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Thermal fluctuations for a three-beads swimmer
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We discuss a microswimmer model made of three spheres actuated by an internal active time-periodic force,
tied by an elastic potential, and submitted to hydrodynamic interactions with thermal noise. The dynamical
approach we use, replacing the more common kinematic one, shows the instability of the original model and the
need of a confining potential to prevent the evaporation of the swimmer. We investigate the effect of the main
parameters of the model, such as the frequency and phase difference of the periodic active force, the stiffness of
the confining potential, the length of the swimmer and the temperature and viscosity of the fluid. Our observables
of interest are the averages of the swim velocity, the energy consumption rate, the diffusion coefficient, and
the swimming precision, which is limited by the energy consumption through the celebrated thermodynamic
uncertainty relations. An optimum for velocity and precision is found for an intermediate frequency. Reducing
the potential stiffness, the viscosity, or the length is also beneficial for the swimming performance, but these
parameters are limited by the consistency of the model. Analytical approximation for many of the relevant
observables is obtained for small deformations of the swimmer. We also discuss the efficiency of the swimmer
in terms of its maximum precision and of the hydrodynamic, or Lighthill, criterion, and how they are connected.
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I. INTRODUCTION

The physics of active particles is a prominent application of
nonequilibrium statistical mechanics [1,2]. Several interesting
challenges in this field belong to the category of collective
phenomena and emergent order, such as motility-induced
phase separation and flocking, which are usually investigated
theoretically through simplified models where each particle
has no internal structure but only a “self-propulsion” force
with simple properties [3–5]. However, a fascinating aspect
of the physics of active systems is the mechanism of self-
propulsion itself [6]. Self-propulsion typically originates from
complex mechanisms and—even when considering micro-
scopic systems—may be based upon the conspiracy of a
number of subunits, such as molecular motors [7]. For this
reason, in some cases, statistical physics becomes useful also
for understanding what happens in a single self-propelling
unit [8,9].

Swimming at the micro scale requires strategies to break
time-reversal invariance in the absence of relevant inertia,
i.e., circumventing the “scallop” theorem [10,11]. A simple
mechanism is to perform a periodic nonreciprocal change
of shape: the swimmer exploits some source of energy in
order to make internal changes and explore a sequence of
configurations which is periodic without being time sym-
metric, the minimal example being A → B → C → A. This
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sequence becomes a limit cycle in the case of a system whose
shape is characterized by continuous parameters. Biological
systems offer a plethora of examples for such a behavior, the
most common instances being self-propelling cells equipped
with pushing or pulling flagella or cilia, e.g., motile cells,
sperms, bacteria, and C. reinhardtii algae [12]. The sperm tail,
for instance, excited by a myriad of molecular motors inner-
vating the axoneme, and under the constraints of elasticity and
hydrodynamics, displays a wave deformation continuously
traveling from the head to the end tip that pushes forward
the cell [8]. More simple models have been introduced in
the literature, in order to pinpoint the essential mechanism
behind the strategies invented by nature and potentially useful
for the design of artificial swimming micromachines. Histori-
cally, the ancestor of simplified, analytically treatable models
is the Lighthill squirmer [13]. A more recent model is the
so-called three-beads swimmer, whose analytical treatment
is even more manageable, at least in some limits [14,15].
This model, which has also been realized experimentally, has
been rarely studied in the presence of noise; see, for instance,
Refs. [16–19]. Noise is not only a realistic and interesting per-
turbation to be added to the limit cycle of a microswimmer, but
may offer a new test ground for the so-called thermodynamic
uncertainty relations (TUR) which establish a bound to the
signal-to-noise ratio based upon the energy consumption of
the system [20,21].

Here, we analyze the behavior of the three-beads swimmer
when it feels the effect of thermal noise. For the purpose
of this study we modified the original three-beads swimmer
model in order to be described dynamically instead of kine-
matically. The result of this change of perspective shows a
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crucial problem of the original system, i.e., the lack of stability
of its limit cycle. To solve this problem we have introduced
an additional elastic force keeping together the three beads
and avoiding the observed instability. We underline that noise
for a real or model microswimmer may have two distinct
origins: thermal noise originated in the molecular agitation of
the surrounding fluid or of the swimmer’s body, and active
noise originated in the randomness of the dynamics of the
subunits, such as molecular motors, actuating the swimmer.
It is clear that, ultimately, active noise can be traced back to
thermal noise, but in a mesoscopic model it would be distinct
from it and, for the purpose of the present study, it is ignored.
After introducing the model and showing the results of its
numerical solutions, we also pose the question of efficiency in
terms of different definitions, one being the distance from the
bound dictated by the TUR. We show that spatial correlations
in the noise due to hydrodynamic interactions (originated in
the fluid momentum conservation) modify such an efficiency,
a fact which is usually neglected in models of engines or
swimmers constituted by several coupled motors [8,22–27].
The consequences also for other figure of merits, such as the
Lighthill efficiency, are discussed.

Here, we briefly review the existing literature that is rel-
evant for our study. Concerning the requirement of a binding
force keeping the beads close, we recall that the original paper
introducing the three-spheres model [14] already considers an
implicit link between the beads, however it is not explicitly,
i.e., dynamically, modeled. Up to our knowledge, papers that
precede our introduction of harmonic binding forces and the
corresponding linear approximation for the prediction of the
average velocity of the swimmer are Refs. [28,29]; however,
they do not discuss the two main points of our study: (1) the
lack of stability in the case where there are no binding forces,
and (2) the effect of fluctuations and the thermodynamic
bounds for the precision rate. Another paper with analogous
results, with no discussion of the two aforementioned points,
is Ref. [30], but for a slightly different model where one rod
(connecting spheres 1 and 2) is kinematically forced while
the other one (connecting spheres 2 and 3) is a harmonic
spring without force. Reference [31] is an interesting exper-
iment where the three spheres are linked by capillary forces
(menisci) due to the air-water interface deformation, while
a model with harmonic linking forces well reproduces the
results; however, (again) no mention is made of the problem of
instability of nonlinked models or of the thermal fluctuations.
Finally, Ref. [17] is quite a faithful experimental realization
of the original model [14], where optical tweezers dictate the
relative position of the beads (with each bead harmonically
attached by the optical force to the dictated position).

A discussion of the effect of stochastic active forces on
the three-beads swimmer model can be found in Ref. [18].
A more recent paper about the stochastic thermodynamics of
the same model is Ref. [19]. The theory of fluctuations for
flagellar microswimmers, induced by stochastic dynamics of
the molecular motors actuating them, has been investigated in
sophisticated [32] and simpler models [33]. Experiments on
these fluctuations have been performed in Refs. [8,34].

The structure of the paper is the following. In Sec. II we
describe the model, briefly review previous studies concerning

FIG. 1. Sketch of the swimmer model made of three spheres of
radius a, distances L1 and L2, and springs with stiffness K .

it, explain the differences between a kinematic and dynamic
approach, introduce the properties of hydrodynamic thermal
noise, and finally describe in detail the observables of interest.
In Sec. III we report the results of the numerical simulations.
In Sec. IV we discuss the thermodynamic uncertainty relation
and the Lighthill efficiency. In Sec. V we discuss analytical
results in the linearized limit for the velocity of the swimmer
and sketch some approximate formula for its diffusivity and
noise-to-signal ratio. Finally, in Sec. VI we draw conclusions
and discuss perspectives.

