of Fermi [26] and Bose polarons [27], and has
been predicted to give rise to exciton mediated superconduc-
tivity [28–32]. Moiré lattices are naturally triangular and can
host a range of magnetic and spin liquid phases [12,14,33–
35] with spin correlations predominantly in-plane [35–37].
Measurements of the out-of-plane magnetic susceptibility us-
ing an external magnetic field indicate an antiferromagnetic
spin-spin coupling in WSe2/WS2 [15] and MoTe2/WSe2

[38] bilayers at unit filling, whereas such measurements re-
veal ferromagnetic correlations away from the unit filling for
a MoSe2/WS2 bilayer [39]. Transport measurements for a
WSe2/WSe2 bilayer are consistent with a nonmagnetic state
such as a spin liquid [40].

To harness the full potential of these new 2D materials,
it is important to have efficient probes for their properties.
In particular, having access to the spin correlations of the
moiré electrons would be highly useful as they are often
one of the defining features of the different magnetic and
spin liquid states predicted to be the ground state in moiré
systems [12,14,34–36,41–43]. Techniques developed for 3D
materials such as x-ray and neutron scattering are inefficient
for 2D materials due to the required large sample mass to
obtain observable signals [44], and it is difficult to extract
the underlying particle correlations from magnetotransport or
scanning probes [45].
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Inspired by these developments, we explore in this work
the properties of an exciton in a TMD monolayer placed on
top of a TMD bilayer forming a moiré lattice. We show that
virtual tunneling of holes, which are taken to be the charge
carriers, between the moiré lattice and the monolayer gives
rise to a strong and spin-dependent exciton-hole interaction.
This is because only holes and excitons with opposite spin
interact significantly and can bind to form a trion. We show
that this interaction gives rise to Umklapp scattering to first
order of the number of exciton-hole scattering events, whereas
higher order scattering terms couple the exciton to the spin-
spin correlations of the moiré holes. Our theory is then applied
to two cases, where moiré holes either form antiferromagnetic
(AFM) or ferromagnetic (FM) order. The exciton is demon-
strated to excite spin waves in both the cases, and to study the
exciton spectral function, we employ a strong coupling theory
based on a self-consistent Born approximation that includes
spin waves to infinite order. We find that these spin wave exci-
tations result in the formation of a well-defined quasiparticle
consisting of the exciton dressed by a cloud of magnetic frus-
tration in the moiré lattice sites below. In the case of the AFM,
there are also damped excited states, which can be identified
as geometric strings due to their characteristic energy depen-
dence on the spin-spin coupling strength in the moiré lattice.
Importantly, this dependence can be experimentally probed by
changing the twist angle of the moiré bilayer showing how
the flexibility of the TMD setup can be used to detect these
elusive states. Since our theory for the interaction between
an exciton and the spin and charge degrees of freedom in an
adjacent moiré lattice is quite general, our results demonstrate
how excitons can be used as nonevasive quantum probes
for the new and rapidly growing class of 2D van der Waals
materials.

Our paper is organized as follows. In Sec. II, we describe
our setup and the resulting Hamiltonian. Section III analy-
ses the exciton-hole scattering and discusses qualitatively the
main physical effects arising from this. Next, we present in
Sec. IV a theory, which expands the exciton energy spectrum
in terms with an increasing number of exciton-hole scattering
events, and we show how the exciton couples to the spin-spin
correlations of the moiré holes. In Sec. V, we combine this
theory with a nonperturbative Born approximation to describe
the cases where the moiré holes form in-plane AFM or FM or-
der. This leads to a physical picture where the exciton creates
and absorbs spin waves. Our numerical results including the
emergence of polarons, damping, and geometric strings are
presented in Sec. VI, and we end in Sec. VII with a discussion
and outlook.

II. SETUP

We consider the setup illustrated in Fig. 1(a) where a TMD
monolayer is stacked on top of a TMD bilayer forming a
moiré lattice. We will explore how the spin correlations in
the moiré lattice affect an exciton in the monolayer, which
will be refered to as the exciton layer in the following. To
avoid the formation of a three-layer moiré system, the probe
and moiré layers are separated by a spacing layer with energy
bands highly detuned by an energy off-set �̃ with respect to
the relevant energies.

FIG. 1. (a) System considered. A top TMD layer contains an
exciton formed by a spin ↑ hole (blue ball) bound to a spin ↑ electron
(red ball). An adjacent TMD bilayer forms a moiré lattice with
one hole per site featuring in-plane spin correlations, which in the
figure are taken to form an AFM. A spin ↓ moiré hole can virtually
tunnel to the top layer and form a trion state with the exciton. Since
its spin in the trion state is perpendicular to the TMD layers, this can
lead to a flip of its in-plane spin when it tunnels back to the moiré
lattice. This tunneling gives rise to an effective exciton-hole inter-
action that creates magnetic frustration (red ellipses) in the moiré
lattice sites below the exciton. (b) Underlying level structure. A spin
↓ hole in the TMD bilayer forming the moiré lattice can tunnel to the
top TMD layer where its energy is increased by �. It can however
bind with an exciton thereby lowering its energy by the trion binding
energy εT .

For concreteness, we assume that the moiré lattice is in the
hole doping regime; the analysis for the electron-doping case
is completely analogous. Using the Schrieffer-Wolff transfor-
mation, we obtain that the tunneling rate of holes between
the top layer of the moiré system and the exciton layer is
t ∼ t̃ 2/�̃, where t̃ � �̃ is the interlayer tunneling between
the spacer layer and its two neighboring layers. Further details
are given in Appendix A.

A. Exciton coupled to moiré holes

Without losing generality, we consider a spin-up (↑) ex-
citon in the exciton layer. Note that due to the spin-orbit
coupling in the TMDs, the spin quantization axis is perpen-
dicular to the layers, which we define as the z axis; see Fig. 1.
There are at least two physical effects giving rise to a spin-
dependent exciton-hole interaction. First, a ↑ hole tunneling
from the moiré system to the exciton layer can be exchanged
with the ↑ hole bound in the exciton whereas a ↓ hole cannot.
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This gives rise to a spin-dependent hole-exciton exchange
interaction, which however is quite weak.

We therefore focus on a second effect arising from the fact
that the ↑ exciton interacts predominantly with ↓ holes. This is
because excitons in TMDs are tightly bound and have a small
spatial size. The Pauli exclusion principle, which prohibits
two holes with the same spin to be at the same position there-
fore suppresses the probability that a spin ↑ hole is close to a ↑
exciton and hence their interaction. The effective Hamiltonian
describing the coupling between the moiré system and the
exciton layer is

H =
∑

k

[
a†

k↓ h†
k↓

][εk + � t
t εk

][
ak↓
hk↓

]

+
∑

k

εx
kx†

kxk +
∑
kk′q

V (q)x†
k+qa†

k′−q↓ak′↓xk. (1)

Here a†
k↓ and h†

k↓ create a ↓ hole with in-plane momentum k
and kinetic energy εk in the exciton layer and top layer of the
moiré system, respectively, x†

k creates an exciton in the exciton
layer with momentum k and kinetic energy εx

k = k2/2mx (mx

being the exciton mass), � is the energy off-set between the
exciton layer and the moiré system, and V (q) is the interaction
between the exciton and the ↓ holes in the exciton layer. We
have ignored the tunneling of ↑ holes as they are assumed to
interact only weakly with the excitons, and we use units where
h̄ = 1.

B. Moiré bilayer

In addition to Eq. (1) describing the exciton and its cou-
pling to the moiré holes, we also need a Hamiltonian for
the moiré system itself. While our results are quite general,
we focus in the rest of the paper on the experimentally rele-
vant case of a half-filled triangular moiré lattice formed by a
MoSe2-WS2 bilayer. To describe the moiré lattice, we use a
microscopic continuum model with interlayer hole tunneling
between the MoSe2 and WS2 layers [46,47]. For brevity, we
present the details and numerical parameters of these calcu-
lations in Appendix B and simply plot in Fig. 2 the resulting
highest valence Bloch bands along high symmetry directions
in the moiré Brillouin zone (mBZ) for a twist angle θ = 2.5◦
between the two layers. We see that the highest moiré va-
lence band is well separated in energy from the other bands.
As we are interested in the hole-doping regime of the half-
filled highest band, we discard the lower bands and describe
the moiré holes in the highest valence band with an effec-
tive triangular tight-binding model. By accounting also for
the repulsive Coulomb interaction between the moiré holes,
we can write down an effective many-body moiré Hamiltonian
for the moiré holes as

Hm =
∑
i jσ

tσ
i j h

†
iσ h jσ +

∑
i

U0h†
i↑h†

i↓hi↓hi↑

+
∑
i jσσ ′

Ui jh
†
iσ h†

jσ ′h jσ ′hiσ +
∑
i jσσ ′

Xi jh
†
iσ h†

jσ ′hiσ ′h jσ , (2)

where hiσ annihilates a hole with spin σ ∈ {↑,↓} at moiré
lattice site i. The first term in Eq. (2) describes hole hop-
ping, where the matrix elements tσ

i j are obtained by taking

FIG. 2. Energy dispersions (red lines) of the highest spin ↓ va-
lence Bloch bands of the MoSe2-WS2 bilayer along high symmetry
directions in the mBZ for twisting angle θ = 2.5◦. The black lines
are the Bloch bands without the moiré coupling. Squares depict the
dispersion of the highest valence band obtained from the nearest-
neighbor tight-binding model.

the Fourier transform of the energy dispersion of the highest
moiré valence band. For small twisting angle θ , corresponding
to a large moiré lattice constant, we find as expected that
the nearest-neighbor hopping matrix element is by far the
largest in magnitude. In Fig. 2 the band dispersion produced
by the first term of Eq. (2) with only nearest neighbor hopping
(squares) is compared to the original highest valence band. We
see that the agreement is quantitative, which justifies the use
of the effective single band model given by Eq. (2).

The second, third and fourth terms in Eq. (2) describe, re-
spectively, the on-site, nonlocal direct and exchange Coulomb
interaction between the moiré holes, where the interaction ma-
trix elements U0, Ui j and Xi j are U0 = 〈wiwi|Vc|wiwi〉, Ui j =
〈wiw j |Vc|wiw j〉, and Xi j = 〈wiw j |Vc|w jwi〉. Here Vc(r) is the
Coulomb interaction and wi is the Wannier function for the
moiré lattice site i [14,48]. Note that these Wannier states
have components in both layers of the moiré bilayer leading
to intra- and interlayer Coulomb matrix elements. A detailed
account of these calculations is given in Appendix B.

