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Ring solids and supersolids in spherical shell-shaped dipolar Bose-Einstein condensates
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We study the interplay between the anisotropy of the dipole-dipole interaction and confinement in a curved
geometry by means of the extended Gross-Pitaevskii equation, which allows us to characterize the ground state
of a dipolar Bose gas under the confinement of a bubble trapping potential. We do so in terms of the scattering
length a and the number of particles. We observe the emergence of a wide variety of dipolar solids, consisting
on arrangements of different number of droplets along a ring over the equator of the spherical shell confinement.
We also show that the transition between the different phases of the system can be engineered by varying
a, the number of particles or the radius of the trap, parameters, which can be experimentally tuned. Finally,
we show the importance of working in microgravity conditions as gravity unstabilizes the observed dipolar
solids.
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I. INTRODUCTION

Since the realization of the first Bose-Einstein condensate
(BEC) in 1995, the research on ultracold gases has been
boosted by the achievement of a high control over them.
This allows to explore not only a wide range of interac-
tion strengths but also different geometries, ranging from
one to three dimensions. In recent years, with the develop-
ment of trapping techniques, it has been possible to achieve
more exotic geometries with nontrivial topologiese.g., rings
or curved surfaces (see Ref. [1] for a review on trapping
techniques). These advances have motivated experiments both
in zero-gravity conditions [2] and with a gravity compensation
mechanism [3] where the gravitational sag is absent and the
BEC can be engineered in the shell of a sphere [4] (see [5] for
recent reviews on the topic). Previous studies include the char-
acterization of BEC condensation and excitations [6,7], the
topological superfluid phase transition [8,9], the BEC-BCS
crossover [10], the gas to soliton transition [11], the study of
vortices and collective excitations [12] and the application of
matter-wave lensing techniques [13]. On a less fundamental
approach, the possibility of engineering atom-based circuits
has also been explored [14].

In the context of ultracold gases, the study of dipolar
systems has revealed astonishing phenomena such as droplet
formation and the emergence of supersolidity (see Ref. [15]
for an experimental review). Supersolidity refers to a state of
matter that simultaneously features spatial diagonal and off-
diagonal long-range order [16–18]. In fact, dipolar systems
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emerge as an exceptional setup for studying the phenomena of
supersolidity. This topic has been extensively studied [19–32]
and experimentally confirmed [33–44]. Supersolid phases
have been also predicted to occur in strictly two-dimensional
geometries, where the transition to the normal state is of the
Berezinskii-Kosterlitz-Thouless type [25,26,45,46]. Nonethe-
less, only a few studies have considered this phenomena on
curved surfaces (see Refs. [47–54]).

Dipolar shell-shaped systems are expected to exhibit a
richer phase diagram than contact BEC gases [5]. On one
hand, the long ranged and anisotropic character of dipolar
interaction is known to produce density modulated phases
with important long-range correlations in free space. On the
other hand, the curvature would make the ground state of the
system very different to that of the free space, for example by
frustrating the formation of stripes. In this sense, the interplay
between anisotropy, long-range order, and topology in spheri-
cally symmetric traps can give rise to BEC states in which the
spherical symmetry of the trap is spontaneously broken.

To give some insight into the previously mentioned phe-
nomena, in the present paper we study a dipolar Bose gas
confined on a spherical bubble trapping potential in the regime
of parameters where supersolidity arises. The paper is orga-
nized as follows. In Sec. II, we illustrate the methodology that
we employ. The main results of our paper are presented and
discussed in Sec. III. Finally, in Sec. IV we summarize the
main conclusions and discuss future perspectives.

II. THEORY

We consider a system of N magnetic dipolar atoms of mass
m with all their magnetic moments μ aligned along the z axis.
The system is confined in a bubble trap potential [55,56]

Vtrap(r) = mω2
0r2

0

√
[(r/r0)2 − �/ε]2

4
+ (�/ε)2, (1)
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where ω0 is the frequency of the bare harmonic trap, prior
to radiofrequency (rf) dressing, and the parameters � and �

are the detuning between the radiofrequency (rf) field and
the different energy states employed to prepare the conden-
sate, and the Rabi coupling between these states, respectively
[4,56]. We have also introduced the relevant length and en-
ergy scales, r0 and ε respectively, given by r0 = 12πadd and
ε = h̄2/(mr2

0 ), where add = Cddm
12π h̄2 is the dipole length, with

Cdd = μ0μ
2, μ0 the Bohr magneton and μ the magnetic

dipole moment of the atoms. For simplicity, and analogously
to a previous study [56], we consider � = �.