II. THE MODEL

The three-beads model we consider here, see the sketch
in Fig. 1, is represented by the equations of motion for three
spherical particles (index i = 1, 2, 3) of radius a immersed
in a fluid of viscosity η, with no rotation or internal degrees
of freedom; each particle i is described by velocity vector vi

and submitted to internal force vector fi and external noise
vector fR

i . The condition that the force vector is internal reads∑
i fi = 0. The system, in the Stokesian regime (high vis-

cosity, negligible inertia), is described by the instantaneous
balance between viscous drags and applied forces, which can
be written in the usual form:

vi =
∑

j

Hi j (ri − r j )
(
f j + fR

j

)
. (1)

Here, Hi j (r) = 1
6πηa [δi j + (1 − δi j ) 3a

4r (1 + r̂r̂)] is the Oseen
mobility tensor which comes from the solution of the Stokes
equation. We recall that the Oseen tensor describes the part
of the sphere-sphere hydrodynamic interaction that decreases
inversely as the first power of the distance between the spheres
and becomes inaccurate at short ranges [35].

The three beads are allowed to move only along one
direction—say, x̂—and all the forces act only along that di-
rection. This is, of course, not realistic in the case of thermal
noise, but we adopted such an assumption in order to keep the
problem simple. Assuming that this constraint does not affect
the validity of Eq. (1), the xi coordinates obey the following
relation between velocities and forces:

dxi(t )

dt
=
∑

j

Ti j (x)
[
Fj (x, t ) + F R

j (x, t )
]
, (2)

where Ti j represents the mobility coefficient coupling the x
component of the force acting on particle j and the x compo-
nent of the velocity of the particle i, while the Fj represent the
x components of the forces f j . We use x and F to represent
the 3-ple {x1, x2, x3} and {F1, F2, F3}. From the Oseen tensor,
the matrix T is obtained by the relation Ti j (x) = Hi j (ri −
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r j )xx. Therefore, it takes the form

T =

⎛
⎜⎜⎝

1
6πηa

1
4πηL1

1
4πη(L1+L2 )

1
4πηL1

1
6πηa

1
4πηL2

1
4πη(L1+L2 )

1
4πηL2

1
6πηa

⎞
⎟⎟⎠, (3)

where L1 = x2 − x1 and L2 = x3 − x2.
The deterministic forces F are the sum of internal conser-

vative (a confining potential to avoid instabilities) and internal
nonconservative forces (a time-dependent periodic perturba-
tion that conserves total momentum, also denoted as “active
force”), i.e., F = F act + F pot, all detailed below. All symbols
are introduced in the text, however a list of all relevant sym-
bols is present in Appendix B, Table I.

A. Original setup

The original three-beads model was described by the same
equations in (2), without noise i.e., F R

j ≡ 0, and with Fj (x, t )
reduced to only internal nonconservative forces: Fj (x, t ) =
F act

j (t ) with

F act
1 (t ) + F act

2 (t ) + F act
3 (t ) = 0. (4)

The instantaneous velocity of the center of mass V =
1
3 (v1 + v2 + v3) was computed in the limit of small deforma-
tion of the swimmer, i.e., by assuming

L1 = l1 + u1, L2 = l2 + u2, (5)

where l1 and l2 are constant while u1 and u2 are time depen-
dent: for small u1, u2 the following formula was obtained:

v = V = α

2
(u1u̇2 − u2u̇1), (6)

with

α = a

3

[
1

l2
1

+ 1

l2
2

− 1

(l1 + l2)2

]
. (7)

For instance, when u1,2 obey the oscillation laws

u1(t ) = d1 cos (ωt + φ1),

u2(t ) = d2 cos (ωt + φ2), (8)

one has that the average swimming velocity reads

v = V = α

2
d1 d2 ω sin (φ1 − φ2). (9)

It is important to realize that the above formulas are based
upon the knowledge of ui(t ) and not from the knowledge of
the forces Fi(t ). This is what we call a kinematic approach and
implies that the distances among the particles are prescribed
by definition. In the rest of the paper we change the point of
view and start from the knowledge of the forces.

B. Difference between kinematic and dynamical approach:
Instability of the relative distances

In the rest of the paper we adopt a dynamic point of view,
i.e., we set the forces acting on the first and third particles:

F act
i (t ) = F0 cos (ωt + φi ), i = 1, 3, (10)

with the constraint in Eq. (4). The reason for this different ap-
proach is that when out of equilibrium, i.e., under the presence

FIG. 2. Positions of the three spheres when there is no noise
and no elastic potential. Initial arms length x2(0) − x1(0) = x3(0) −
x2(0) = 20, spheres’ radius a = 1, η = 1, �φ = π/2, ω = 2π/50,
F0 = 10. (a) Full duration of the simulation, and (b) zoom on early
times.

of nonconservative forces, the properties of the fluctuations
of the relative positions of the particles—due to interaction
with the molecules of the fluid—are not known in general.
On the contrary, one may reasonably describe the effects of
these interactions in terms of known fluctuating forces, which
is exactly what we call F R

i ; see later for explicit formula. In
the whole paper we set φ1 = �φ and φ3 = 0 [the force F2(t )
is entirely deduced by the knowledge of F1 and F3 through the
force constraint of internal forces, Eq. (4)].

Remarkably, when changing the point of view from kine-
matic to dynamic, it is possible to show a weakness of the
original model, i.e., an intrinsic instability toward the evap-
oration of the swimmer: the particles’ relative distances do
not remain limited and the velocity of the swimmer, for this
reason, tends to vanish. An example of the numerical solution
of the model in Eq. (2) with zero temperature (F R = 0) and
Fi = F act

i (t ) expressed by Eq. (10) is shown in Fig. 2.
In the figure it is seen that particles 1 and 2 remain close

to each other and very far from particle 3. The latter only
feels force F3 with time-average zero. The formers, on the
contrary, feel the forces F1 and F2 (whose sum is never 0)
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FIG. 3. Positions of the three spheres with the elastic poten-
tial and without noise. Parameters: l1 = l2 = L = 20, a = 1, η = 1,
�φ = π/2, ω = 2π/50, K = 2, F0 = 10. The inset shows the dis-
tance among particles 1 and 3 for a small number of perturbation
periods.

which have zero time average, but they also feel the hydrody-
namic interactions which depend upon the relative distance:
a closer inspection (not shown) reveals that the distance be-
tween particles 1 and 2 oscillates modulating the pair mobility
to be in phase with total force F1 + F2 acting on the pair.
As a consequence, even if F1 + F2 = 0 on average, the mean
speed is different from zero. However, the excursion of the
couple’s distance very slowly decreases in time, leading to
a reduction of the effective force and therefore velocity. A
fit of the position of particles 1 and 2 in time suggests that
x1 ∼ x2 ∼ t1/3 and therefore a vanishing velocity is expected
at large times. In Sec. V we discuss the linear stability of the
limit cycle (in the plane L1, L2), showing the presence of a
positive eigenvalue for all the values of the oscillating forces,
which explain the initial instability of the three-beads state.

For this reason we introduce a harmonic attractive potential
among each couple of adjacent spheres, i.e.,

F (x, t ) = F act (t ) + F pot (x) (11)

with

F pot
1 = K (x2 − x1 − l1) (12)

F pot
2 = K (x3 − x2 − l2) − K (x2 − x1 − l1) (13)

F pot
3 = −K (x3 − x2 − l2), (14)

with K the elastic constant and l1, l2 the lengths at rest of the
harmonic springs. When K > 0 we observe that the instabil-
ity disappears and the relative positions of the three spheres
remain limited, see Fig. 3.