As expected, we find that for small twist angles the on-
site interaction U0 is much larger than any other relevant
energy scale. For example, for θ = 2.5◦ we have U0/UNN ∼ 4
and U0/|tσ

NN| ∼ 25 � 1 where “NN” refers to the nearest-
neighbor terms. It follows that doubly occupied sites are
energetically suppressed and that the low-energy excitations
of the holes at half filling can be described by an extended
Heisenberg model

Hm = J1

∑
〈i, j〉

si · s j + J2

∑
〈〈i, j〉〉

si · s j + HDM. (3)

Here, the spin operators read si = ∑
σσ ′ h†

iσ σσσ ′hiσ ′/2 where
σ = (σx, σy, σz ) is a vector of the Pauli matrices. Microscopic
expressions for the nearest neighbor J1 and next-nearest
neighbor J2 spin-spin coupling strengths are derived in
Ref. [14] and for completeness given in Appendix B. Using
the experimentally realistic parameters for the MoSe2-WS2
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bilayer resulting in the Bloch bands shown in Fig. 2, we
obtain J1 ∼ 0.23meV (J1 ∼ 0.95 meV) and J2 ∼ 0.001meV
(J2 ∼ 0.02 meV) for the twisting angles θ = 2.5◦ (θ = 3.3◦).

Our calculations also yield a small imaginary part
for the NN hopping matrix elements tσ

NN. This gives a
rise to the so-called Dzyaloshinskii-Moriya term HDM =
J1

∑
〈i, j〉[(cos 2φ − 1)si · s j + sin 2φêz · (si × s j )], where φ is

the complex phase of tNN [35,36]. While this term is small
for small φ and therefore omitted in the subsequent sections,
its presence is important since it breaks the O(3) symmetry
of the moiré lattice and has been predicted to favor in-plane
magnetic ordering [35–37].

Note that it is a very challenging to provide a microscopic
description of the highly correlated states of electrons in tri-
angular moiré lattices and the microscopic model used may
not be quantitatively accurate. This is however not essential
for the main results of the present paper; namely that the
coupling between an exciton and the in-plane spin correlations
of electrons (holes) in a moiré lattice leads to the formation
of polarons and geometric strings, which are visible in the
exciton spectrum making it a useful quantum probe. Indeed,
different values of the spin-spin couplings will of course
change our results quantitatively but not qualitatively as long
as the underlying phases remain the same.

III. EXCITON-HOLE SCATTERING

While the interaction V (q) in Eq. (1) takes place in the
exciton layer between spin ↓ holes and a spin ↑ exciton, the
tunneling t gives rise to an effective scattering between a spin
↓ hole in the top moiré layer and an exciton in the exciton
layer [49,50]. Indeed, a spin ↓ hole in the top moiré layer
can tunnel to the exciton layer, interact with the exciton, and
subsequently tunnel back to the top moiré layer.

By taking such tunneling processes into account to the low-
est order in t/�, we show in Appendix C that the scattering
matrix between spin ↓ holes in the top moiré layer and a spin ↑
exciton in the exciton layer is given by t2T /�2. Here, T is the
scattering matrix between a hole and an exciton in the exciton
layer, which can be evaluated within the ladder approximation
as depicted diagrammatically in Fig. 3(a). Since one can to a
good approximation ignore the momentum dependence of the
interaction V (q) [51], we obtain

T (K, ω) = 1

�(0, εT ) − �(K, ω)
, (4)

where �(K, ω) is the propagator of an exciton-hole pair in
the exciton layer with total momentum and energy (K, ω). In
Eq. (4), we have replaced the bare interaction strength V (q)
with the binding energy εT < 0 of a trion state consisting of a
spin ↑ electron, a spin ↑ hole, and a spin ↓ hole in the exciton
layer as explained in more detail in Appendix C [52–54].

Equation (4) takes into account that the interaction V (q)
can support a bound state between a ↓ hole in the exciton layer
and a ↑ exciton, i.e., a trion as illustrated in Fig. 1(a). This
gives rise to a pole in the scattering matrix at the trion energy,
and to simplify the subsequent numerical calculations, we
expand around this pole writing T (k, ω) = Z/[ω − εT (k)].
Here, εT (k) = � + εT + k2/2mT is the energy of the trion
with momentum k and residue Z with mT being the trion

FIG. 3. (a) The scattering matrix for an exciton (black line) and
a spin ↓ hole in the exciton layer (green line) in the ladder ap-
proximation, with the dashed purple lines depicting the exciton-hole
interaction V (q). (b) The exciton self-energy term 	1. The blue line
corresponds to a moiré hole (c) The exciton self-energy term 	2 with
the blue box indicating correlations between a spin ↑ and a spin
↓ hole in the moiré lattice. The star indicates the static scattering
matrix and the dashed blue line a spin wave in the moiré system.
(d) The self-consistent Born approximation for 	2. The double line
is the full exciton Green’s function.

mass, see Fig. 1(b) and Appendix C. As discussed further in
Sec. VI, the trion energy εT is in typical experiments well
below any relevant energies [55], and we can consequently
to a good approximation neglect the frequency dependence of
the scattering matrix writing T (p) ≡ T (p, ω = 0).

Effective interaction

We first discuss heuristically the main physical conse-
quences of the exciton-hole scattering given by Eq. (4). In this
way, we can qualitatively describe the main results presented
in this paper before getting into the rigorous details of our
calculations.

While the scattering matrix given by Eq. (4) is writ-
ten in the momentum space, it is illuminating to discuss
the interaction in the real space. As mentioned above, the
moiré holes reside in a triangular moiré lattice described
by the operators hiσ . However, the parabolic dispersion
of the exciton corresponds to a continuum system. How-
ever, as we will show explicitly in Sec. IV A, scattering
on the moiré holes gives rise a triangular mean-field poten-
tial for the exciton with the same periodicity as the moiré
lattice. We therefore for the sake of the present discus-
sion introduce the operators γ

†
i creating an exciton at site

i in a triangular lattice. Fourier transforming Eq. (4) then
yields the effective exciton-hole interaction Veff = ∑

i j T (ri −
r j )γ

†
i h†

i↓h j↓γ j  ∑
i T (0)γ †

i γih
†
i↓hi↓, where T (r) is the static

exciton-hole scattering matrix in real-space and we have
used the fact that the dominant term is the local one
with i = j. Since we are interested in the case of a half-
filled moiré lattice, we have h†

i↓hi↓ = 1/2 − siz. Using this
gives

Veff 
∑

i

T (0)γ †
i γisiz + Vstat, (5)

where the last term is a static potential term not impor-
tant for the present discussion. Since we are focusing on
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FIG. 4. (a) The exciton-hole interaction Eq. (5) flips spins in a
120◦ AFM formed by the moiré holes, which leads to the formation
of a quasiparticle consisting of an exciton in the top TMD layer
and holes with miss-aligned spins (orange balls) in the moiré lattice
below. (b) As the exciton moves, it leaves a trace (green dashed line)
of misaligned spins in the moiré lattice below. This creates a linear
potential for the exciton, which supports stringlike excitations.

in-plane magnetic order of the moiré holes perpendicular to
the z axis, the siz operators induce spin rotations as seen
explicitly with the identity siz = exp(iπsiz )/2i. It follows that
Eq. (5) describes an effective interaction where the exciton
flips the in-plane spins of the holes below it in the moiré
lattice as illustrated in Fig. 4(a). As discussed in Sec. V A and
Appendix F, a rigorous expression for the effective exciton-
hole interaction in real space describes the same physics as
Eq. (5) and differs mainly by including moiré Bloch wave
functions.

As we shall discuss in detail below, this has two main
consequences. First, the exciton-hole interaction leads to the
creation of a quasiparticle consisting of an exciton surrounded
by a cloud of magnetic frustration of the moiré holes in
its vicinity as illustrated in Fig. 4(a). As we shall see, the
energy and mass of this quasiparticle can differ significantly
from those of the free exciton, which should be observable
using spectroscopy. Second, since the exciton leaves a trace
of magnetic frustration in its path as illustrated in Fig. 4(b),
it experiences a linear potential with a slope proportional to
J1. This can trap the exciton resulting in the existence of exci-
tations corresponding to geometric string states, in analogy
to what has been predicted for a hole moving in an AFM
background [56–59]. As we shall discuss in detail below,
the moiré bilayer offers new and promising ways to observe
smoking gun features of these elusive states.

In the rest of the paper, we will present a quantitative
discussion of these effects.

IV. EXCITON SELF-ENERGY

In this section, we set up a strong coupling theory de-
scribing how the charge and spin correlations in the moiré
lattice affect the exciton. Our diagrammatic approach is
based on considering processes with an increasing number of
exciton-hole scattering events. That is, we expand the exciton
self-energy in increasing orders of the scattering matrix T ,
keeping all first and second-order diagrams.

A. Umklapp scattering

The exciton self-energy arising from a single exciton-hole
scattering event is shown diagrammatically in Fig. 3(b). It
describes the creation of uncorrelated holes in the moiré lattice
due to the scattering on the exciton and is given by

	1(p′, p) = t2

2�2

1

A

∑
q

T (p − q)u∗
↓(q)u↓(q + p′ − p)

×
(

1

2
δp′−p,Gα

− 1√
N

〈
sz

p′−p

〉)
. (6)

Here, A is the area of the system and 〈. . .〉 denotes the average
with respect to the ground state of the moiré holes. Further-
more, p (p′) is the incoming (out-going) exciton momentum,
which is conserved up to the reciprocal moiré lattice vectors
Gα since the exciton scatters on the ↓ holes residing in the
lattice. In deriving Eq. (6), we have expanded the operator
h†

k↓+Gα
, which creates a hole with momentum k + Gα in the

top layer of the moiré system, as

h†
k+Gα↓ =

∑
n

un↓(−k − Gα )hnk↓  u1↓(−k − Gα )h†
1k↓

= u↓(−k − Gα )
1√
N

∑
j

eik·r j h†
i↓. (7)

Here k is a momentum in the mBZ, h†
nk↓ creates a hole in

moiré Bloch band n with momentum k and spin ↓, and un↓(k)
is the projection of the corresponding Bloch function to the
top moiré layer. The approximation in the first line of Eq. (7)
corresponds to projecting to the highest moiré valence band
(n = 1), since it is well separated from the other moiré bands
as discussed in Sec. II B and shown in Fig. 2. In the second
line we have Fourier transformed to the real space with N
being the number of moiré sites, and suppressed the band
index of the Bloch functions. Finally, we have in Eq. (6)
used the identity h†

i↓hi↓ = 1/2 − siz valid at half-filling, and

defined sz
p = ∑

j exp(−ip · r j )sz
j/

√
N . In Appendix D 1, we

give further details regarding the derivation of Eq. (6).
The first term in Eq. (6) describes Umklapp scattering

of the exciton on holes residing in the moiré lattice in the
Mott phase and it is present even when there is no magnetic
order. The effects of the Umklapp scattering on the exciton
spectrum have recently been used to probe the formation of an
electronic Wigner crystals and stripe phases at various filling
fractions in moiré lattices [16,19,21,23,60,61]. The second
term of Eq. (6), proportional to 〈sz

p〉, couples the exciton to any
out-of-plane magnetic order of the moiré holes. It was recently
shown that this term gives rise to observable effects on the
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exciton spectrum that can be used to probe such out-of-plane
magnetic order [62].