In order to characterize the ground state of the system in
a spherically symmetric trap we solve the three-dimensional
extended Gross-Pitaevskii equation that reads

μ�(r) =
[
− h̄2

2m
∇2 + Vtrap(r) + g|�(r)|2 + γQF|�(r)|3

+
∫

dr′Vdd(r − r′)|�(r′)|2
]
�(r) , (2)

with μ the chemical potential, �(r) the condensate wave
function, which is normalized as N = ∫

dr|�(r)|2, and
g = 4π h̄2as/m the coupling constant with as the s-wave
scattering length. The fourth term γQF|�|3 is the LHY (Lee-
Huang-Yang) correction [57–59], which introduces quantum
fluctuations,

γQF|�|3 = 32g
√

a3
s

3
√

π
Q5(εdd )|�|3, (3)

with εdd = add/as and Q5(εdd ) = 1
2

∫ π

0 dα sin α[1 +
εdd(3 cos2 α − 1)]5/2. For values εdd > 1 the Q5 function
has a small imaginary part that is discarded. Finally, the last
term in Eq. (2) accounts for the dipole-dipole interaction
(DDI),

Vdd(r − r′) = Cdd

4π

1 − 3 cos2 θ

|r − r′|3 , (4)

where θ is the polar angle of the vector r − r′.
The use of the pseudopotential in Eq. (2) [that is,

the term g|�(r)|2 + ∫
dr′Vdd(r − r′)|�(r′)|2] is justified as

long as the collisions between particles can be treated as
three-dimensional processes. The system lays in the two-
dimensional regime if the harmonic length aho = √

h̄/(mω0),
which is associated to the tightness of the confinement, is
significantly smaller than any other length scales. However,
in our calculations, we choose a trapping strength such that
aho � as. Therefore, all scattering processes can be consid-
ered three-dimensional and the pseudopotential of Eq. (2) can
be applied. In the case of a tight confinement (thin shell limit),
a pseudopotential that considers the effects of the geometry
should be employed [60,61].

In the majority of this paper, we restrict ourselves to the
zero gravity limit. However, the effect of a gravitational force
can be accounted for by adding the following one-body poten-
tial [49] to Eq. (2):

Vg(r) = mg(x sin θg + z cos θg) , (5)

where θg is the angle between the z axis and the gravity
direction. For 164Dy atoms, the gravitational strength on the

Earth corresponds to to mg = 1.15ε/r0 = mgE. In Sec. III D,
we study the robustness of a dipolar solid ring under the effect
of gravity.

III. RING SOLIDS AND SUPERSOLIDS

As a means to illustrate the system under study, we show
in Fig. 1 the probability density of the dipolar BEC con-
fined within the bubble trap under zero gravity for different
values of the ratio εdd = add/as. We have employed a trap
with parameters �/ε = 400, ω0 = 0.22ε/h̄, which corre-
spond to ω0 = 2π × 200 Hz and a bubble trap with radius
R = r0

√
�/ε = 5.2 µm for 164Dy atoms. These parameters

are realistic for existing setups with nondipolar gases. From
the figure, we can see that in the contact dominated regime
(εdd � 1), the dipolar gas fills up the spherical shell, yield-
ing an apparently spherically symmetric density distribution,
despite the anisotropy of the DDI. As seen in Fig. 1, and as
reported in previous studies [48,49], the atoms of the BEC gas
tend to populate the equator of the shell, even before reaching
the dipole dominated regime, εdd > 1. This magnetostriction
is a consequence of the competition between the anisotropy
of the dipole-dipole interaction (which energetically favors
head-to-tail arrangements of dipoles) and the shell shape
of the external confinement. Experimentally, ring-shaped
condensates can be obtained by the use of toroidal traps
[50,62–64], which can also be realized in experiments
[65–67]. However, in the present case, as well as for cylin-
drically shaped traps [68], the ring structure arises from the
interplay of the anisotropy of the DDI and the geometry of
the confinement, instead of being fully imposed by the trap,
as it is the case for toroidal traps, which are ring shaped. For
the rest of our paper, we focus on the regime εdd > 1 and the
aforementioned value of the trapping strength.