It is interesting to note that an experimental realization
of the three-beads swimmer has been obtained by applying
a time-modulated magnetic field on permanently magnetized
spheres linked by elastic rods [36]. Physical links, however,
are not the only possibility for experimental implementations;
see, for instance Ref. [17]. A theoretical study of a swimming
system of beads with the presence of elastic confining poten-
tial can be found in Ref. [37] by prescribing a cyclical law for

the length at rest of the potentials, l1, l2, and ignoring the effect
of thermal noise as well as energetic considerations. In the
rest of the paper we assume that the lengths at rest are equal
(“symmetric swimmer”) l1 = l2 = L, but in the Appendix we
consider the most general case l1 �= l2.

C. Details of the noise

A passive colloidal particle moves under the stochastic
effect of the molecules of the surrounding fluid, i.e., what is
called thermal noise and is described by the physics of Brow-
nian motion [38]. When more colloidal particles are present,
spatial correlations appear in the thermal forces acting on each
particle [39]. The simplest explanation for such correlations is
the consistency between noise and dissipation dictated by the
fluctuation-dissipation relation of the second kind, which gen-
eralizes the Einstein relation between mobility and diffusivity:
since dissipation appears as a matrix of correlated mobilities
(the Oseen tensor), also noise must be described by a matrix
of correlated diffusivities [40,41]. The physical counterpart of
this consistency argument is the fact that an incompressible
viscous fluid transmits forces acting in a point over a long
distance, and this principle holds for both dissipative and
fluctuating forces [42].

The fluctuation dissipation relation of the second kind,
which relates the diffusivity matrix D and the mobility matrix
T in our terms, reads D = T/β, where β = 1/(kBT ) is the
inverse temperature (in the simulations we assume unitary
Boltzmann constant kB = 1) [40]. Since T depends upon the
coordinates x, the Fokker-Planck equation for the process is
not uniquely determined by D. The ambiguity is removed,
asking for detailed balance (i.e., absence of physical currents)
when the nonconservative forces are absent. Then, following,
for instance, Ref. [43], this condition implies the following
form for the probability current:

Ji(x, t ) =
∑

j

Di j[βFj (x, t )P(x, t ) − ∂x j P(x, t )], (15)

appearing in the Fokker-Planck equation

∂t P(x, t ) = −∂xi Ji(x, t ). (16)

Such a Fokker-Planck equation implies the following anti-Ito
stochastic differential equation to hold:

dxi =
∑

j

[Ti jFj] dt +
√

2

β

∑
j

Ti j[
√

ζ · dW(t )] j, (17)

or conversely, the following Ito stochastic differential
equation:

dxi =
∑

j

[
Ti jFj + 1

β
∂x j Ti j

]
dt+

√
2

β

∑
j

Ti j[
√

ζ · dW(t )] j,

(18)

which is better suited for numerical integration and theoretical
calculations. Three additional terms appear, which we call
“Ito forces” (they are actually velocities) defined as FIto,i =
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FIG. 4. (a) Arms’ length in comparison, with (red) and with-
out noise (blue). (b) Position of the center of mass with (red) and
without noise (blue). Parameters: L = 20, a = 1, η = 1, �φ = π/2,
ω = 2π/50, K = 2, F0 = 10, (blue) T = 0, and (red) T = 0.01.

1
β

∑
j ∂x j Ti j , that read

FIto,1 = 1

β

1
L2

1
+ 1

(L1+L2 )2

4πη
, (19)

FIto,2 = 1

β

(L1 − L2)(L1 + L2)

4πη L2
1 L2

2

, (20)

FIto,3 = − 1

β

1
L2

2
+ 1

(L1+L2 )2

4πη
. (21)

We remark that
√

ζ is a matrix such that
√

ζ [
√

ζ ]T =
T−1. For the purpose of numerical integration we adopted
the Cholesky decomposition of T−1 as a representation
of it.

We conclude this subsection by showing, see Fig. 4, the
effect of the noise, at a relatively small temperature (see next
subsection for a discussion of the physical meaning of the
units we use in the numerical simulations). The figure shows
both the trajectory of the center of mass of the swimmer, as
well as its trajectory in phase space, i.e., the plot of L1(t ) =
x2(t ) − x1(t ) versus L2(t ) = x3(t ) − x2(t ), in the case of both
T = 0 and T = 10−2. As we will discuss later, a clear effect
of the growth of temperature (i.e., of noise) is an increase of
the diffusivity and therefore of transient deviations from the
average trajectory, which become hardly distinguishable when
the total time is increased and the average swimming motion
dominates.

D. Units of the physical parameters

We give all the results in arbitrary units. Here, we discuss
a possible conversion of those units in physical units. The
candidate conversion to International System units is

1 space unit = 10−6m = 1 µm, (22)

1 time unit = 10−3s = 1 ms, (23)

1 force unit = 5 × 10−14 N, (24)

or equivalently, (25)

1 mass unit = 5 × 10−14 kg. (26)

With such a conversion table, we get that T = 0.1 in arbitrary
units corresponds to T ≈ 300 K, and a viscosity η = 1 in
arbitrary units corresponds to η = 5 × 10−5 Pa s, which is 20
times smaller than water viscosity. A period of 50, i.e., ω =
2π/50 ≈ 0.12 in arbitrary units, corresponds to ω ≈ 20 Hz.
A velocity of the center of mass v = 10−3 corresponds to
v = 1 µm/s.

E. Characteristic values of the parameters

For the numerical study we need to define a few charac-
teristic numbers which can be useful as a reference in the
presentation of the results, in order to draw adimensional axes
in the graphs. We define ν = ω/2π as the forcing frequency;
v0 = ωaF 2

0 /(L2K2), which is the swimming velocity expected
for small forcing amplitudes, and in the adiabatic limit ω → 0
(see the linear theory in Sec. V); K0 = F0/a a typical stiffness
related to the forcing amplitude F0 and the diameter of the
spheres a; η0 = F0/(6πv0a) = (KL)2/(6πa2F0ω) a typical
viscosity related to forcing, swimming velocity, and diameter
a; note that when ω = 2π/10 (i.e., forcing period 10 ms with
the units assumed above, one has η0 ∼ 13.5, which is close
to water viscosity in the same units), T0 = F0 ∗ a a typical
thermal energy (temperature having assumed kB = 1). When
we present results as a function of ω, the above choices
for characteristic parameters cannot be used, therefore we
introduce other characteristic parameters related to hydro-
dynamics, i.e., νh = F0/(6πηa2) a hydrodynamic frequency
(close to 0.5 in most of the other plots) and the corresponding
pulsation ωh = 2πνh, and finally an associated swimming
velocity vh = 2πνhaF 2

0 /(L2K2).