In the present work, we instead wish to explore how the
exciton couples to spin correlations in the moiré lattice, which
can be in an arbitrary direction. This is motivated by the
fact that the Dzyaloshinskii-Moriya spin coupling has been
predicted to favor in-plane magnetic ordering [35–37], for
which the Umklapp scattering term given by 	1 is insensitive.

B. Coupling to spin correlations

We therefore need to analyze how the exciton couples to
the spin correlations in the moiré lattice, which first occurs
to second order in the exciton-hole scattering. Such processes
are described by the self-energy term 	2 shown in Fig. 3(c),
where the exciton creates an electron-hole pair in the moiré
lattice, which is strongly correlated due to interactions in the
moiré lattice proportional to U . As detailed in Appendix D 2,
a long calculation gives

	2(p′, p, iωn) = t4

�4

T

A

∑
iωm

∑
q

G(p − q, iωn − iωm)

× g(p,−q)g(p − q, p′ − p + q)

× χzz(q, iωm)δp′,p+Gα
. (8)

Here G(q, iωm) is the exciton Green’s function, ωn = 2πnT
(n = 0,±1, . . .) are bosonic Matsubara frequencies, and T
is the temperature. We have defined the vertex function
g(p,−q) = ∑

k T (p − k)u∗(k)u(k + q) for an exciton with
momentum p exciting a particle-hole pair with total momen-
tum q in the moiré lattice.

Importantly, χzz(q, iωm) is the Fourier transform of the
correlation function χzz(ri − r j, τ ) = 〈Tτ sz

i (τ )sz
j (0)〉 where

τ (Tτ ) is the imaginary time (time-ordering operator).
Equation (8) therefore explicitly demonstrates that the exciton
is coupled to spin-spin correlations of the moiré holes via the
second-order exciton-hole scattering processes. Since these
spin correlations can be in an arbitrary direction, i.e., in- as
well as out-of-plane, this opens up a way to optically detect
states with in-plane magnetic order and states with more
subtle spin correlations by measuring the exciton spectrum.
Equation (8) is therefore a main result of our paper.

V. IN-PLANE FERROMAGNETIC
AND ANTIFERROMAGNETIC ORDER

Having developed a theory describing how the exciton
couples to spin correlations of the holes in the moiré lattice,
we now demonstrate that this can strongly affect its properties.
We consider two concrete examples: one where the moiré
holes form in-plane AFM order and one where they form FM
order.

A. Antiferromagnet

The values of J1 and J2 given in Sec. II B favor a 120◦
antiferromagnetic AFM ground state over other possible states
such as spin liquids [35,41,42,63]. By using linear spin wave
theory (LSWT) to describe this 120◦ AFM phase, we can

FIG. 5. Spin wave spectrum of the moiré holes obtained from
LSWT for the AFM (blue solid line) and FM (red dashed line)
states as a function of momenta along high symmetry directions in
the mBZ.

write Eq. (3) as

Hm =
∑

k

ωkb†
kbk, (9)

where b†
k creates a bosonic spin wave in the AFM with crys-

tal momentum k and energy ωk = 3J1
√

(1 − γk )(1 + 2γk )/2.
Here γk = ∑

δ cos(k · δ)/6 is the structure factor with the sum
taken over the six nearest-neighbor links δ in the triangular
moiré lattice [64], and the small next-nearest coupling J2

is neglected. We have in Fig. 5 plotted ωk as a blue solid
line along the high-symmetry points of the mBZ. For small
k the spectrum is isotropic and linear with ωk = ck where
c = 33/2J1am/4 is the speed of the spin waves, and am is the
moiré lattice constant. We note that linear spin wave theory
accurately captures the low-energy excitations of a triangular
AFM in spite of its inherent geometric frustration [65,66].

Since the magnetic order is taken to be in-plane, i.e.,
perpendicular to the z axis, we have sz

k = i(uk − vk )(b†
−k −

bk )/2 within LSWT, where uk =
√

2+γk

2
√

(1−γk )(1+2γk )
+ 1

2 and
vk = sign(γk )

√
2+γk

2
√

(1−γk )(1+2γk )
− 1

2 are coherence factors.
It follows that χzz(k, τ ) is proportional to 〈Tτ [b†

−k(τ ) −
bk(τ )][b†

−k(0) − bk(0)]〉. Equation (8) therefore describes
how the motion of the exciton creates and annihilates spin
waves in the adjacent moiré AFM, since it couples differently
to spin ↑ and ↓ holes. This result is the quantitative momen-
tum space version of the heuristic real space arguments given
in Sec. III A. A precise real space version of Eq. (8) is given
in Appendix F by Fourier transforming the exciton-hole in-
teraction to real space. It differs from the heuristic expression
Eq. (5) mainly by including moiré Bloch wave functions but
describes the same physics.

The spin susceptibility is within the LSWT straightfor-
wardly calculated to be

χzz(q) = −1

4

[
(uq − vq)2

iqn − ωq
− (uq − vq)2

iqn + ωq

]
, (10)

where iqn is a bosonic Matsubara frequency. Technically, we
have in this section used LSWT to express the strong particle-
hole correlations in the moiré lattice in terms of low-energy
spin waves, which is illustrated diagrammatically in Fig. 3(c).
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FIG. 6. The self-consistent Born approximation for 	2. The
double line is the full exciton Green’s function.

B. Ferromagnet

As has been shown [14] that moiré bilayers can, depending
on the system parameters such as the twist angle, specific
TMD materials, and the dielectric constant of the surrounding
medium, also feature negative values for J1, which imply that
the holes form a ferromagnet at half filling. We therefore also
examine the case of an in-plane FM order assuming a negative
value of J1 in Eq. (3). In this case, the LSWT Hamiltonian is
still given by Eq. (9) but with the spectrum ωk = 3J1(γk − 1),
see red dashed line in Fig. 5. This excitation spectrum is
gapless at k = 0 and quadratic at small momenta, i.e., ωk =
J1a2

mk2 for k → 0. The coupling of these spin waves to the
exciton via the self-energy 	2 can now be calculated in ex-
actly the same way as for the AFM described in Sec. V A, but
now with the coherence factors uk = 1 and vk = 0. We shall
demonstrate below that it follows from the low-energy linear
and quadratic spin wave spectra of the AFM and FM that their
effects on the exciton spectrum exhibit qualitative differences.

C. Self-consistent Born approximation

As we saw above, the motion of the exciton leads to the
emission and annihilation of spin waves in the in-plane mag-
netic state of the moiré holes. This is closely analogous to the
motion of a hole in an AFM background at half filling, which
has been studied intensely for decades and is relevant to high
temperature and unconventional superconductors [67,68]. An
important result of this large body of research is that a single
hole moving in an AFM background is accurately described
within the t-J model by the so-called self-consistent Born
approximation (SCBA) [69–73]. Remarkably, this holds even
for strong interactions, triangular lattices [64], and nonequi-
librium dynamics [74].

Due to the close connections with the motion of a hole in
an AFM, we expect that an exciton interacting with an in-
plane magnetically ordered state is also accurately described
by the SCBA. We therefore adopt this approach to the problem
at hand, which amounts to using the self-consistent exciton
Green’s function

G(p′, p, iωn) = 1

iωn − εx
p − 	(p′, p, iωn)

(11)

when evaluating Eq. (8) with 	(p′, p, iωn) = 	1(p′, p) +
	2(p′, p, iωn). This approach is illustrated diagrammatically
in Fig. 6. The resulting self-energy term 	2 given by Eq. (8)
has the same mathematical structure as in case of a single
hole moving in an AFM background described by the SCBA
[69–73]. Note that the SCBA goes beyond the second order
by summing a subset of terms to infinite order in the exciton-
hole scattering events, characterized by the so-called rainbow
diagrams shown in Fig. 6. In this way, SCBA is able to
quantitatively account for strong interaction effects regarding
hole motion in AFMs, and we expect the same to be the case

for the motion of an exciton strongly interacting with in-plane
magnetically ordered moiré system.

VI. NUMERICAL RESULTS

Having set up a strong coupling formalism for an exciton
interacting with the moiré holes forming in-plane magnetic
order, we are now ready to present results obtained by nu-
merically solving Eqs. (6), (8), and (11) self-consistently.
The spin-spin correlation function in Eq. (8) is calculated
from Eq. (10) using the spin wave spectrum and coherence
factors for either the AFM or the FM. Motivated by recent
experiments [55], we take εT = −25 meV and � = 8 meV
so that the pole of the T matrix is at εp(k) ∼ −17 meV
for small momenta. Since the spin wave energies are of the
order J1 ∼ 0.1 meV and, as shown below, the relevant exciton
energies are in the range of a few meV, we can safely neglect
the frequency dependence of the exciton-hole scattering ma-
trix, which justifies the approximation introduced in Sec. III.
Finally, we use t ∼ 3 meV for the hole tunneling parameter
between the moiré and exciton layers, which is an experimen-
tally realistic value as discussed in Appendix A, and consider
zero-temperature. Details of the numerical evaluation of the
exciton self-energy using the SCBA are provided Appendix E.