In the dipolar dominated regime (εdd > 1), the anisotropy
of the dipolar interaction can give rise to dipolar solids and
supersolids, in analogy to the phenomenology that takes place
in bulk-trapped dipolar BECs. Equation (2) can numerically
be solved for different values of the scattering length as (and
thus, εdd) and number of particles N to obtain the ground state
of the system. As reported in similar papers [63,69,70], the
energy minimization has to be carefully performed, sampling
a wide variety of initial conditions, as many metastable states
close to the ground state exist. We detail in the Appendix the
numerical parameters of our simulations, as well as the initial
conditions considered. Since superfluid structures may arise,
we evaluate the Leggett’s upper bound estimator for the super-
fluid fraction [71], which is computed from the ground-state
density as

fs =
[

1

2π

∫ 2π

0

dθ

ρ(θ )/ρ0

]−1

, (6)

where

ρ(θ ) =
∫

dzdr r|�(r, θ, z)|2, (7)

ρ0 = 1

2π

∫ 2π

0
ρ(θ )dθ . (8)
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FIG. 1. Three-dimensional probability density of the dipolar BEC under a shell-shaped confinement [see Eq. (1)] with detuning �/ε =
�/ε = 400 and bare harmonic frequency ω0 = 0.22ε/h̄. The probability density is reported at the surface r = √

x2 + y2 + z2 = r0
√

�/ε for
εdd = 1.25 (a), 0.5 (b), and 0.1 (c). The color bars indicate the value of |�(r)|2 in units of r−3

0 .

Equation (6) yields the trivial unity limit for a ring-like
condensate [since ρ(θ ) is a constant] and decreases as the
modulation of the wave function increases along the ring.
This upper bound estimator for the superfluidity has shown
excellent agreement with the calculation of nonclassical trans-
lational inertia for a system of dipoles confined in a quasi-1D
tubular geometry [31].

A. Structural diagram and transitions

The structural diagram of the system is reported in
Fig. 2, where we show the two-dimensional integrated den-
sity ρ(x, y) = ∫

dz|�(r)|2 of each structure. Regarding the
superfluid fraction along the ring, only the structures featuring
dipolar clusters in the interval εdd ∈ (1.36, 1.41) yield a sig-
nificant superfluid fraction ( fs > 0.2), while for εdd > 1.41,
the result of Eq. (6) quickly drops to zero. On the other hand,
all the states in the SF region of Fig. 2 yield unit superfluid-
ity. We label the states with fs = 1 as superfluids, while we
call supersolids and solids those, which yield fs > 0.2 and
fs < 0.2, respectively. In general, the increase of εdd for a
fixed number of particles implies a lower number of droplets,
since the attraction of the DDI favors the bunching of dipoles
and thus, fewer and more elongated clusters are formed. In
much the same way, the decrease of the number of particles
for a fixed εdd also causes a reduction in the number of
droplets because the system wants to maximize the number
of dipoles placed in a head-to-tail configuration. The peak
density of the droplets that we obtain lies close to the ex-
pected values obtainable with harmonic traps (see the seminal
experiment of Ref. [72]). For the largest number of particles
(N = 31500) the peak density lies in the interval ρpeak ∈
[3, 100] × 1014cm−3, where the largest values are achieved
for εdd = 2, for which all particles cluster into a single droplet.
We also see that the solid structures disappear if the number of
particles is decreased below a threshold, from which there is
not enough density to sustain clustering. This phenomenology
is reminiscent of a quasi-1D system of dipoles confined in a
tube [30,31] where the disappearance of the supersolid phase
in the low-density regime upon decreasing the density is also
reported.