F. Observables of interest in the numerical integration

In the rest of the paper we report several observations ob-
tained by numerical integration of Eq. (18) by a simple Euler
scheme, i.e., by replacing dt with the time step �t = 10−2,
replacing each Wiener increment dWi(t ) with a Gaussian-
distributed random number (independent from each other)
with zero average and variance �t , and replacing dxi(t ) with
xi(t + �t ) − xi(t ). We have verified that reducing further the
time step has negligible effect on the observation. Numerical
integration is always initialized with x1 = 20, x2 = 0 and x3 =
−20, and then some time (103 time steps) is waited before
measuring observables of interest.
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In all cases we have analyzed the limit cycle in the phase
space L1(t ) = x2(t ) − x1(t ) versus L2(t ) = x3(t ) − x2(t ). An-
other observable containing relevant information about the
trajectory of the swimmer is the center of mass evolution
xcm(t ) = [x1(t ) + x2(t ) + x3(t )]/3. The swimming velocity is
measured using the best linear fit xcm(t ) = vt over an obser-
vation of duration 105 s. Information about the fluctuations
with respect to the average trajectory is obtained through
the mean squared displacement msd (τ ) = 〈[xcm(t0 + τ ) −
xcm(t0) − vτ ]2〉. Whenever we observe msd (τ ) ∼ 2Dτ for
large τ , we extract D as the diffusivity of the trajectory. If
the trajectory is not long enough, exceptions to the linear
asymptotic behavior are observed, which are explained in
the next section. We also measure the energy consumption
of the swimmer in terms of the motor forces F act

i (t ), that is,
the Euler-discretized integral

W (t ) =
∫ t

0

∑
i

dxi(s)F act
i (s), (27)

which is fitted at large times as W (t ) ∼ Ẇ t . The number Ẇ
is taken as a measurement of the average energy consumption
rate.

To conclude, we have measured the precision rate of each
long trajectory by the formula

p = v2

D
, (28)

which is expected to satisfy the thermodynamic uncertainty
relation [20,21,44–46]

p � pmax = Ẇ

kBT
. (29)

G. Mean squared displacement

We conclude this introductory section by briefly discussing
the behavior of msd (τ ) as a function of the delay τ . As shown
in Fig. 5, we observe that when the temperature T is large
enough, one always has a clear asymptotic diffusive behavior.
On the contrary, when the temperature T is too small, the
mean squared displacement oscillates with a frequency which
is equal to the swimming force frequency ω/(2π ) and an am-
plitude which tends to reduce with τ . The oscillations occur
around a time-dependent shape which is asymptotically linear
in time, therefore it is possible to extract a diffusivity D even
in this case.

The reason for such an oscillating behavior is the presence
of the oscillating forces which, when the noise is not large
enough, dominate on the dynamics and give an observable
recurrency in the trajectory.

III. NUMERICAL STUDY

In this section we present the results of the numerical
simulations. Each of the following subsections is devoted
to the effect of one particular physical parameter upon the
most relevant observables of our study, which are the average
velocity of the center of mass, the average consumption rate
of energy, the diffusivity, and the precision.

FIG. 5. Mean squared displacement as a function of time for
several choices of temperatures (a) and frequencies of the active
force (b). Parameters which are not given in the figure: L = 20,
F0 = 10, a = 1, η = 1, K = 2. All the straight lines in (a) have slope
1, representing the diffusive regime.

A. Changing the active force

The active force defined in Eq. (10) has three parameters:
F0, ω, and �φ. In Fig. 6 we study the effect of ω, while in
Fig. 7 we consider �φ. Since the theoretical part (Sec. V)

FIG. 6. Effect of the frequency of the oscillating active force ω

upon (a) the average swim velocity, (b) the swimming diffusivity,
(c) the energy consumption rate, and (d) the precision. Parameters:
L = 20, F0 = 10, a = 1, η = 1, K = 2.
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FIG. 7. Effect of the phase difference among the first and last
components of the oscillating active force �φ upon (a) the average
swim velocity, (b) the swimming diffusivity, (c) the energy consump-
tion rate, and (d) the precision. Parameters: L = 20, F0 = 10, a = 1,
η = 1, K = 2, T/T0 = 10−2.

focuses on linear response, the effect of F0 in this regime is
trivial and we do not investigate it.

Both average velocity and diffusivity have an optimum at
a similar frequency ωopt, apparently independent of �φ. Note
that the excursion between the peak value and the base value
(i.e., at small and large frequencies) is large for v but only of
order 20% for the diffusivity (in fact, diffusivity has a finite
value even when there is no drift or work). The work rate
grows with frequency and saturates at large frequency. The
behavior in frequency of work rate and average velocity is
qualitatively similar to the response of a driven resonant os-
cillator: when the perturbation frequency is much smaller than
the resonant frequency, the oscillator follows the perturbation
(and then the velocity and the work rate decrease when the
frequency decreases); when it is much faster, the oscillator
cannot follow it, therefore the velocity reduces and the work
rate becomes independent from the frequency [37]. A qualita-
tive picture can be grasped by considering the competition of
two characteristic time scales: that of the perturbation 2π/ω

and that of the (damped) harmonic binding potential aη/K .
We note that this resonant behavior is substantially different
from that observed in the original model (kinematically driven
and without confining springs), where one simply has v ∼ ω,
see Eq. (9). We rationalize this resonant behavior in the linear
(small force) limit, discussed in the last section.

The precision has an optimum at a similar frequency ∼ωopt,
since it is dominated by the numerator v2. The phase dif-
ference has quite a small (order of a few percent points),
apparently monotonous, effect on the diffusivity, while it is
relevant for the average velocity, having a peak at �φ = π/2:
clearly there is no swimming when �φ = 0 or π , since in
both cases the perturbation force vector becomes symmetric
under the time-reveral operation. The effects on both v and
D are weakly dependent upon ω. The work rate, on the con-
trary, has a dependence on �φ, e.g., decreasing or increasing,
that changes with the value of ω. The precision, which is
dominated by v2, follows a similar graph with an optimum
at π/2.

FIG. 8. Effect of the elastic constant of the confining potential
K upon (a) the average swim velocity, (b) the swimming diffusivity,
(c) the energy consumption rate, and (d) the precision. Parameters:
L = 20, F0 = 10, a = 1, η = 1.

B. Changing the properties of the confining potential

The effect of the elastic constant K for the confining poten-
tial is shown in Fig. 8. All the quantities of interest decay with
K . Numerically, it is not possible to decrease too much the
value of K , since it leads to too large excursion of the distances
between the particles and therefore to the possibility of two of
them to touch each other, breaking the condition of non small
distance and to a numerical instability of the mobility matrix.
which contains inverse powers of the distances.

We also consider the effect of changing L = l1 = l2, the
rest distance among the swimmer particles. The consequence
of changing L is similar to that of changing K , see Fig. 9. The
analogy between these two parameters can be understood in
the following way. At fixed L the effect of reducing K is to
permit larger excursions of x1 − x2 and x2 − x3 with respect
to their rest value L, but such excursions include both large
values (which are irrelevant) as well as small values, where

FIG. 9. Effect of the average length of the two arms of the
swimmer L upon (a) the average swim velocity, (b) the swimming
diffusivity, (c) the energy consumption rate, and (d) the precision.
Parameters: a = 1, F0 = 10, η = 1, K = 2.
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FIG. 10. Effect of the average length of the two arms of the
swimmer L upon the orbits in the plane x1 − x2, x2 − x3 (a) and u1, u2

(b), where u1 = x1 − x2 − L and u2 = x2 − x3 − L. Parameters: a =
1, F0 = 10, η = 1, T = 0.01, �φ = π/2, ω = 2π/50, K = 2.

the hydrodynamic interaction is stronger and the swimming
efficiency is higher. The same occurs when L is reduced
at fixed K . Of course, this analogy is qualitative, while the
quantitative behavior is more complex.