A. Antiferromagnet

We first discuss the case of a moiré AFM by using the cor-
responding spin wave spectrum and coherence factors with a
value of J1 obtained as in Sec. II B. Figure 7(a) shows the diag-
onal exciton spectral function A(p, ω) = −2 Im[G(p, p, ω +
i0+)] obtained from the SCBA as a function of energy ω and
momentum p for the twist angle θ = 3.0◦. For comparison,
we also plot in Fig. 7(a) the noninteracting exciton dispersion
εx

k = k2/2mx as a solid red line and the dispersion obtained
including only the Umklapp term 	1 in the exciton self-
energy as a red dotted line. This shows that the Umklapp
scattering increases the exciton energy for small momenta
with respect to its noninteracting energy. It can be understood
from the fact that the exciton-hole scattering matrix effectively
corresponds to a repulsive interaction, since the trion energy
εT = −25 meV is well below any relevant energy. As detailed
in Appendix D 1, one can show that the zero-momentum
energy shift due to the Umklapp potential is of the order
O(t2Z/�2|εT |a2

m).
Consider next the spectral function when the full self-

energy 	1 + 	2 is used, which takes into account the
scattering on the spin waves to infinite order through the
self-energy term 	2. First, we see from Fig. 7 that the spec-
tral function exhibits a sharp peak for small momenta. This
peak corresponds to a quasiparticle consisting of the exciton
dressed by spin waves in the moiré AFM as illustrated in
Fig. 4(a), and it quantitatively confirms the prediction regard-
ing its existence in Sec. III A. We denote this quasipaticle as
an exciton-polaron in analogy with what has been done for an
exciton coupled to electrons or other distinguishable excitons
[26,27]. In contrast to the Umklapp term 	1, 	2 decreases
the energy εP

p of the exciton-polaron. This follows from the
fact that 	2 describes the coupling to higher energy states
containing spin waves as described through the SCBA. We
moreover see that the dressing by the spin waves significantly
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FIG. 7. Exciton spectral function A(p, ω) for the twist angle
θ = 3◦ and an in-plane AFM. Panel (a) presents A(p, ω) as a function
of the frequency and momentum along the straight path connecting
the � and M points in the mBZ. The red solid/dotted line gives the
exciton dispersion in the absence/presence of the Umklapp scatter-
ing term 	1 but without the 	2 term. Panel (b) shows the spectral
function as a function of frequency for fixed momenta given by the
vertical lines in panel (a).

increases the effective mass m∗ of the quasiparticle making its
dispersion flat.

For larger momenta, Fig. 7(a) shows that the quasiparti-
cle peak becomes significantly broadened corresponding to a
short lived quasiparticle. Physically, this decay sets in when
the energy of the exciton-polaron εP

p is sufficient to scat-
ter resonantly on the spin wave spectrum, i.e., when εP

p �
minq[ωq + εP

p−q]. Figure 7(a) furthermore shows that when
the damping sets in, the maximum of the broad continuum
approaches the Umklapp-dispersion of the exciton. The pres-
ence of the sharp quasiparticle peak for small momenta and a
broadened spectrum for larger momenta is further illustrated
in Fig. 7(b), which plots the spectral function as a function of
ω for a number of selected momenta indicated by the vertical
dashed lines in Fig. 7(a).

In addition to the sharp quasiparticle peak, Fig. 7 shows
a number of intriguing broader peaks appearing at higher
energy for small momenta. They correspond to excited states
with an energy and decay rate given by the peak center and
width, respectively. To analyze their physical origin, we plot
in Fig. 8 the two lowest excitation energies �E1 and �E2 (see
Fig. 7) as a function of J1 for the momentum p = 0.35kM .
In addition to the numerical data, we present as the dashed
lines the best power-law fits �Ei ∝ Jαi

1 , where α1 = 0.66

FIG. 8. Log-log plot of the two lowest excitation energies �E1

and �E2 (see Fig. 7) as a function of J1 for the momentum p =
0.35kM . Black squares/blue circles are numerical results, and the
dashed lines show the power law fits �Ei = βiJαi where αi and βi

are the fitting parameters. For �E1 and �E2, we obtain α1 = 0.66
and α2 = 0.58. The solid lines show the geometric string prediction
�Ei = γiJ2/3 with γi a fit parameter. The variation in the nearest
neighbor spin coupling J1 corresponds to sweeping the twist angle
from 2.6◦ to 3.2◦.

and α2 = 0.58 for �E1 and �E2, respectively. These fits are
close to a J2/3

1 scaling expected for the so-called geometric
string excitations [56–59], which is therefore also plotted in
Fig. 8, showing a very good agreement with the numerical
results.

By following the the same logic as for the case of a hole
hopping in an AFM background [56–59], such a scaling of
�E1 and �E2 can be taken as a fingerprint of geometric
string excitations. As we discussed in Secs. III A and V A
and illustrated in Fig. 4(b), the exciton leaves a trail of spin
flips in the moiré lattice sites as it moves around. Since these
spin flips cause an energy penalty of the order of J1, the
exciton experiences an effective linear potential giving rise to
Airy-like eigenstates with the corresponding eigen-energies
proportional to J2/3

1 . A very attractive feature of the present
setup is that one can tune J1 by changing the twisting angle of
the moiré bilayer. This allows one to experimentally verify the
smoking gun J2/3

1 energy scaling of string excitations, which
has turned out to be very difficult to realize for holes in AFMs.
In fact, the range of J1 values shown in Fig. 8 corresponds
to scanning the twist angle from θ = 2.6◦ to θ = 3.2◦ in the
MoSe2-WS2 bilayer. Hence, our results show how the flexi-
bility of TMDs may allow for a detection of the elusive string
excitations. Finally, we emphasize that it is essential to use
the nonperturbative SCBA to describe the string excitations.
Indeed, as is shown explicitly Appendix G they are completely
missed by second-order perturbation theory.

In Fig. 14 in Appendix E, we plot the exciton spectral
function along other high symmetry directions in the mBZ.
It exhibits the same features, i.e., a clear exciton-polaron
quasiparticle peak and broader peaks coming from excited
geometric string states, which demonstrates that these states
appear throughout the mBZ.
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FIG. 9. Exciton spectral function A(p, ω) for θ = 3◦ for an in-
plane FM. Panel (a) presents A(p, ω) as a function of the frequency
and momentum along the path connecting the � and M points in
the mBZ. The red solid/dotted line gives the exciton dispersion in
the absence/presence of the Umklapp scattering term 	1 but without
the 	2 term. Panel (b) shows the spectral function as a function of
frequency for fixed momenta given by the vertical lines in panel (a).

B. Ferromagnet

We now turn to the case where the moiré holes form an
in-plane FM, which we describe by flipping the sign of J1.
In Fig. 9 we show the resulting exciton spectral function
for J1 = −0.54 meV. As for the case of an AFM, we see a
clear exciton-polaron quasiparticle with energy above the bare
exciton but below that predicted by the Umklapp scattering,
and with a large effective mass. This quasiparticle furthermore
becomes strongly damped for larger momenta due to scatter-
ing on the spin waves, where its dispersion approaches the
exciton energy given by the Umklapp scattering.

Compared to the case of an AFM, the most striking dif-
ference is the absence of string excitations in the exciton
spectrum. This is somewhat surprising since the basic ingre-
dients leading to the presence of such excitations seem to be
present for the FM too, i.e., the exciton leaves a string of
magnetic frustration in its wake leading to a linear potential.
We conjecture that this string picture is nevertheless invalid
for the FM, since an initially localized magnetic frustration
rapidly spreads out in real space due to the quadratic low-
energy dispersion of the spin waves. This aspect is discussed
further in Appendix F.

VII. DISCUSSION AND OUTLOOK

In this work, we developed a general theory for the cou-
pling between an exciton in a TMD monolayer and the spin
and charge degrees of freedom in an adjacent moiré lattice
formed by a TMD bilayer. Using this theory combined with

a nonperturbative self-consistent Born approximation, we ex-
plored the coupling between the exciton and spin waves in a
half-filled moiré lattice hosting an in-plane AFM or FM order.
We showed that this gives rise to the formation of quasiparti-
cle states (polarons) consisting of the exciton surrounded by
magnetic frustration in the moiré lattice, damping, as well as
geometric string states.

The predicted emergence of a well-defined polaron adds
to the list of interesting quasiparticles that can be realized
with excitons in TMDs, which includes the experimentally
observed Fermi and Bose polarons [26,27]. The polarons in
the present paper are closely related to the magnetic po-
larons consisting of a mobile hole in a AFM lattice, which
play a fundamental role for charge transport in 2D quan-
tum materials including high temperature and unconventional
superconductors [67,68]. We note that as opposed to these
materials, the flexibility of TMD bilayers allows one to tune
the nearest neightbor spin-spin coupling constant by changing
the twist angle. This opens up the possibility to observe the
elusive string excitations via their the smoking gun energy
scaling.

Since we predict clear and observable changes of the ex-
citon spectrum, our results have intriguing perspectives for
using excitons as much needed quantum sensors for the spin
correlations of the rapidly growing class of 2D van der Waals
materials. It has previously been shown how the first-order
mean-field term 	1 gives rise to Umklapp scattering branches
in the exciton spectrum signaling Wigner crystalization [23]
as well as out-of-plane magnetic order [62]. Here, we demon-
strate that higher order terms included in 	2 couple the
exciton to spin correlations, which can be in any direction
and do not have to exhibit long range order. Also, it was
recently shown that the in-plane AFM order increases the
effective mass of an exciton residing in the moiré lattice [75],
and that the spatial periodicity related to different charge and
magnetically ordered states influences the plasmon spectrum
of moiré systems through the band folding [45]. Finally, the
possible magnetic ground states of a RuCl3 monolayer were
shown to change due to the hybridization with an adjacent
graphene layer and giving rise to graphene magnetoresistance
[76]. Major strengths of our probe setup include that it gives
access to spin correlations, which is essential for identifying
interesting phases with no long-range order, and that the exci-
ton probe is nonevasive.

Experimentally, the excitons close to the � point can be
probed by optical means where a resolution of the order of
a few meVs has been achieved in TMDs [23,62]. This is
sufficient to clearly observe the spectral features we predict
without significant broadening, which could otherwise be sig-
nificant due to a finite exciton lifetime for nearly degenerate
conduction bands [77]. The spectral features away from the �

point are accessible using electron energy-loss spectroscopy
(EELS), which has recently been used to measure the exciton
spectrum in a monolayer WSe2 [78]. While the energy res-
olution achieved in this experiment for nonzero momenta is
not sufficient to detect the spectral features we predict such
as the string states, the experimental techniques are improv-
ing rapidly and much higher precision is indeed expected
in the future [78]. We also note that since the effects on
the exciton spectrum increase with the exciton-electron(hole)
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interaction strength, they can be much larger and therefore
more easily resolved experimentally than shown in Figs. 7
and 9. Finally, the spectral signal from the probe and moiré
layers can easily be distinguished as they are well separated in
energy [19].