Precisely, in the spirit of these studies, it is interesting
to examine the character (continuous or discontinuous) of
the transition between the different structures present in the
diagram of Fig. 2. We can not strictly speak of first- and
second-order phase transitions (as it is done in [30,31]) be-
cause our system is finite. Our calculations show that the
transition between different solid states is discontinuous,
meaning that the system jumps from a state with a given
number of droplets to a different one discontinuously (the
density distribution changes abruptly). This is because there
exists an energy crossing between the different metastable
states at the transition boundary. We illustrate this in Fig. 3,
where we report the energy difference between two dipolar
solids across the transition between regions 3 and 4 of the
diagram in Fig. 2 for N = 31500. In much the same way,
the transition between a dipolar solid and the superfluid is
also discontinuous for low enough density, in analogy to the
first-order phase transition that takes place in the low-density
regime of the tubular quasi-1D system. This is illustrated
in Fig. 4, where we show the contrast of the BEC density
across the transition between regions 2 and 7 of Fig. 2, for
N = 16500. Here, the contrast is defined as

C = ρmax − ρmin

ρmax + ρmin
(9)

where ρmax and ρmin are, respectively, the maximum and
minimum values of the integrated density ρ(x, y) along the
circle of radius R/r0 = √

�/ε. As one can see from Fig. 4,
the contrast in the density shows a clear discontinuity. As one
increases the density in the system, either by increasing the
number of particles or by decreasing the available volume by
tuning the trap, a continuous transition between the supersolid
and fully superfluid states eventually takes place [63], as it
happens in the quasi-1D geometry. We show in Fig. 5 an
example of the continuous transition between a supersolid fea-
turing 6 droplets and a superfluid ring, for which N = 26500.
Therefore, in view of the results, we can draw similarities
between the physics under our geometry and the quasi-1D
tubular one, since the transitions that lead to a superfluid gas
in our system are analogous to the first-order and second-order
phase transitions of Refs. [30,31].
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FIG. 2. (Top) Structural diagram of the ring-shaped dipolar condensate as a function of εdd = add/a and the number of particles N . Panels
1–7: Integrated density profiles ρ(x, y) of the condensate density arising in each region of the diagram. The color bars indicate the value of
ρ(x, y) in units of r−2

0 . The parameters for the bubble trap [see Eq. (1)] are �/ε = �/ε = 400, ω0 = 0.22ε/h̄.

B. Engineering supersolids

Even though the supersolid phase constitutes a small region
in the diagram of Fig. 2 as mentioned previously, a rich vari-
ety of supersolid structures can be engineered when tuning
�, and thus effectively modifying the radius of the trapping

spherical shell. By increasing � starting from a conventional
harmonically trap gas, the system transitions to a supersolid.
Increasing further � leads to an increase in the number of
droplets, all while retaining a substantial superfluid fraction
and the ring shape. This is shown in Fig. 6, where we re-
port the integrated density ρ(x, y) of the condensate wave
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FIG. 3. Difference in the energy per particle between a solid state
with three and four droplets as a function of εdd for N = 31500 and
the same bubble trap as in Fig. 2.

function for different values of �. We also report Leggett’s
upper bound for the superfluid fraction [see Eq. (6)], which
increases as the trap radius decreases, thus confirming that
the superfluid density can be enhanced by reducing �. The
variation of this parameter is pretty straightforward in experi-
mental setups, as changing � is precisely how the bubble trap
is generated from a harmonic potential. The wide variety of
solid structures in the diagram of Fig. 2 thus allows for the
observation of many different supersolid dipolar rings (i.e.,
supersolids with a different number of droplets) by playing
with the parameter � starting from different points of the
structural diagram. This is showcased in Fig. 7, where we
show four examples of different supersolids obtained for dif-
ferent combinations of the number of particles, the detuning
and the scattering length.

C. High particle number limit

Up to now, we have restricted the particle number to
the interval N � 31500. However, it is interesting to con-
sider higher particle numbers, specifically to check whether
a new structure qualitatively different to the ones observed
so far can emerge. In order to address this question, we
have computed the ground state of the dipolar BEC for N =
105 and N = 106 for two different values of εdd (εdd = 1.42
and εdd = 1.72). For these cases, we show in Fig. 8 the

FIG. 4. Contrast of the BEC density [see Eq. (9)] as a function
of εdd for N = 16500. The bubble trap parameters are the same as in
Fig. 2.