In Fig. 10 we also show the orbits in the plane of rela-
tive distances (with or without shifting by the rest length L)
when L is varied. This figure shows a remarkable robustness
of the shape of the limit cycle which appears independent
of L for large enough L. As already discussed, see Eq. (9),
the average velocity of the swimmer is proportional to the
area of the limit cycle with a proportionality factor α ∼ L−1,
therefore the behavior v ∼ L−1 is compatible with the ob-
served orbital invariance. It is less clear how the observed
orbital invariance may be related to the weak dependence of
the work rate with L. As made clear in the Appendix, the
explicit dependence of v and Ẇ on L = l1 = l2 is hard to read
explicitly.

C. Changing the properties of the fluid

The fluid is characterized by viscosity η and temperature
T . As shown in the equations of motion (18), there is not a
trivial rescaling of time or positions with η or T , unless in
the noiseless limit T → 0, where time can be safely rescaled
with η. Therefore, Figs. 11 and 12 show the genuine effect
of noise on the system. Both velocity and diffusivity decrease

FIG. 11. Effect of the viscosity of the fluid η upon (a) the average
swim velocity, (b) the swimming diffusivity, (c) the energy consump-
tion rate, and (d) the precision. Parameters: L = 20, F0 = 10, a = 1,
K = 2.

with η, however the first seems to reach a constant value for
small viscosities. Work rate and precision have a maximum
for a similar viscosity value. The nonmonotonous behavior of
the work rate is well reproduced by the analysis—obtained
in the linear approximation—exposed in Sec. V and in the
Appendix. Such a nonmonotonicity with the viscosity has
been noticed before in Refs. [47,48].

Easier to read, at least on the empirical side, is the behavior
of the relevant observables with T , see Fig. 12. The average
velocity is apparently independent of T , and so is the work
rate. Diffusivity grows linearly with T , as in the simplest
scenario of an effective noise which is proportional to the
amplitude of the single particle noises, and as a consequence,
the precision decreases as 1/T for the same reason.

FIG. 12. Effect of the temperature of the fluid T upon (a) the
average swim velocity, (b) the swimming diffusivity, (c) the energy
consumption rate, and (d) the precision. Parameters: L = 20, F0 =
10, a = 1, η = 1, K = 2. Plots in green: ω/ωh ≈ 0.02, plots in red:
ω/ωh ≈ 0.04, plots in blue: ω/ωh ≈ 0.2.
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IV. EFFICIENCY THROUGH THE THERMODYNAMIC
UNCERTAINTY RELATION

In view of the thermodynamic uncertainty relation,
Eq. (29), we are interested in the TUR-based efficiency

eTUR = p

pmax
= v2kBT

DẆ
� 1, (30)

which is a figure of merit with respect to the maximum achiev-
able swimming precision.

Let us briefly discuss also energetic efficiency. For an
engine, its most direct definition is the ratio between en-
ergy produced and energy spent. The problem, with a simple
swimmer such as ours, is that it obeys, in the steady state, a
balance between external forces and hydrodynamic resistance,
therefore between spent work and produced energy (the con-
fining potential constitutes an exact difference which vanishes
along stationary averages), leading to efficiency 1. It makes
sense, therefore, to consider the so-called “low-Re swimming
efficiency” eL given by

eL = vF
Ẇ

, (31)

where F is the force required to drag a rigid body (with some
property shared with our swimmer, e.g., shape, size, etc.) at
the time-averaged swimming velocity v, while Ẇ is the aver-
age rate of work done by the active forces Ẇ = 〈∑i ẋiF act

i 〉 in
the stationary swimming regime. The drag force can be put in
a general form valid for low-Re regimes, i.e., F = 6πηaeffv,
where η is the fluid viscosity and aeff is an effective radius
which we set to L. In principle, E does not have to be less
than one, but for many cases—particularly in biology—it
is smaller than 1, typically of order 1%, and therefore it is
generally regarded as an efficiency or as a figure of merit. It
is sometimes called Lighthill efficiency or Froude efficiency
[49,50].

We immediately note that there is a simple connection
between hydrodynamic efficiency and TUR-based efficiency:

eL = eTUR
6πηaeffD

kBT
, (32)

so that when D = kBT/(6πηaeff ), one has eTUR = eL.
In Fig. 13 we display the TUR-based efficiency eTUR with

its dependence upon the six parameters of the model we have
considered so far. Our first remark is that the precision of the
model is, in general, smaller than the allowed maximum by
several orders of magnitude. The highest observed values of
eTUR are obtained for small K and small L and are of the order
of 10−3.

The efficiency is weakly dependent upon �φ, with an
optimum around π/2. It does not depend evidently on ω when
ω < ωopt (we recall that ωopt is where the velocity and the pre-
cision are highest); however, the efficiency rapidly decreases
with ω when it is larger than ωopt. It is difficult to validate the
apparent growth of eTUR for very high frequencies, but it could
be just wide fluctuations induced by the strong noise affecting
diffusivity and, as a consequence, precision; see Fig. 6.

The efficiency decreases when both K and L are increased,
but the effect of K is soft (i.e., eTUR ∼ 1/K) while the effect
of L is relevant, e.g., it decreases by two orders of magnitude,

FIG. 13. Effect of the physical parameters upon the TUR-based
eTUR efficiency. Parameters where not specified: L = 20, F0 = 10,
a = 1, η = 1, T = 0.01, �φ = π/2, ω = 2π/50, K = 2. Plots in
black: pkBT/Ẇ = 1.

increasing L by less than a factor 4. Such an observation seems
to contradict a recent study on the Lighthill efficiency of the
original three-beads model [51]; however, a direct comparison
is not correct: in the original model, in fact, the L parameter
represents the maximum extension of the swimmer’s arms,
which is externally imposed, while in our case L is the length
at rest of the arms, while the real excursion of their length is
dictated by the dynamics under the effect of the active forces
and the harmonic confinement.

The efficiency has an almost negligible dependence upon
the fluid temperature, however it becomes very noisy for large
values of T . The effect of the fluid viscosity η is surpris-
ingly nonmonotonic, with a minimum at values of viscosity
between 10 and 102, which (under the conversion discussed
in Sec. II D) corresponds roughly to water viscosity.

V. ANALYTICAL STUDY FOR SMALL DEFORMATION

In this last section we discuss an analytic approach
mainly focused to the computation of the average velocity
of the swimmer model considered here, which—even without
noise—is different from the original model for the presence of
the confining potential. In the final part of this section we also
discuss zero-order approximations for their diffusivity and,
consequently, their thermodynamic precision. A full treatment
of the stochastic problem is left to a future study.

A. Linearized equations for the average motion

We define L1(t ) = l1 + u1(t ) and L2(t ) = l2 + u2(t ). The
equation of motion, Eq. (18) after averaging over noise, reads,
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for small u1, u2

v = T · F ≈ (T0 + T1)(F act + F pot ) + (F Ito,0 + F Ito,1).
(33)

In fact, in the small u1, u2 limit we can expand the mobility
matrix:

T ≈ T0 + T1 (34)

T0 =

⎛
⎜⎜⎝

1
6πηa

1
4πηl1

1
4πη(l1+l2 )

1
4πηl1

1
6πηa

1
4πηl2

1
4πη(l1+l2 )

1
4πηl2

1
6πηa

⎞
⎟⎟⎠ (35)

T1 = −

⎛
⎜⎜⎝

0 u1

4πηl2
1

u1+u2
4πη(l1+l2 )2

u1

4πηl2
1

0 u2

4πηl2
2

u2
4πη(l1+l2 )2

u2

4πηl2
2

0

⎞
⎟⎟⎠. (36)

Also, the Ito forces can be expanded at first order in u1, u2:

F Ito ≈ F Ito,0 + F Ito,1 (37)

F Ito,0 = 1

β

1

4πη

⎛
⎜⎜⎝

1
(l1+l2 )2 + 1

l2
1

1
l2
2

− 1
l2
1

1
(l1+l2 )2 + 1

l2
2

⎞
⎟⎟⎠ (38)

F Ito,1 = 1

β

1

4πη

⎛
⎜⎜⎝

−2
( u1

l3
1

+ u1+u2
(l1+l2 )3

)
2
( u1

l1 l2
2

− u2

l3
2

+ u1

l3
1

− u2

l2 l2
1

)
2
( u2

l3
2

+ u1+u2
(l1+l2 )3

)
⎞
⎟⎟⎠. (39)

We note that the Ito forces F Ito,i contains terms of order
1/l2 and u/l3, where l is l1 or l2. All these terms are smaller
than the terms 1/l and u/l2 contained in the expansion of T,
therefore at our level of approximation we can drop the Ito
forces. Also, the term T1 · F pot can be dropped as it is of order
∼u2.