One interesting phase with no long range order but subtle
and nontrivial correlations is the Dirac spin liquid, which is a
strong candidate for the ground state of the triangular J1 − J2

Heisenberg model in certain parameter regimes [41,42]. It
would be interesting to explore how the exciton couples to the
low-energy degrees of freedom of this phase such as spinon
excitations, and in what ways this shows up in the exciton
spectrum. Spin liquids should be within experimental reach in
TMD bilayers since they naturally realize a triangular lattice,
and since the ratio J2/J1 is tunable via the twist angle and
the screening of the Coulomb interactions [14]. There likely
are many other interesting effects to observe such as for in-
stance a cascade of phase transitions as seen in magic angle
graphene [79].

The results presented here open up several other promising
research directions. One can use the Feshbach resonance me-
diated by the trion state to increase the interaction between
the exciton and the moiré holes and thereby the effects on
the exciton spectrum. This is achieved by tuning the trion
energy via the energy offset � [49,50]. Since the static ap-
proximation for the exciton-hole scattering matrix used in
the present paper is insufficient to analyze this, one must
instead keep the full frequency dependence, which is a a
technically challenging problem. Our results also raise the
fundamental questions regarding what properties of the mag-
netic environment are necessary to stabilize geometric string
excitations. Another interesting research topic is how to use
excitons pinned in a moiré lattice, as has been achieved ex-
perimentally [80–82], to create probes with spatial resolution.
Pinning several excitons could furthermore enable powerful
and highly useful multiplex sensors capable of simultaneously
measuring electron/hole correlations at two or more spatial
positions. The hybridization of the excitons with photons in
an optical cavity to form polaritons [83] would have several
interesting several effects such as the quantum state of the
moiré system being imprinted on the outgoing light. Finally,
we considered in the present paper a single exciton, which
does not change the quantum state of the moiré lattice in
the thermodynamic limit. Experimentally, this corresponds to
the limit where the density of excitons is much smaller than
the electron density in the moiré lattice. This basic idea has
also been used by many experimental groups exploring a few
mobile impurity atoms forming so-called polarons by scat-
tering on atoms in their neighborhood in a large surrounding
quantum degenerate atomic gas [84]. It would be interesting
in the future to consider different exciton and electron con-
centrations, which will realize new and intriguing Bose-Fermi
mixtures.
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APPENDIX A: HOLE TUNNELING BETWEEN THE
MOIRÉ SYSTEM AND THE EXCITON LAYER

To decrease the hole tunneling between the moiré sys-
tem and the TMD monolayer and prevent the formation
of a large three-layer moiré lattice, we propose to apply a
30◦ − rotated WS2 monolayer as a barrier between the moiré
system and the exciton layer. Due to a large rotation angle
of the barrier WS2 layer, its energy band structure is highly
detuned by an energy off-set �̃ with respect to the relevant
energies of the moiré system and the monolayer MoSe2. As
a result, one can use the Schrieffer-Wolff transformation to
estimate the hole tunneling strength between the moiré system
and the ML MoSe2 as t ∼ t̃ 2/�̃, where t̃ is the interlayer
tunneling parameter between the spacer layer (WS2) and its
two neighboring MoSe2 layers [see Fig. 4(b)]. The energy
off-set of the valence band edges between un-rotated MoSe2

and WS2 layers is around V ∼ 270 meV [46]. Moreover, the
rotation by 30◦ shifts the energies of the electron states of
WS2 that momentum-match with the relevant states of the
neighboring MoSe2 layers, by around ∼1 eV [85]. Hence,
we get a rough estimate �̃ ∼ 0.7-0.8 eV. However, if we use
t̃ ∼ 50 meV given in Ref. [46], then we have t = t̃

�̃
∼ 3 meV.

This value can be tuned significantly by for example choosing
some other material for the spacer layer or by changing the
rotation angle of the spacer.

APPENDIX B: MOIRÉ HAMILTONIAN

In this Appendix, the moiré Hamiltonian for electrons is
derived in case of a hetero-bilayer by using the continuum
model deployed in Refs. [46,47]. In this model, the long-
wavelength moiré potential arises due to interlayer tunneling
processes.

We consider a TMD heterobilayer and label the two layers
as L1 and L2. For concreteness, we take L1 to be a MoSe2

and L2 a WS2 monolayer. The MoSe2 and WS2 monolayers
have a hexagonal Brilliouin zone (BZ) and feature direct band
gaps at the K and K ′ valleys. For two layers, the K valleys
are at k = [4π/(3a1), 0] ≡ K1 and k = [4π/(3a2), 0] ≡ K2

with ai being the original lattice constants. The K points of the
two layers differ from each other by �K = K2 − K1. A finite
lattice mismatch (a1 �= a2) or a possible relative twist angle
θ between the layers yields �K �= 0. This is illustrated in
Fig. 10(a) in case of a finite twist angle. When the lattice mis-
match and the twist angle is small, we have |�K| << |K1|.
In this case, the interlayer tunneling leads to the hybridization
between the low-energy electronic states of the two layers,
separately in the K and K ′ valleys. Correspondingly, the sys-
tem acquires long-wavelength moire pattern described by the
moiré periodicity am and the reduced moiré Brilliouin Zone
(mBZ), see Fig. 10(a). Due to the large momentum mismatch
between the original K and K ′ valleys, the K-valley states
do not hybridize with the K ′-valley degrees of freedom and
hence, as the TMD monolayers feature spin-valley locking
due to the intrinsic spin-orbit coupling [6,86], the valley index
corresponds to the z-component of the spin. We can there-
fore consider the one-particle moiré Hamiltonian for each
valley separately. We denote the valley-index as σ ∈ {↑,↓},
with σ =↑ (σ =↓) referring to the K valley (K ′ valley) and
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FIG. 10. (a) Schematic of the original BZ of the two layers
forming the moiré lattice (blue and orange hexagons) as well as the
moiré BZ (mBZ) of the K valley. (b) Schematic picture of the highest
valence and lowest conductance bands of the monolayer MoSe2 and
WS2 at the K valley. Dashed red (solid black) lines correspond to
spin-down (spin-up) bands. The moiré potential arises due to a finite
interlayer tunneling tm(k, k′). In our analysis we only consider the
highest valence band degrees of freedom.

express the corresponding one-particle Hamiltonian as Hσ
0 .

We consider here only the K-valley electrons; the correspond-
ing result for the K ′ valley is obtained from the K valley via
time reversal.

The valence and conduction band dispersions of the decou-
pled MoSe2 and WS2 monolayers at the K valley are shown
schematically in Fig. 10(b). To a good approximation, these
band structures can be taken to be parabolic. Furthermore,
the valence and the conduction bands are separated by a
large band gap. As it is common in experiments, we take
the moiré system to be hole-doped within the highest valence
band and hence we discard all the other bands. The highest
valence bands of the two layers are coupled and the moiré
pattern is formed due to the interlayer electron tunneling term
tm(k, k′) = tm[δk,k′ + δk−k′,bm

1
+ δk−k′,bm

2
] which describes a

tunneling process from momentum state k′ to k with bm
i being

the basis vectors of the moiré reciprocal lattice [46,87]. Con-
sequently, the continuum Hamiltonian for the bilayer reads

H↑
0 =

∑
k∈mBZ

�†(k)H(k)�(k),

�(k) = [c1(k), c2(k − �K)]T ,

[ci(k)]α = ci↑(k + Gα ),

H↑(k) =
[

H↑
1 (k) H↑

12(k)
[H↑

12(k)]† H↑
2 (k − �K)

]
. (B1)

Here ci↑(k) annihilates an electron within the highest valence
band in valley σ =↑ and layer i (i = 1 for MoSe2 and i = 2
for WS2). The reciprocal lattice vectors are Gα ≡ nαbm

1 +

mαbm
2 with nα and mα being integers. Moreover, [H↑

i (k)]αβ =
δi,1V − δαβ h̄2(k + Gα )2/2mi contains the original parabolic
dispersions for layer i with the effective mass mi and the
valence band edge off-set V between two layers. Finally, the
off-diagonal block H↑

12 describes the interlayer tunneling tm
between relevant momenta. For mi and V we adopt the numer-
ical values used in Ref. [46], i.e., m1 = 0.44me, m2 = 0.32me,
V = 270 meV where me is the bare electron mass. The value
used for tm is discussed at the end of this Appendix.

By diagonalizing the Hamiltonian (B1), one obtains the
moiré band dispersion ε

↑
nk such that

H↑
0 =

∑
k∈mBZ,n

ε
↑
nkγ

†
nk↑γnk↑. (B2)

Here n = 1, 2, ... is the moiré band index with n = 1 referring
to the highest moiré valence band and γnk↑ are the corre-
sponding moiré annihilation operators. In Fig. 2 the moiré
dispersion ε

↑
nk is shown for θ = 2.5◦ computed with our pa-

rameters. The moiré hole band operators in Eq. (7) then read
h†

nkσ = γn−kσ .
The diagonalization of H↑

0 yields the following transforma-
tion between the Bloch band basis and the original electron
operators

�↑(k) =
[
Uk↑
Vk↑

]
γ↑(k) ≡ B↑(k)γ↑(k), (B3)

where [γ↑(k)]n = γnk↑. Furthermore, the moiré Bloch states
are stored as the column vectors of the unitary matrix B↑(k)
and its components Uk↑ and Vk↑ describe the projections
to the two layers. Namely, the original electronic opera-
tors in the MoSe2 layer can be expressed as c1↑(k + Gα ) =∑

n=1[Uk↑]αnγnk↑. In other words, the Bloch functions in
Eq. (7) are defined as unσ (k + Gα ) ≡ [Ukσ ]αn. Likewise, Vk↑
yields the projection to the W S2 layer, i.e., c2↑(k + Gα ) =∑

n=1[Vk↑]αnγnk↑.
As discussed in the main text, the highest moiré va-

lence band can be described by the effective tight-binding
Hamiltonian with appropriate Coulomb interaction terms, as
written in Eq. (2). The hopping terms tσ

i j are easy to ob-
tain from the dispersion relation of the moiré band, i.e., one
has tσ

i j = − 1
N

∑
k∈mBZ εσ

1ke−ik·(Ri−R j ), where Ri is the spa-
tial coordinate of the ith moiré lattice site. To obtain the
interaction terms, one needs appropriate expressions for the
Coulomb interaction VC (q). For the interlayer and intralayer
interaction vertices we have in momentum space VC,s(q) =

e2

2qεs (q) tanh(qdg), where s =⊥ (s =‖) stands for the interlayer
(intralayer) interaction. We have furthermore taken into ac-
count the metallic gates, separated by a distance dg from
the moiré sample, which screen the Coulomb interactions
via the hyperbolic tangent function [88]. The permittivi-
ties can be derived from the system geometry and in our
case are given by 1

ε‖(q) = 1+r∗q−r∗qe−2qdl

ε0εr [(1+r∗q)2−(r∗q)2e−2qdl ]
and 1

ε⊥(q) =
e−qdl

ε0εr [(1+r∗q)2−(r∗q)2e−2qdl ]
[89]. Here εr is the average dielectric

permittivity of the embedding material, r∗ is the screening
length of a TMD monolayer and dl is the separation between
two TMD layers. In our calculations we have chosen εr = 20
due to the existence of the spacing and probe TMD layers.
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Moreover, we have εrr∗ ∼ 4 nm [46], dl = 0.6 nm, and dg =
100 nm.