FIG. 5. Contrast of the BEC density [see Eq. (9)] as a function
of εdd for N = 26500. The bubble trap parameters are the same as in
Fig. 2.

integrated two-dimensional densities ρ(x, y) = ∫
dz|�(r)|2

and ρ(x, z) = ∫
dy|�(r)|2. As we can see from the figure,

atoms accumulate on the central ring instead of forming

FIG. 6. (Top) Superfluid density as a function of the detuning
�/ε. (Bottom) Integrated density ρ(x, y) for detuning values �/ε =
100, 133, 170, and 400 from (a) to (d), respectively. The colorbars
indicate the value of ρ(x, y) in units of r−2

0 . The ratio between the
dipole length and the scattering length is set to εdd = 1.38 and N =
26500. The bare harmonic frequency is the same as in Fig. 2.
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FIG. 7. Ring-shaped supersolid dipolar states are engineered by
appropriate combinations of values of the magnetic field detuning,
the scattering length and the number of particles. Panels (a)–(d) show
the integrated density ρ(x, y) of supersolid states obtained for εdd =
1.43, N = 26500, �/ε = 50 (a); εdd = 1.41, N = 26500, �/ε = 80
(b); εdd = 1.39, N = 26500, �/ε = 170 (c); and εdd = 1.37, N =
31500, �/ε = 400 (d). The color bars indicate the value of ρ(x, y)
in units of r−2

0 . The bare harmonic frequency is the same as in Fig. 2.

additional ones, which gets wider as the number of particles
increases. Looking at the case with εdd = 1.72, one can also
see that increasing the number of particles leads the system
to an unstructured superfluid, meaning that there exists an
upper threshold for the particle number above which the solid
and supersolid structures disappear. Again, this is in line to
the phenomenology reported in the quasi-1D tubular geom-
etry, where in the high-density region of the phase diagram,
increasing the density drives a supersolid-to-superfluid phase
transition [30,31].

D. Effect of gravity

The structural diagram reported in Fig. 2 has been com-
puted assuming zero gravity conditions. Experimentally, and
as stated before, microgravity conditions are achievable in
the NASA Cold Atom laboratory in the International Space
Station. However, it is interesting to explore the effect of a
gravitational force on the dipolar arrangements that have been
reported, to study how robust these structures are with respect
to gravity. We account for gravitational effects through the
inclusion of the one-body potential of Eq. (5). We have per-
formed calculations for εdd = 1.47, N = 31500 (which yields
a solid state with three droplets in the absence of gravity)
varying the strength of the gravitational field. We first con-
sider a gravity vector with θg = 0. The results are shown in
Fig. 9. For values of the gravity strength mg < 0.03mgE, the
structure of the dipolar BEC is not significantly altered, while
for mg > 0.04mgE we observe the melting of the solid config-
uration into a superfluid, clusterless state. It is worth noting,
though, that close to the value mg = 0.03mgE the superfluid
background present at the bottom of the trap [see Figs. 9(a)

and 9(d)] increases the value of Leggett’s upper bound for
the superfluid fraction, which for the case shown in the fig-
ure equals fs = 0.43, while the corresponding simulation in
absence of gravity yields fs ∼ 10−2. Therefore, for small
gravitational fields, a superfluid background is formed at the
bottom, providing quantum coherence between droplets. Our
results indicate that, for these parameters, the gravitational
force field of the Earth would destroy the solid arrangement of
droplets, in contrast to what happens in the different parameter
regime considered in Ref. [48]. This is because our calcula-
tions do not lie in the thin-shell limit considered in Ref. [48],
since a tighter trap confinement implies a higher energy cost
for particles to accumulate in a reduced space at the bottom
of the trap. We have also performed calculations changing the
relative orientation between the gravity field and the z axis
to θg = π/4. We show the results in Fig. 10. In this case, we
find that the three droplet structure remains unaltered up to
mg 	 0.0025mgE, where gravity induces a transition into a
two droplet state. Further increasing the gravitational strength
leads to the merging of the two dipolar clusters into one.