Finally, the above equation can be put in the form of an
equation for the time derivative of the only two relevant de-
grees of freedom u1, u2, i.e.,

u̇1 = v1 − v2, u̇2 = v2 − v3, (40)

with time-dependent forces reduced to only two components
f (2)

act
(t ) = [F act

1 (t ), F act
3 ](t ), obtaining

u̇(t ) = [M1(t ) + M2]u(t ) + M3 · f (2)
act

, (41)

with

M1(t ) = − 1

4ηπ

⎛
⎝− f act

3 (t )
l2
12

− 2 f act
1 (t )
l2
1

− f act
3 (t )
l2
21

f act
1 (t )
l2
12

2 f act
3 (t )
l2
2

+ f act
1 (t )
l2
21

⎞
⎠, (42)

where 1/l2
12 = 1/l2

1 − 1/(l1 + l2)2 and 1/l2
21 = 1/l2

2 +
1/(l1 + l2)2.

M2 = − K

ηπ

(
1

3a1
− 1

6a12

− 1
6a12

1
3a2

)
, (43)

where 1/(3a1) = 1/(3a) − 1/(2l1), 1/(3a2) = 1/(3a) −
1/(2l2), 1/6a12 = 1/(6a) − 1/(4l1) − 1/(4l2) + 1/[4(l1 +

FIG. 14. Comparison of the numerical solution of Eq. (41) with
that of the original model. The figure shows the limit cycle in which
the displacements u1, u2 stay. Parameters are L = 20, F0 = 10, a =
1, η = 1, �φ = π/4, ω = 2π/50, K = 2.

l2)], and finally,

M3 = 1

ηπ

(
1

3a1

1
6a12

− 1
6a12

− 1
3a2

)
. (44)

Before proceeding with the analytical calculations, we
have verified the fairness of the linear assumption, by compar-
ing the numerical solution of Eq. (41) with that of the original
model; see, for instance, Fig. 14. The overlap is almost
perfect.

B. Instability without the confining potential

Let us consider the case where K = 0, i.e., there is no
confining potential.

In this case one has that, assuming a limit cycle u0(t ) which
satisfies u̇0 = M1u0 + M3 f (2)

act
(t ), then small deviations from

it δu(t ) = u(t ) − u0(t ) obey the homogeneous equation δ̇u =
M1δu, and therefore the stability of the cycle is dictated by the
eigenvalues of M1(t ), which are, however, time dependent,
i.e., they depend upon the values of f act

1 (t ) and f act
3 (t ). In

principle, the limit cycle stability should be determined by
studying the eigenvalues of the associated Poincaré map of
the cycle which depend upon the eigenvalues along the full
period of the force oscillation. This problem is simplified here
since, along the whole force cycle, one of the two eigenvalues
is always positive, while the other is always negative. The full
analytic formula for the eigenvalues is pretty long and can be
found in the Appendix. It is simplified in the case l1 = l2 = L
and takes the form

λ+− = 3F act
1 − 5F act

3 ±√
169F act

1 + 226F act
3 F act

1 + 121F act
3

32πηL2

(45)

The plot of eigenvalues for a particular choice of the parame-
ter, as a function of F act

1 , F act
3 can be found in Fig. 15.
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FIG. 15. Eigenvalues (a: smaller, b: larger) of the linearized dy-
namics, as functions of F act

1 , F act
3 when there is no elastic potential,

i.e., when K = 0. Parameters are L = 20, a = 1, η = 1.

When also M2 is considered, i.e., K > 0, then the stability
is restored as both eigenvalues become negative, as shown in
Fig. 16.

C. Solution for the limit cycle

A further simplification can be operated on Eq. (41), by
considering that when F act = 0 (and K > 0), the limit cycle
becomes a stable fixed point with u1 = u2 = 0. This implies
that one may expect u1, u2 to be—for small F act—of the
same order of F act, and therefore the term M1(t )u is of order
(F act )2 ≈ u2 and can be dropped in our small deviations treat-
ment. It is therefore easy to get a solution for the remaining
system of equation; the strategy and the detailed results are
given in the Appendix. Here we report the expression for
the average velocity of the swimmer in the symmetric case
l1 = l2 = L = �a:

v = α

2
F 2

0 Q(K, aηω, �) ω sin (�φ), (46)

FIG. 16. Eigenvalues of the linearized dynamics (a: smaller, b:
larger), as functions of F act

1 , F act
3 in the presence of elastic potential.

Parameters are L = 20, a = 1, η = 1, K = 2.

where we recall, for simplicity, the expression for α in the
symmetric case:

α = 7

12

a

L2
, (47)

and the function Q(K, aηω, �), which takes the form

Q = − q1q2[q3a2η2ω2 + q1q2K2][
q4a2η2ω2 + q2

1K2
][

q5a2η2ω2 + q2
2K2

] , (48)

with q1 = 4� − 7, q2 = 4� − 3, q3 = 192π2�2, q4 = 64π2�2,
and q5 = 576π2�2. Consistently with the anticipated qualita-
tive picture, the factor Q depends upon the main parameters
of the model K , ω, a, and η uniquely through the combination
ωaη/K , which is the ratio between the two characteristic time
scales: that of the perturbation 1/ω and that of the (damped)
harmonic binding potential aη/K .

Comparing Eqs. (46) with (9), we note that the product
d1d2 is replaced by F 2

0 Q, which measures the quadratic ampli-
tude of the oscillations of the distances between the spheres.
This amplitude is maximum when the frequency of the in-
ternal forces is comparable to the characteristic relaxation
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FIG. 17. Theoretical behavior of average velocity with respect to
(a) frequency ω, (b) phase difference �φ, (c) stiffness coefficient K ,
and (d) viscosity η. Where not specified, the parameters are L = 20,
a = 1, η = 1, K = 2.

rates of the system, which appear in the denominator of the
formula (46).

The plots of the analytical estimate of v versus the main pa-
rameters of the model are shown in Fig. 17, and a comparison
with the numerical results in the previous sections is excellent.