Once the parameters for Eq. (2) are obtained, we can com-
pute the parameters of the effective Heisenberg Hamiltonian
for the half-filled moiré band by using the well-established
strong coupling theory that maps the half-filled Fermi-
Hubbard model to the Heisenberg model [90]. To this end, we
employ the expressions given in the Supplemental Material

of Ref. [14], i.e., J1 = −4XNN + 4t2
NN

U0−UNN
and J2 = −4XNNN +

4t2
NNN

U0−UNNN
+ 8t4

NN

U0−U 3
NN

(1 − U0−UNN
U0−UNNN

+ U0−UNN
2U0−3UNN+UNNN

), where sub-
scripts refer to NN or next-nearest-neighbor (NNN) terms.
Note that these expressions for J1 and J2 assume real-valued
hopping terms. As discussed in the main text, our analysis
yields only a small imaginary part for tNN, validating the use
of the expressions of Ref. [14].

Coming back to choosing the interlayer tunneling pa-
rameter tm, we note that the value given in Ref. [46], i.e.,
tm ∼ 50 meV, is too small in a sense that it yields J ∼
−0.06 meV for the zero twist angle. However, in experiments
[39] it has been shown that for the nontwisted and half-filled
MoSe2/WS2, the magnetic order vanishes. This very likely
happens due to the fact that the direct ferromagnetic exchange
term XNN cancels the antiferromagnetic super-exchange term
in the expression of J1. To match this cancellation at θ = 0◦,
we use instead a value of tm ∼ 90 meV, which at θ = 0◦
yields a vanishingly small J1. For larger twist angles used in
our calculations, namely θ ∈ [2.6◦, 3.3◦], we find a positive
J1, i.e., antiferromagnetic order. The fact that we need to
fine-tune the parameters of the continuum model of Ref. [46]
might imply that the predominant origin for the moiré po-
tential of MoSe2/WS2 is not the interlayer tunneling but the
lattice reconstruction which could be addressed by using a
continuum model with a one-particle long-wavelength moiré
potential instead of a interlayer tunneling of Ref. [46]. This,
however, does not affect the generality of our results as both
the continuum models anyway lead to an effective triangular
moiré lattice and because we study both antiferromagnetic and
ferromagnetic in-plane orders.

APPENDIX C: EXCITON-HOLE SCATTERING

In this Appendix, we derive the expression for the scatter-
ing matrix between an exciton in the monolayer and a hole in
the moiré system. To this end, we only consider the scattering
between spin ↑ excitons and spin ↓ holes and discard the other
scattering channel as its effect is negligible. Correspondingly,
in the following discussion we suppress the spin index of the
hole for a moment.

To simplify our analysis, we first consider a bilayer system
of two TMD monolayers [50], shown in Fig. 11, where the
exciton resides in layer A and and a hole can tunnel between
the layers A and B with the tunneling strength t . Therefore
in case of our moiré setup, layer A corresponds to the probe
TMD monolayer and layer B is the MoSe2 monolayer of
the moiré system. The Hamiltonian for the exciton and the
hole is written in Eq. (1). To a good approximation, the
exciton-hole interaction V (q) can be taken as a contact po-
tential, i.e., V (q) = V . Furthermore, layer A is biased by
the potential energy �. Due to the finite tunneling term,

FIG. 11. (a) Schematic of the two-layer setup realizing reso-
nantly enhanced scattering between an exciton (red dot) in layer
A and a hole (blue dots) in layer B [50]. The tunneling between
the two layers is t and the interaction between the exciton and the
hole is denoted as V . (b) Spectral function of the scattering matrix
T (0, ω) as a function of ω for � = 8|εT |

25 with finite broadening
η = 0.0015|εT |.

one can diagonalize the one-particle Hamiltonian of the hole.
The resulting eigenstates are called closed and open channels
with energies εc(k) = εh(k) + �/2 +

√
�2

4 + t2 and εo(k) =
εh(k) + �/2 −

√
�2

4 + t2 . For later convenience, we write
down the corresponding transformation between two hole
bases as[

ak
hk

]
=

⎡
⎣ xc√

1+x2
c

xo√
1+x2

o
1√
1+x2

c

1√
1+x2

o

⎤
⎦[

hck
hok

]
≡ U

[
hck
hok

]

≡ h(k) = Uh̃(k), with

xo = �

2t

(
1 −

√
1 + 4t2

�2

)
,

xc = �

2t

(
1 +

√
1 + 4t2

�2

)
. (C1)

Here hck and hok are the annihilation operators for the closed
and open hole channels. Moreover, the columns of U are the
corresponding eigenstates.

We proceed by writing down the T matrix between an
exciton and hole. As we have two hole channels, the scattering
matrix is a 2-by-2 matrix. It is straightforward to show that in
the open and closed channel basis (tilde basis), it is

T̃(k, ikn) =
[

Too(k, ikn) Toc(k, ikn)
Tco(k, ikn) Tcc(k, ikn)

]
= Ṽ

1 − Ṽ�̃(k, ikn)
,

(C2)

033119-12



EXCITON INTERACTING WITH A MOIRÉ … PHYSICAL REVIEW RESEARCH 6, 033119 (2024)

where the interaction matrix is Ṽ = U †VU with Vi j =
V δi, jδi,1 and the pair propagator �̃ = U †�U . The un-tilded
V and � are the interaction and pair propagator matrices in
the original hole basis. From Eq. (C2), one can show that
T̃(k, ikn) = U †T(k, ikn)U with T being the T matrix in the
original basis such that

T(k, ikn) =
[
T (k, ikn) 0

0 0

]
, (C3)

T (k, ikn) = V

1 − V �(k, ikn)
= 1

�2B(0, εT ) − �(k, ikn)
,

(C4)

where in the last step the contact interaction V is eliminated
in the favor of the trion binding energy εT < 0 and �2B

11 is the
vacuum pair propagator. Explicitly,

�(0, z) = 1

A

∑
q

1

z + � − q2/2mμ

, (C5)

�2B(0, εT ) = 1

A

∑
q

1

εT + iν − q2/2mμ

, (C6)

where mμ is the reduced mass of the exciton and hole. Trion
bound state gives a rise to a pole for the T matrix. This
can be seen in Fig. 11(b) where the zero-momentum spec-
tral function of T is plotted as a function of frequency ω.
In addition to the pole at ω = εT + �, the spectral function
also features the usual scattering continuum at higher energies
starting at ω = �. In the following, we discard the existence
of the continuum as it appears in a nonrelevant energy regime
such that the T matrix can be written to as a pole expansion
T (k, z) = Z

z−(εT +�+k2/2mT
, where mT is the trion mass. In our

calculations, we find that the residue Z is roughly momentum-
independent such that Z ≈ 19 h̄2|εT |

me
, and correspondingly this

is the value we used in all our computations.

APPENDIX D: DERIVATION OF THE EXCITON
SELF-ENERGIES

In this Appendix, we derive the expressions for the exciton
self-energy terms 	1 and 	2. We assume t/� � 1, which is
likely the experimental regime of interest as t is suppressed
due to the spacing layer between the TMD monolayer and the
moiré system. The hopping is desired to be small also because
it otherwise would lead to hybridization between the moiré
system and the TMD monolayer, and thus to the formation
of one big three-layer moiré system. As we want to use the
exciton in the TMD monolayer to probe the moiré system,
this is not a desired scenario.

1. First-order exciton self-energy �1

The first-order exciton self-energy 	1 in terms of open
and closed channels is diagrammatically depicted in Fig. 12.
Note that we have not fixed in-coming and out-going exciton
momenta to be the same. Usually, they are the same but in our
case, the hole in the moiré system feels the moiré potential
which can lead to finite momentum kicks by the amount
of moiré reciprocal lattice vectors Gα . We therefore retain

FIG. 12. Exciton self-energy diagrams to first order of the scat-
tering matrix. Red lines depict exciton propagators and are not
included in the self-energy. Blue solid (orange dashed) line corre-
spond to the hole propagators in the closed (open) channel.

different incoming and outgoing exciton momenta, p and p′,
for now and show below that p′ = p + Gα .

As schematically presented in Fig. 12, 	1 consists of two
terms corresponding to the exciton interacting with the closed
and open channel holes, respectively. In the following, we
ignore the closed channel contribution as we take it to be
approximately empty. We therefore write 	1 for imaginary
time as

	1(p, p′, τ f − τi ) = 1

A

∑
qq′

Too(p + q, τ f − τi )

× 〈−T ho(q, τi )h
†
o(q′, τ f )〉δp′,p+q−q′ ,

(D1)

where the Green’s function for the open channel is
Goo(q, q′, τi − τ f ) = 〈−T hoq(τi )h

†
oq′ (τ f )〉. In the limit of

small t/� we obtain, up to the second order, the approxima-

tions xo ≈ − t
�

and xc ≈ �
t (1 + t2

�2 ). By using these, we get

|U12|2 ≈ t2

�2 , |U22|2 ≈ 1 − (t/�)2, U ∗
12U22 ≈ −t/�. For the

self-energy Eq. (D1) we then obtain to the leading order of
t2/�2,

	1(p, p′, τ f − τi ) ≈ 1

A

∑
qq′

t2

�2
T (p + q, τ f − τi )

× G(q, q′, τi − τ f )δp′,p+q−q′ , (D2)

where G(q, q′, τi − τ f ) = −〈T hq↓(τi )h
†
q′↓(τ f )〉 is the Green’s

function for the holes in the MoSe2 layer of the moiré system.
Here we have reintroduced the spin index for the holes of the
moiré system. From Eq. (D2) we see that 	1 can be expressed
in the limit of small t2/�2 in terms of the Green’s function
of holes of the moiré system and the original exciton-hole

FIG. 13. The second-order exciton self-energy 	2 in terms of the
T matrix. Black box corresponds to the full two-particle propagator
of moiré holes.
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T matrix. The tunneling between the moiré system and the exciton layer is taken into account with the multiplicative factor
t2/�2.