E. Comparison with previous studies

Previous studies have explored the formation of supersolid
structures in curved trapping geometries. Authors of Ref. [48]
also explore the supersolid properties on dipolar BECs con-
fined in a bubbled trap. However, they do so through the
use of an ab initio Monte Carlo method. In comparison to
the results from Fig. 2, their results involve a considerably
lower number of particles (N < 300), a shell of smaller radius,
and lie in the thin-shell limit, where Eq. (2) is no longer
valid, and a pseudopotential that accounts for the curvature
of the confinement has to be applied. Reference [48] shows
supersolid and solid structures with four dipolar clusters along
the equator of the sphere, much like the structure that emerges
in region 4 of the structural diagram of Fig. 2. Because of the
thin-shell condition, the effect of gravity in the supersolid four
droplet structure of Ref. [48] is considerably lower compared
to our case, where the more loose trap facilitates the accu-
mulation of particles at the bottom. The physics of dipolar
BECs under a bubble trap has also been studied in Ref. [54].
In comparison with our paper, they employ a higher number
of particles (N = 60000), a considerably higher trap radius
R = 21 µm and a detuning not equal to the Rabi coupling,
� 
= �, which favors the emergence of a higher number of
dipolar clusters compared to the structures reported in our
Fig. 2. Remarkably, it is reported that supersolidity can be
induced in solid arrangements of dipolar clusters by inducing
a rotation in the system [54]. Other studies have considered
different kind of curved geometries, like toroidal traps [50,63]
and box traps [68].

Toroidal traps produce ring-shaped supersolids analogous
to the ones found in this paper, the difference being that under
a shell-shaped confinement, and under microgravity condi-
tions, the ring shape of the supersolid arises naturally from an
interplay between the anisotropy of the DDI an the shell shape
of the trap, instead of being entirely forced by the ring shape of
the toroidal confinement. In Ref. [63], the transition between
a fluid ring into a supersolid, with eight dipolar droplets as εdd

increases, is reported. The authors employ a toroidal trap with
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FIG. 8. Integrated densities ρ(x, y) (top) and ρ(x, z) (bottom) for εdd = 1.72, N = 105 [(a), (e)], εdd = 1.72, N = 106 [(b), (f)], εdd = 1.42,
N = 105 [(c), (g)], and εdd = 1.42, N = 106 [(d), (h)]. The bubble trap parameters are the same as in Fig. 2. The color bars indicate the value
of ρ(x, y) and ρ(x, z) in units of r−2

0 .

a considerably higher trapping strength of ω = 2π × 1000 Hz
compared to our parameters, which explains the higher num-
ber of clusters that they observe compared to our results, since
a higher trapping confinement limits the length of the droplets
along the polarization direction an hence forces the system to
organize in a higher number of clusters. The authors observe
a continuous transition between the eight droplet supersolid

state and a fully superfluid ring, similarly to the results shown
in our Fig. 5 for a supersolid of six droplets. A recent paper has
considered the influence of toroidal traps in anti-dipolar BECs
[53], where the formation of stacks of ring-shaped droplets,
which can coherently overlap to form a supersolid, has been
reported. Because of the reversed sign of the DDI, the interac-
tion energetically favors side-by-side arrangements instead of

FIG. 9. Integrated densities ρ(x, y) [(a), (c)] and ρ(x, z) [(d)–(f)] for a varying gravitational strength mg = 0.03mgE [(a), (d)], mg =
0.04mgE [(b), (e)], and mg = 0.5mgE [(c), (f)] and an angle θg = 0 [see Eq. (5)]. The bubble trap parameters are the same as in Fig. 2. The
color bars indicate the value of ρ(x, y) and ρ(x, z) in units of r−2

0 .
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FIG. 10. Integrated densities ρ(x, y) [(a)–(c)] and ρ(x, z) [(d)–(f)] for a varying gravitational strength mg = 0.0001mgE [(a), (d)], mg =
0.0025mgE [(b), (e)], and mg = 0.5mgE [(c), (f)] and an angle θg = π/4 [see Eq. (5)]. The bubble trap parameters are the same as in Fig. 2.
The color bars indicate the value of ρ(x, y) and ρ(x, z) in units of r−2

0 .

head-to-tail ones, giving rise to multiple rings placed along the
polarization vector of the dipoles, which are relatively thin in
this direction, that repel each other. In contrast, in our case, the
standard DDI gives rise to arrangements of droplets that are
elongated in the polarization direction and distributed along a
plane perpendicular to the polarization axis.