We can also obtain an expression for the average work rate
which, putting the internal force condition and the definition
of u1, u2 in the definition of W , Eq. (27), reads

Ẇ = 1

T

∫ T

0
dt[−F1(t )u̇1(t ) + F3(t )u̇2(t )]. (49)

Explicit formulas for all the parameters are shown in the
Appendix, but in the symmetric case l1 = l2 = �a we get

Ẇ = 8πaηF 2
0 lω2[cos(�φ)W1 + W2]

W3
, (50)

with W1 = w1a2η2ω2 − w2K2, W2 = w3a2η2ω2 + w4K2,
W3 = w5a4η4ω4 + w6a2η2K2ω2 + w7K4 and with w1 = 192
π2�2(4� − 9), w2 = (4� − 7)(4� − 3)(4� − 9), w3 = 768
(2l − 3)π2�2, w4 = 4(2l − 3)(4� − 7)(4� − 3), w5 = 36 864
π4�4, w6 = 128π2�2[8l (10l − 33) + 225], w7 = (3 − 4l )2

(7 − 4l )2. The plots of the analytical estimate of Ẇ versus the
main parameters of the model are shown in Fig. 18. Again,
the qualitative comparison with the numerical results in the
previous sections is excellent, and the quantitative one is also
quite fair.

D. Estimates for the diffusivity, precision, and efficiency

While the swimming velocity in the limit cycle can be
estimated by using the average equation, i.e., neglecting noise
terms, the diffusivity cannot: in our case, where the noise is
multiplicative, a consistent estimate becomes a hard job. Nu-
merical evidence suggests that the diffusivity is only weakly
dependent upon the parameters of the swimmer: with ω and φ

it varies less than 10%, while with L and K it varies less than
50%. The fluid properties obviously have a much stronger in-
fluence on D, but such influence is trivial; in fact, it is seen that
D ∼ T/η, as it is implied by the coefficient ≈ √

Ti j/β ∼
√

T
η

FIG. 18. Theoretical behavior of average work rate with respect
to (a) frequency ω, (b) phase difference �φ, (c) stiffness coefficient
K , and (d) viscosity η. Where not specified, the parameters are L =
20, a = 1, η = 1, K = 2.

in front of the noise, see Eq. (18). In this section we discuss a
“zero order” approximation for D.

The diffusivity of the center of mass D is deduced from the
knowledge of the asymptotic behavior of the mean squared
displacement:

msd (t ) = 〈[xcm (t ) − xcm (0) − ẋcm t]2〉

=
〈[∫ t

0
ds �ẋcm (s)

]2
〉

−−−→
t→∞ 2Dt . (51)

We follow the idea of the previous sections and get a formal
expansion (in powers of displacements ui) for the equations of
motion including noise,

ẋi = Ti j f tot
j = T0

i j f el
j + T0

i j f act
j + T1

i j f act
j︸ ︷︷ ︸

deterministic average velocity

+ (
T0

i j + T1
i j

)√ 2

β

(
�0

jk + �1
jk

)
ηk︸ ︷︷ ︸

f n
j︸ ︷︷ ︸

�ẋcm

, (52)

where √
ζ = � ∼ �0 + �1 + · · · , (53)

and leading to

msd (t ) =
〈[∫ t

0
ds

∑
i jk

T0
i j + T1

i j

3

√
2

β

(
�0

jk + �1
jk

)
ηk

]2〉
.

The first-order terms are time dependent and make the calcu-
lations more involved as they imply to integrate the solutions
for u(t ), including their fluctuations. For this reason, we keep
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only the zeroth-order term:〈[∫ t

0
ds

∑
i jk T0

i j

3

√
2

β
�0

jk ηk

]2〉

= 1

9

〈∫ t

0
ds
∫ t

0
ds′
[∑

k

√
2Dkηk (s)

∑
l

√
2Dlηl (s

′)

]〉
,

(54)

with

〈ηk (s)ηl (s
′)〉 = δklδ(s − s′), (55)

and
√

Dk = 1√
β

∑
i

[T0�0]ik . (56)

In conclusion, we get

msd (t ) = 1

9

∑
k

∫ t

0
ds
∫ t

0
ds′2Dk δ(s − s′) = 2Dt, (57)

with

D = 1

9

∑
k

Dk . (58)

In the case l1 = l2 = L and in the limit a 
 L, one has �0 =√
6πηa I and therefore Dk = 1/(6πηaβ ) I, leading to

D = D0

3
(59)

with

D0 = 1

6πηaβ
, (60)

the bare diffusivity of a single sphere. With η = 1 and a =
1, this crude estimate gives D ≈ 0.018T , which agrees with
the leading value observed in the numerical simulations with
those parameters, see Figs. 6–9.

Remarkably, simple calculations show that

D ≈ D0

{
1

3
+ 5

6

a

L
+ O

[( a

L

)2
]}

. (61)

Therefore, at small but finite a and L, the hydrodynamic
couplings increase the diffusivity.

VI. CONCLUSIONS AND PERSPECTIVES

We have studied numerically and analytically the three-
beads swimmer model with two important modifications:
thermal noise and a confining potential. The latter is phys-
ically but also mathematically motivated, since the original
model, if solved dynamically (i.e., imposing the driving forces
and observing the resulting trajectory), is unstable: the three
particles do not remain in a close neighborhood, which is
necessary for hydrodynamic interactions to couple their dy-
namics and prevent reciprocal motion i.e., time reversibility

and vanishing of the swimming effect. The introduction of
noise makes it possible to measure the swimming precision,
constrained by the thermodynamic uncertainty relation. It has,
however, no evident effects on the average dynamics of the
swimmer, as it can be deduced by the graphs of the observ-
ables in temperature, i.e., Figs. 12 and 13(d). The study also
reveals that this model is usually far from the TUR optimal
bound, but its precision efficiency can be improved by re-
ducing the confining potential stiffness K or the length at
rest of the two swimmer arms L. Future investigations should
include a more general class of driving protocols, higher-order
terms in the perturbative expansion for the diffusivity, and,
in particular, the introduction of noise in the active force,
which is perhaps a much stronger—and yet realistic—source
of fluctuations for microswimmers [8]. The model can be
adapted to more realistic setups and dimensions of space: the
active force, for instance, can be modeled to act on a direction
which is related to the actual orientation of the swimmer (if in
more than one dimension) or to the surrounding swimmers
in a multiparticle numerical experiment [52–54]: the effect
of all these ingredients on the TUR-based efficiency eTUR

looks to be an interesting open problem. For the same purpose
of investigating the role of precision and TUR in different
regimes, the three-beads swimmer can also model microalgae
such as the C. reinhardtii [55,56].
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APPENDIX A: LINEAR APPROXIMATION

Equation (41), keeping only the linear order in F0, casts
into

u̇(t ) = M2 · u(t ) + M3 · f (2)
act

, (A1)

which can be solved by setting

ui = Ai cos(ωt ) + Bi sin(ωt ) (i = 1, 2). (A2)

Lengthy computations lead to the following expressions for
the four coefficients:

Ai =
∑3

j=0 Aj
i K j (ηω)3− j∑2

j=0 Aj
d,iK

2 j (ηω)4−2 j
, (A3)

Bi =
∑3

j=0 B j
i K j (ηω)3− j∑2

j=0 B j
d,iK

2 j (ηω)4−2 j
, (A4)

with

A0
1 = 432π3a1a4

12a2
2 sin(�φ) A1

1 = −36π2a2
12a2

{
a2

1[cos(�φ)a2 + 2a12] + 4 cos(�φ)a2
12a2 + 2a1a12a2

}
A2

1 = −12πa1a2
12 sin(�φ)

(
a1a2 − 4a2

12

)
A3

1 = − cos(�φ)
(
a1a2 − 4a2

12

)2

A0
d,1 = 1296π4a2

1a4
12a2

2 A1
d,1 = 72π2a2

12

[
a2

1

(
2a2

12 + a2
2

)+ 2a2
12a2

2

]
A2

d,1 = (−4a122 + a1a2)2

033117-13



FERRETTA, DI LEONARDO, AND PUGLISI PHYSICAL REVIEW RESEARCH 6, 033117 (2024)