We project now the hole operators hk↓ to the highest moiré valence band by writing

h†
−k−Gασ

=
∑

n

[Ukσ ]αnγnkσ

≈ [Ukσ ]α1γ1kσ ≡ uσ (k + Gα )γ1kσ , (D3)

with k ∈ mBZ. By furthermore transforming to real space via the Fourier transformation γ1kσ = 1√
N

∑
i e−ik·ri h†

iσ with N being
the number of moiré sites ri, we obtain

	1(p, p′, τ ) = t2

A�2

∑
qq′∈mBZ

∑
αα′

T (p − q − Gα, τ )u∗
↓(q + Gα )u↓(q′ + Gα′ )

∑
i j

eiq·ri−iq′ ·r j

N
〈−T hi↓(0)h†

j↓(τ )〉δp′,p−q+q′−Gα+Gα′ .

(D4)

We see that the Green’s function inside the integrand of Eq. (D4) describes low-energy processes as 〈−T hi−(0)h†
j−(τ )〉 =

〈h†
j−(τ )hi−(0)〉. This corresponds to the annihilation of a moiré hole instead of creating one (which would cost an energy of the

on-site repulsion U0). Therefore, in principle, Eq. (D4) should be solved such that the moiré hole operators hi are expressed with
the spinon and holon operators, in a similar manner as in Ref. [64]. This yields diagrams involving spin and holon propagators
and a spin-holon bubble. Evaluating this bubble is outside the scope of the present work and we therefore use a simplified route,
i.e., we assume we are far enough from the Feshbach resonance condition � = −εT so that we can take the static limit of the T
matrix, i.e., we write T (k, τ ) ≈ T (k)δ(τ ) with T (k) ≡ T (k, ω = 0). From Eq. (D4) we then get

	1(p, p′, τ ) ≈ 1

A

t2

�2
δ(τ )

∑
qq′∈mBZ

∑
αα′

T (p − q − Gα )u∗
↓(q + Gα )u↓(q′ + Gα′ )

1

N

∑
i j

eiq·ri e−iq′ ·r j 〈h†
j↓hi↓〉δp′,p−q+q′−Gα+Gα′ .

(D5)

For the half-filled triangular moiré lattice we have 〈h†
j↓hi↓〉 = δi, j ( 1

2 − 〈Sz
i 〉). For the in-plane magnetism or spin liquids we have

〈Sz
i 〉 = 0 so we discard this term. Note that for the out-of-plane orders this term would be nonzero, therefore making it possible to

detect out-of-plane magnetic order with 	1, consistent with a recent mean-field proposal of Ref. [62]. For 〈Sz
i 〉 = 0, we however

obtain

	1(p, p′, τ ) ≈ 1

2A

t2

�2
δ(τ )

∑
qq′∈mBZ

∑
αα′

T (Q − q − Gα )u∗
↓(q + Gα )u↓(q′ + Gα′ )δq,q′δp′,p−q+q′−Gα+Gα′

= 1

2A

t2

�2
δ(τ )

∑
k

∑
λ

T (p − k)u∗
↓(k)u↓(k + Gλ)δp′,p+Gλ

, (D6)

where in the last line we have carried out a change of integration variables as k = q + Gα and Gλ = Gα′ − Gα such that the
sum over k is taken over the full momentum space, not just the moiré BZ. Finite terms for 	1 are therefore

	1(p, p + Gλ, τ ) = 1

2A

t2

�2
δ(τ )

∑
k

T (p − k)u∗
↓(k)u↓(k + Gλ), (D7)

which is the Umklapp term discussed in the main text, i.e., the first term of Eq. (6). As noted in the main text, for the in-plane
magnetism or spin liquid, this Umklapp term is not enough to obtain information about the in-plane magnetic correlations within
the system.

To get the estimate for the zero-momentum energy shift due to the Umklapp potential, i.e., δEUm, we consider Eq. (D7) with
p = 0 and Gλ = 0, such that we have

δEUm = t2

2A�2

∑
k

T (k)|u↓(k)|2 = t2Z

�2a2
m

β, (D8)

where β is the k integral in dimensionless units, i.e., β = 1
8π2

∫
dk̃ |u↓(k̃)|2

1−�̃−αr k̃2 with αr = 1/(|εT |2mT a2
m) and tilded variables are

dimensionless. As β ∼ O(1), we have δEUm ∼ O( t2Z
�2a2

m
).

2. Second-order exciton self-energy �2 and the spin-spin correlator

After having calculated the Umklapp contribution arising from 	1, we consider another type of exciton self-energy depicted
in Fig. 13, which we denote 	2. This self-energy is second order in the T matrix and contains information about the dynamical
spin-spin correlations of the holes in the moiré lattice.
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We can write 	2 in imaginary time to leading order in t4/�4 as

	2(p, p′, τ = τ f − τi ) = t4

�4

1

A2

∑
q

∫ β

0
dτ1

∫ β

0
dτ2G(p + q, τ2 − τ1)

∑
kk′

T (p + k + q, τ − τi )T (p + k′ + q, τ f − τ2)

× 〈h†
k′+q′↓(τ f )hk′↓(τ2)h†

k↓(τ1)hk+q↓(τi )〉δp′,p+q−q′ . (D9)

As in case of 	1, we again assume that we are sufficiently far away from the Feshbach resonance such that we can approximate
the T matrix with its static limit, i.e., T (k, τ ) ≈ T (k)δ(τ ). We can then cast Eq. (D9) as

	2(p, p′, τ ) ≈ t4

�4

1

A2

∑
q

G(p + q, τ )
∑
kk′

T (p + k + q)T (p + k′ + q)〈h†
k′+q′↓(τ )hk′↓(τ )h†

k↓hk+q↓〉δp′,p+q−q′ . (D10)

We proceed now the same way as before, i.e., project hk↓ to the highest moiré valence band with Eq. (D3) and transform to the
real space of the moiré lattice. This gives

	2(p, p′, τ ) ≈ t4

�4

1

A2

∑
qq′∈mBZ

∑
λλ′

G(p − q − Gλ, τ )
∑

kk′∈mBZ

∑
αβ

T (p − k − Gα − q − Gλ)T (p − k′ − Gβ − q − Gλ)

× u↓(k′ + q′ + Gβ + Gλ′ )u∗
↓(k′ + Gβ )u↓(k + Gα )u∗

↓(k + Gα + q + Gλ)δp′,p−q−Gλ+q′+Gλ′

× 1

N

∑
i,i′,i′′,i′′′

e−i(q′+k′ )·ri eik′ ·ri′ e−ik·ri′′ ei(q+k)·ri′′′ 〈T h†
i↓(τ )hi′↓(τ )h†

i′′↓hi′′′↓〉. (D11)

By focusing on the last line, one can see that if i′′ �= i′′′ or i �= i′, the term 〈T h†
i↓(τ )hi′↓(τ )h†

i′′↓hi′′′↓〉 is proportional to eτU0 . Later,
when transforming to Matsubara frequencies, this quickly oscillating term suppresses the self-energy by a factor of 1/U0. As the
repulsive interaction U0 is the dominant energy scale in our lattice model, we can ignore such nonlocal terms with i′′ �= i′′′ or
i �= i′ and instead take i′ = i and i′′′ = i′′ ≡ j. Hence, we get

	2(p, p′, τ ) ≈ t4

�4

1

A2

∑
qq′∈mBZ

∑
λλ′

G(p − q − Gλ, τ )
∑

k′k∈mBZ

∑
αβ

T (p − k − Gα − q − Gλ)T (p − k′ − Gβ − q − Gλ)

× u↓(k′ + q′ + Gβ + Gλ′ )u∗
↓(k′ + Gβ )u↓(k + Gα )u∗

↓(k + Gα + q + Gλ)δp′,p−q−Gλ+q′+Gλ′

× 1

N

∑
i j

e−iq′ ·ri eiq·r j 〈T h†
i↓(τ )hi↓(τ )h†

j↓h j↓〉. (D12)

This can be further simplified at half-filling by noting that h†
i↓hi↓ = 1

2 − Sz
i . By inserting this to Eq. (D12) and further transferring

to Matsubara frequency space, we obtain

	2(p, p′, iωn) = 1

Nβ

t4

�4

1

A2

∑
qq′∈mBZ

∑
λλ′

∑
iqn

G(p − q − Gλ, iωn + iqn)δp′,p−q−Gλ+q′+Gλ′

×
[ ∑

k

T (p − k − q − Gλ)U−(k)U ∗
−(k + q + Gλ)

][ ∑
k′

T (p − k′ − q − Gλ)U ∗
−(k′)U−(k′ + q′ + Gλ′ )

]

×
∫ β

0
dτe−iqnτ

〈
T Sz

q′ (τ )Sz
−q

〉
. (D13)

Here we have discarded reducible diagrams. One should note that the sums of k and p are taken over the whole momentum
space. The last line in Eq. (D13) is the spin-spin correlator. If we assume the translational invariance for the spin-spin correlator
(which should hold for a 120◦ AFM, FM, or a spin liquid), i.e., that 〈Sz

j+� j (τ )Sz
j〉 depends only on the relative distance � j

between two lattice sites j and j + � j, then we find q′ = q such that

	2(p, p′, iωn) = 1

Nβ

t4

�4

1

A2

∑
q∈mBZ

∑
λλ′

∑
iqn

G(p − q − Gλ, iωn + iqn)χzz(q,−iqn)δp′,p−Gλ+Gλ′

×
[ ∑

k

T (p − k − q − Gλ)u↓(k)u∗
↓(k + q + Gλ)

][ ∑
k′

T (p − k′ − q − Gλ)u∗
↓(k′)u↓(k′ + q + Gλ′ )

]
,

(D14)
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where the spin-spin correlator is χzz(q, iqn) = ∫ β

0 dτeiqnτ 〈T Sz
q(τ )Sz

−q〉. By defining a new label as Gα = Gλ′ − Gλ we get

	2(p, p + Gα, iωn) = 1

Nβ

t4

�4

1

A2

∑
q∈mBZ

∑
λ

∑
iqn

G(p − q − Gλ, iωn + iqn)χzz(q,−iqn)

×
[ ∑

k

T (p − k − q − Gλ)u↓(k)u∗
↓(k + q + Gλ)

]

×
[ ∑

k′
T (p − k′ − q − Gλ)u∗

↓(k′)u↓(k′ + q + Gλ + Gα )

]
. (D15)

We can express this as

	2(p, p + Gα, iωn) = 1

Nβ

t4

�4

1

A2

∑
q

∑
iqn

G(p − q, iωn − iqn)χzz(q, iqn)g(p,−q)g(p − q, q + Gα ), (D16)

g(p, q) =
∑

k

T (p − k + q)u↓(k)u∗
↓(k − q), (D17)

which is the same expression as in the main text.
We have therefore obtained the Umklapp self-energy term

of Eq. (D7) and the term containing the spin-spin correlator
given by Eq. (D17). The major approximation to derive these
terms was to take the static limit of the exciton-hole T ma-
trix. If one wanted to take into account the full frequency
dependency of the T matrices, then evaluating the diagram
of Fig. 13 would be very challenging as it would contain a
a two-particle Green’s function that would split into compli-
cated spinon-holon correlators. We leave this topic for future
studies.