In regards to results in a box potential, Ref. [68] explores
different shapes for the box confinement, including a cylin-
drically shaped box trap, where ring solids and supersolids
arise. For this kind of confinement, the box-shaped potential
allows for the presence of a superfluid bulk in the center of the
trap, while supersolid arrangements of droplets are formed in
the edges, which allows for the possibility to study interaction
effects at the interface of the two phases. In contrast, in our
shell-shaped confinement, this superfluid bulk is absent. A
similar effect could be induced, however, by applying a small
gravitational field, which creates a superfluid background at
the bottom of the trap, as shown in in Figs. 9(a)–9(d). In
regards to the droplet arrangements observed at the borders
of the trap, the authors in Ref. [68] consider a larger number
of atoms, which induces the emergence of a larger number
of droplets.

IV. CONCLUSIONS

We have studied the interplay between the anisotropy of
the dipole-dipole interaction and the curved geometry of the
trapping potential for a dipolar condensate confined in a bub-
ble trap. We have provided the structural diagram of a dipolar
BEC as a function of the number of particles N and the ratio
between the dipole length and the scattering length εdd, and
have reported the emergence of a wide variety of ring-shaped

solid structures formed by arrangements of dipolar clusters
along the equator of the trapping potential. We have charac-
terized the transitions between different structures, showing
that they are discontinuous, reminiscent of a first-order phase
transition in the thermodynamic limit. This establishes a clear
connection between our system and a dipolar BEC trapped in
a quasi-1D configuration, where, in the low-density regime, a
first-order phase transition between a superfluid and a solid
phase takes place. We have also explored the high particle
number limit (N > 105) and have observed that atoms accu-
mulate in the central ring along the equator of the trap instead
of forming secondary ring-like structures. We have shown that
supersolid states with varying number of dipolar clusters can
be engineered by changing N , εdd, and the effective radius
of the trap, which is accomplished by tuning the detuning
of the coupled rf field. In regards to the robustness of the
dipolar structures, we have also considered the effect of a
gravitational field and have shown that, for our parameters of
choice, the gravitational field of the Earth would destroy an ar-
rangement of dipolar droplets, forcing particles to accumulate
at the bottom of the trap. Our results lead to the existence of
ring-shaped dipolar supersolid states with varying number of
clusters which, unlike in the case of ring-shaped traps, are not
entirely forced by the confinement geometry, and arise instead
as a result of an interplay between the anisotropy of the DDI
and the shell-shaped geometry of the bubble trap.

The study of the excitations of these ring supersolids re-
mains a relevant question to be addressed, since it could lead
to an experimental protocol to probe the gas-to-supersolid
transition by means of measuring excitation frequencies. Also,
it remains an open question how finite temperature could
affect the physics of the dipolar system under these trapping
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FIG. 11. Energy per particle as a function of the imaginary time
for the different initial conditions given by Eq. (A1). The parameters
are εdd = 1.47, N = 31500, �/ε = 400.

conditions. Recent results [32,73,74] reveal an important im-
pact of thermal fluctuations on dipolar gases, leading to the
counterintuitive formation of a supersolid by heating in the
ultracold regime.
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APPENDIX: NUMERICAL IMPLEMENTATION

All the results shown in this paper are obtained by prop-
agating Eq. (2) in imaginary time. To do so, we discretize
space and work with a grid of (Nx, Ny, Nz ) = (200, 200, 100)
points, in a simulation box of size (Lx/r0, Ly/r0, Lz/r0) =
(80, 80, 80). During imaginary time propagation, we employ
a time step of dτ h̄/ε = 0.0005. The DDI term of Eq. (2) is
evaluated by computing its Fourier transform through an FFT
routine. As mentioned in the main text, during the imaginary
time evolution of Eq. (2) it is very likely for the system to get
stuck in a metastable state. Because of this, we run multiple
calculations starting from a variety of initial conditions when
computing the ground state of the system for a given set of
values (N, εdd ),�/ε. The set of initial conditions employed is
given by

�0(r) = exp

(
−ω0 h̄

ε
(r/r0 −

√
�/ε)2

)
(1 + 0.5 cos (mφ))

(A1)

where r = |r|, φ is the azimuthal angle and m = 0, 1, 2, ..., 8.
This allows us to start from initial configurations close in
shape to those with m number of clusters. After imaginary
time evolution, we retain the state with the lowest energy as
the ground state. In order to illustrate this process, and to
showcase the rich metastable landscape of the system, we
show in Fig. 11 the energy as a function of the imaginary
time for the different initial states for εdd = 1.47, N = 31500,
�/ε = 400.
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