B0
1 = 216π3a1a3

12a2
2[2 cos(�φ)a12 + a1] B1

1 = 36π2a2
12a2

2 sin(�φ)
(
a2

1 + 4a2
12

)
B2

1 = −6πa1a12[2 cos(�φ)a12 − a2]
(
a1a2 − 4a2

12

)
B3

1 = sin(�φ)
(
a1a2 − 4a2

12

)2

B0
d,1 = 1296π4a2

1a4
12a2

2 B1
d,1 = 72π2a2

12

[
a2

1

(
2a2

12 + a2
2

)+ 2a2
12a2

2

]
B2

d,1 = (
a1a2 − 4a2

12

)2

A0
2 = −216π3a2

1a3
12a2

2b A1
2 = 36π2a1a2

12

{
a2

2[2 cos(�φ)a12 + a1] + 2 cos(�φ)a1a12a2 + 4a1a2
12

}
A2

2 = −6πa1a12a2 sin(�φ)
(
a1a2 − 4a2

12

)
A3

2 = (
a1a2 − 4a2

12

)2

A0
d,2 = 1296π4a2

1a4
12a2

2 A1
d,2 = 72π2a2

12

[
a2

1

(
2a2

12 + a2
2

)+ 2a2
12a2

2

]
A2

d,2 = (
a1a2 − 4a2

12

)2

B0
2 = −216π3a2

1a3
12a2[cos(�φ)a2 + 2a12] B1

2 = −72π2a1a3
12a2 sin(�φ)(a1 + a2)

B2
2 = −6πa12a2[cos(�φ)a1 − 2a12]

(
a1a2 − 4a2

12

)
B3

2 = 0

B0
d,2 = 1296π4a2

1a4
12a2

2 B1
d,2 = 72π2a2

12

[
a2

1

(
2a2

12 + a2
2

)+ 2a2
12a2

2

]
B2

d,2 = (
a1a2 − 4a2

12

)2
.

We conclude showing analytical expression for the average velocity

v = α

2
(u1u̇2 − u2u̇1), (A5)

where

(u1u̇2 − u2u̇1) = 1

T

∫ t0+T

t0

(u1u̇2 − u2u̇1) dt

= 1

T

∫ t0+T

t0

⎛
⎝u1u̇2 − (u2u̇1 + u1u̇2)︸ ︷︷ ︸

total derivative

+u1u̇2

⎞
⎠ dt

= 1

T

∫ t0+T

t0

2 u1u̇2 dt . (A6)

Through the above expressions one gets

v = α

2

F 2
0 ω

(
a1a2 − 4a2

12

){
sin(�φ)

[
4a2

12(9π2a1a2η
2ω2 + K2) − a1a2K2

]+ 12πa2
12ηKω(a1 − a2) cos(�φ)

}
1296π4a2

1a4
12a2

2η
4ω4 + 72π2a2

12η
2K2ω2

[
a2

1

(
2a2

12 + a2
2

)+ 2a2
12a2

2

]+ K4
(
a1a2 − 4a2

12

)2 , (A7)

which, in terms of the original lengths at rest l1 and l2, takes the form

v = α

2

vn

vd
(A8)

with

vn = F 2
0 ω

[
3a2(l4

1 − 2l3
1 l2 − 5l2

1 l2
2 − 2l1l3

2 + l4
2
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(
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1 + 3l1l2 + l2

2

)− 4l2
1 l2
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48π2a2η2l2

1 l2
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[−3a2
(
l4
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2
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l2
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2
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+ 4l2

1 l2
2 (l1 + l2)2
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(A9)

and
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256π4η4l4
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(
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(
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2 (l1 + l2)4. (A10)

For instance, if l1 = l2 = L = �a, one has

v = −α

2

F 2
0 (4� − 7)(4� − 3)ω sin(�φ)[192π2a2η2�2ω2 + K2(4� − 7)(4� − 3)]

[64π2a2η2�2ω2 + K2(7 − 4�)2][576π2a2η2�2ω2 + K2(3 − 4�)2]
. (A11)

We also report the expression for the total work rate, Eq. (49):

Ẇ = 6πa12ηF 2
0 ω2

[
a1a2 cos(�φ)

(
a1a2K2 − 4a2

12(K2 − 9π2a1a2η
2ω2)

]+ a12(a1 + a2)
[
4a2

12(9π2a1a2η
2ω2 + K2)−a1a2K2

])
1296π4a2

1a4
12a2

2η
4ω4 + 72π2a2

12η
2K2ω2

[
a2

1

(
2a2

12 + a2
2

)+ 2a2
12a2

2

]+ K4
(
a1a2 − 4a2

12

)2 .

(A12)
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APPENDIX B: LIST OF SYMBOLS

TABLE I. List of symbols used in the text

a radius of the three spheres
η viscosity of the host fluid
ri position vector of ith sphere (with i = 1, 2, 3)
vi velocity vector of ith sphere (with i = 1, 2, 3)
ui relative velocity between particle i and particle i + 1 (with i = 1, 2)
fi internal force vector
fR
i external (thermal) noise force vector

Hi j (r) mobility tensor
xi position along x axis of the ith sphere (with i = 1, 2, 3)
xcm position of the center of mass of the swimmer
Li distance between sphere i and sphere i + 1 (with i = 1, 2)
α constant (with the dimensions of an inverse length) for the formula of average velocity, Eq. (7)
K spring constant
li length at rest of spring i joining sphere i and sphere i + 1 (with i = 1, 2)
� adimensional length at rest of springs, in the symmetric case l1 = l2 = L = �a
ui deformation of spring i joining sphere i and sphere i + 1 (with i = 1, 2)
T, Ti j mobility coefficient coupling x components of particles i and j
ζ inverse of matrix T
Fi internal forces acting on particle i, components along x
F act

i internal forces acting on particle i of active origin, components along x
F pot

i internal forces acting on particle i of conservative origin (potential), components along x
F R

i noise forces acting on particle i of conservative origin (potential), components along x
F , F act, F pot, F R lists of total, active, potential and noise forces
v average speed of the center of mass of the swimmer
ω angular frequency (pulsation) of the active force (or of the displacement in the old models)
T period of the active force
φ1, φ2 phase of the active force on sphere i (or of its displacement in the old models)
F0 amplitude of the active force (F0 = 10 in all numerical results)
D diffusivity matrix of thermal noise
T temperature
β inverse thermal energy
Fito,i Ito “force” on sphere i (i = 1, 2, 3) (dimensionally it is a velocity)
W,Ẇ work done by the active forces (total and average rate)
p, pmax thermodynamic precision and its maximum according to the TUR
D, D0 coefficient of diffusion in the swimming direction and its bare value (thermal Einstein relation)
eL , eTUR swimmer efficiencies with respect an effective hydrodynamic force and to the TUR bound
ν = ω/2π forcing frequency
v0 = ωaF 2

0 /(L2K2) swimming velocity in the adiabatic limiti for small perturbation (linear theory)
K0 = F0/a typical stiffness related
η0 = F0/(6πv0a) = (KL)2/(6πa2F0ω) typical viscosity
T0 = F0 ∗ a typical thermal energy
νh = F0/(6πηa2) hydrodynamic frequency (ωh = 2πνh)
vh = 2πνhaF 2

0 /(L2K2) swimming velocity associated to ωh
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