APPENDIX E: ADDITIONAL DETAILS CONCERNING
COMPUTING �2 WITH SCBA

In this Appendix, we provide further practical details re-
garding our SCBA computations to evaluate Eq. (8). To this
end, it is convenient to write 	2 by folding the exciton disper-
sion to the mBZ such that 	2 reads

[	2(p, ipn)]nn′

= 1

βN

∑
q∈mBZiqn

χzz(q)

× [W̃ †(p, q)G(p + q, ipn + iqn)W̃ (p, q)]nn′ , (E1)

with

W̃nm(p, q) ≡ 1

A

∑
k,αλ

T (p + Gα − k)S∗
n (p + Gα + q + Gλ)

× Sm(p + Gα )Uσ (k + q + Gλ)U ∗
σ (k), (E2)

where we have expressed the exciton degrees of freedom
in the eigenbasis of the Umklapp potential, i.e., Xp+Gα

=∑
n Sn(p + Gα )γXn(p). Here, Sn(p) are the Bloch functions

of the excitons and γXn(p) are the exciton annihilation
operators for exciton bands n and momenta p, correspond-
ing to exciton energies εXn(p). Moreover, the excitonic
Green’s function G(Q) in the new basis reads [G(p, τ )]nm =
−〈T γXn(p, τ )γ †

Xm(p)〉 such that G−1
X (Q) = G−1

0 (p) − 	2(p)

and [G−1
0 (p)]nm = δnm[ipn − εXn(p)] with the notation p =

(p, ipn).
By using the LSWT result for the spin-spin correlator χzz

and the fact that we are considering a single exciton, we
can carry out the Matsubara sum in Eq. (E1) giving at zero
temperature

[	2(p, ω)]nn′

= 1

N

∑
q∈mBZ

(
2uqvq − (

u2
q + v2

q

))
× [W̃ †(p, q)G(p + q, ω + 0+ − εq)W̃ (p, q)]nn′ . (E3)

As the exciton Green’s function G at the right hand side of
Eq. (E3) depends on the self-energy 	2, Eq. (E3) needs to
be solved self-consistently. To this end, we used an initial
ansatz G = G0 and solved Eq. (E3) iteratively by computing
a new value for 	2 with Eq. (E3) which was then used to
obtain a new G via G−1 = G−1

0 − 	2. This procedure was
repeated untill 	2 converged to a stable solution. Note that
the second-order perturbation results of Fig. 16 are obtained
by terminating this loop after the first iteration, see Sec. G. As
the term arising from the coherence factors of the spin wave
excitations is strongly peaked around the Dirac points in case
of the AFM, we used nonuniform grid with more momentum
points around the Dirac points to evaluate the momentum
integral of Eq. (E3).

We see from Eq. (E3) that in general the exciton self-
energy and the Green’s function G are matrices expressed in
the exciton band basis. This representation arises when we
folded the dispersion of the free exciton to the moiré BZ. This
is an alternative presentation to Eq. (D16) where the exciton
self-energy and the Green’s function are expressed in terms of
the moiré reciprocal vectors Gα . The expressions in the main
text are for simplicity presented in terms of Gα and the results
of the main text are obtained from Eq. (E3) by considering
only the lowest exciton band, i.e., n = 1. We have numerically
checked that by including the second band has a negligible
effect on our results.
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FIG. 14. Exciton spectral function A(p, ω) for the twist angle
θ = 3◦ and an in-plane AFM along the �-K-K ′-� path within the
mBZ as a function of the momentum and energy. The red solid line
gives the bare exciton dispersion.

In the main text, numerical results are shown along the
�-M path in the mBZ. For completeness, in Fig. 14 the spec-
tral function is shown along the �-K-K ′-� path. We see that
the spectral features are similar those in Fig. 7, i.e., there is a
clear low-energy quasiparticle peak from the exciton-polaron
state and broader peaks at higher energies corresponding to
geometric string excitations.

APPENDIX F: PHYSICAL PICTURE FOR THE PRESENCE
OF STRING EXCITATIONS

In this Appendix, we give elaborate on the physical reason
why the string excitations are present in case of the AFM but
not for the FM. We start by noting that after approximating
the exciton-hole T matrix with its static limit, the effective
exciton-hole interaction Hamiltonian for the lowest exciton
band reads

HX−h =
∑

pq∈{mBZ}
V (p, q)γ †

p+qγpsz
q, (F1)

with

V (p, q) = 1√
NA

W̃11(p, q), (F2)

where γp ≡ γX1(p) is the exciton annihilation operator for
the lowest exciton band (see the previous Appendix for the
notation). In other words, the exciton can scatter by creating
a spin flip in the moiré system. This is due to the fact that for
the in-plane magnetic order, sz

i flips the spin of moiré site i.
By Fourier transforming Eq. (F1) to real space of moiré sites
hi and exciton sites γi = 1√

N

∑
p eip·riγp, one finds

HX−h =
∑
i,i′, j′

V (ri′ − r j′ , ri′ − ri )γ
†
i′ γ j′s

z
i . (F3)

We therefore see explicitly that the exciton hopping can create
spin flips, analogous to a hole hopping in a AFM lattice. We
have numerically checked that V (r1, r2) is largest for the local
processes, i.e., ri′ = r j′ = ri, such that the exciton mainly
creates spin flips at the nearest moiré site. It follows that when
the exciton moves around, it creates spin flips in its wake.
In other words, spin flips take place in the proximity of the
exciton and hence the exciton can become dressed due to the
cloud of spin flips around it.

FIG. 15. V (0, q)/ max[V (0, q] in Eq. (F2) as a function of mo-
mentum q for θ = 2.6◦. Red parallelogram indicates the momentum
space unit cell.

We see that in Eq. (F3) there exists also nonlocal hop-
ping terms for the exciton. These are not included in the
heuristic picture acquired from Eq. (4) and discussed in
Sec. III A. Indeed, we have numerically checked that such
hopping terms given by Eq. (F3) are much smaller in am-
plitude compared to the dominant local term. The reason for
the existence of nonlocal terms lies in the fact that Eq. (F3)
is obtained by projecting the hole (exciton) operators to the
highest moiré valence band (lowest exciton band). Such a
projection scheme yields the interaction vertex V (p, q) of
Eq. (F1) that depends on the momenta of both exciton and
hole. This is in contrast to the original exciton-hole T ma-
trix of Eq. (4) that depends only on the total center-of-mass
momentum.

It is now illuminating to consider again the momentum-
space representation of Eq. (F1). As can be seen in Fig. 7,
string excitations take place for small exciton momentum p.
Motivated by this observation, we consider p = 0 and corre-
spondingly in Fig. 15 show V (0, q) as a function of the spin
wave momentum q. From Fig. 15 we see that the creation of
spin wave excitations is most prominent for small momenta q.
Therefore, string excitations are present (absent) for the AFM
(FM) order as local spin flips, that preserve their shape and
compactness, can (cannot) be constructed from the linearly
(quadratically) dispersing spin wave excitations near q = 0.

APPENDIX G: SECOND-ORDER PERTURBATION
THEORY

To demonstrate that the nonperturbative SCBA is required
to reveal the string excitations, in Fig. 16 we show the exciton
spectral weight for θ = 3◦ as a function of momentum and
frequency obtained with the non-self-consistent second-order
perturbation theory by excluding the contribution of 	2 within
the integrand of Eq. (8), i.e., by using the noninteracting
exciton Green’s function

G−1(p′, p, iωn) = iωn − εx
p − 	1(p′, p) (G1)
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FIG. 16. Exciton spectral weight A(p, ω) at θ = 3◦ as a function
of the frequency and the momentum obtained with the non-self-
consistent second-order perturbation theory. Red dashed, solid cyan,
das-dotted white and solid white lines correspond, respectively, to
the bare exciton dispersion, exciton dispersion in the presence of the
Umklapp potential 	1, spin wave spectrum and ωc (see text for mean-
ing of ωc). These results should be compared to the corresponding
SCBA results of Fig. 7. We see that the string excitations are absent,
highlighting the importance of our SCBA approach.

in Eq. (8). We see that the string excitations are absent
in Fig. 16 as compared to the SCBA results shown in
Fig. 7, underscoring the importance of the nonperturbative

SCBA to describe the spectral properties of the probe exciton
correctly.

Both the second-order results of Fig. 16 and the results
of the SCBA computations shown in Fig. 7 reveal that a
well-defined quasiparticle exists only for small momenta, and
that it is strongly damped elsewhere in the mBZ, although
they disagree concerning its energy. To explain the damping
within the second-order perturbation theory, we consider the
integrand of Eq. (6) with Eq. (G1) and p′ = p and note that
εx

p + 	1(p, p) ∼ δEUm + p2/(2mUm). Here δEU (mUm) is the
zero-momentum energy shift (effective mass) of the exciton
due to the Umklapp potential. From Eq. (8) we can deduce that
the particle-hole scattering continuum should for a given mo-
mentum p start at the critical frequency ωc(p) = minq[ωq +
δEUm + (p − q)2/(2mUm)]. As the spin wave dispersion ωq
remains rather flat compared to the exciton energies, for large
enough p this condition yields ωc(p) = δEUm + ωp. In Fig. 16
we have plotted this estimate as a white line. We see that once
the energy of the well-defined quasiparticle mode crosses this
condition, it becomes damped. Hence, the condition for ωc

explains the damping of the exciton-polaron mode. Similar
damping and the transfer of the spectral weight from the
quasiparticle mode to the excited states and broad continuum
are also seen in case of the strong coupling SCBA results of
Fig. 7.
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