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Double-gap bicone magnetorheology in steady shear under homogeneous
magnetic and flow fields
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We design, fabricate, and test a double-gap bicone magnetorheological (MR) device to measure steady shear
rheological properties of MR fluids under saturating magnetic fields (i.e., large enough to saturate the MR fluids).
The device is optimized using finite element method and computational fluid dynamics simulations so that
homogeneous, saturating field strengths are reached while keeping a constant shear rate within the main shearing
gaps. Experiments demonstrate that the flow curves in the saturation regime can be fitted to a viscoplastic Casson
model in good agreement with MR fluids under much lower (nonsaturating) fields. Moreover, yield stress data
follow a linear dependence on volume fraction at low particle loadings, in agreement with existing theoretical
models.
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I. INTRODUCTION

Magnetorheological (MR) fluids of interest in applica-
tions are colloidal suspensions of magnetizable particles in a
nonmagnetic liquid carrier. In the presence of external mag-
netic fields, the particles become magnetized and interact to
form field-oriented aggregates that have a profound impact
in the rheological behavior of the MR fluid promoting the
appearance of a yield stress [1]. To fulfill the application re-
quirements, current works on magnetorheology have pursued
the development of more stable MR fluids with a larger yield
stress. Such goals are fulfilled with synthesis routes that in-
clude non-Newtonian carriers and patchy, nonspherical and/or
bidisperse particles [2,3].

Two key parameters control the yield stress of a conven-
tional MR fluid (consisting of spherical and magnetically
homogeneous particles in a Newtonian liquid carrier): the
magnetic field strength H and the particle concentration φ

[4–7]. The magnetic field strength determines the magnetiza-
tion level of the particles. The larger the external magnetic
field strength, the larger the magnetization of the particles,
and therefore, the greater the interparticle magnetostatic force.
Ideally, one would like to work in the magnetic saturation
regime, when the magnetic field strength is large enough for
the particle magnetization to reach the high field plateau.
Unfortunately, this is not a simple task.

Magnetizable particles employed in the formulation of MR
fluids are typically micron sized and made of carbonyl iron
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[8]. For these particles, the magnetization vs field strength
curve fully saturates at a magnetic field strength of H ∼ 950
kA m−1 [9], which is not easily accessible in conventional
commercial MR devices. The highest magnetic field strength
generated in a commercial single-gap device is ∼795 kA m−1

for both the Anton Paar [10] and TA [11] magnetocells. A
larger field strength (1114 kA m−1) can be achieved using
the twin-gap device commercialized by Anton Paar [12].
Additionally, an important complication arises at high fields
as the magnetic field strength loses homogeneity within the
sample volume [12–14]. Generation of strong magnetic fields
necessarily involves the use of electromagnetic circuits, and
the presence of the shearing geometry implies drilling a hole
through the upper yoke of the magnetocell that induces the
undesired field inhomogeneity (e.g., see Fig. 5 in Ref. [13]).

With the purpose of achieving not only saturating but also
homogeneous magnetic fields within the sample volume, Mo-
rillas et al. [15] proposed the use of a double-gap plate-plate
device (see sketch in the Supplemental Material [16]). This
setup, inspired by the twin-gap device previously proposed
by Laun et al. [12], introduces another degree of freedom
by changing the upper and bottom gaps at will. By simply
displacing the plate upward, it is possible to match the aver-
aged magnetic field in the upper and bottom gaps. Using a
double-gap magnetocell device, Morillas and de Vicente [17]
were capable of measuring the yield stress of MR fluids in
saturation from particle concentrations as low as φ = 0.15 up
to particle concentrations of φ = 0.5. The experimental results
were successfully compared, especially at high loadings, with
finite element method (FEM) simulations on model structures
[17].

An important drawback of the double-gap device is that
the shear rate is not homogeneous within the sample volume,
like what happens with the classical plate-plate geometry. As a
result, it is not possible to get steady shear rheological curves
because the sample history changes within the volume, and
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MR fluids are generally thixotropic [18]. Another handicap
of the double-gap device is the long gaps it involves, which
could prevent low-concentration suspensions spanning the
whole volume when structured. In this paper, we explore the
possibility of using a bicone (BC) instead of a flat plate. This
is motivated by the fact that conical surfaces of sufficiently
small angle produce narrow gaps and generate uniform shear
rates [19]. The BC fabricated in the context of this paper is
based on the double-gap plate-plate device already developed
by Morillas et al. [15]. Our design preserves the remarkable
magnetic properties of that device, and by the careful addition
of nonmagnetic conical pieces, the geometry is improved to
achieve homogeneous shear rates and to measure MR fluids
of smaller particle concentrations.

II. MATERIALS AND METHODS

Nonmagnetic conical pieces used in the construction of
the BC were three-dimensionally (3D) printed in a Stratasys
Object30 using VeroWhite as the printing material. This de-
vice offers a maximum theoretical resolution of 16µm. These
pieces were carefully glued onto the magnetic soft iron plate
described by Morillas et al. [15] (Tool#2 in that reference)
with a thin film of epoxy resin.

Carbonyl iron microparticles (EW grade) used in the for-
mulation of the MR fluids were provided by BASF SE
(Germany). Silicone oils (SO) of different viscosities (SO500:
0.489 Pa s, SO1000: 0.893 Pa s, SO10000: 9.76 Pa s, all of
them measured at 25 °C) were obtained from Sigma-Aldrich
and used without further purification. Ultrapure glycerol was
provided by Fisher Scientific. MR fluids were prepared by
vigorous dispersion of the iron microparticles in the oils or
glycerol/water mixtures employing a centrifugal mixer.

Rheological tests were conducted using a commercial
rheometer (MCR302, Anton Paar, Austria) with the double-
gap BC geometry and a MRD 70/1T magnetocell (Anton
Paar) attached to the rheometer base. Shear rate sweeps were
carried out to construct the rheograms and viscosity curves,
involving three essential steps: First, a preshear (γ̇ = 350 s−1

during 10 s) was applied to delete any previous fluid history.
Next, flow was removed, and a saturating magnetic field was
suddenly imposed (structuration step) for 30 s. Finally, an
angular velocity logarithmic ramp was performed, keeping
the field magnitude and direction. Determination of the yield
stress was done through a shear stress sweep, replacing the
angular velocity ramp by a torque logarithmic ramp and iden-
tifying the yielding value with the shear stress responsible for
a large jump in the measured shear rate (see Fig. S2 in the
Supplemental Material [16]).

Both (shear rate and stress) sweeps were ascending (ramp
up tests) to test the mechanical properties of the columnlike
structure formed at rest. Descending sweeps are responsible
for the appearance of different (layered) structures of no in-
terest in this paper [20]. For validation purposes, tests on
Newtonian fluids were repeated with a commercial cone-plate
(CP) geometry (50 mm diameter, 1 ° angle, Anton Paar), skip-
ping the structuration step and the magnetic field application.

The first goal was the design of a BC that fits within the
housing used in the double-gap geometry. Figure 1 shows
a schematic of the setup, where the magnetic pieces are

FIG. 1. Schematics of the double-gap bicone (BC). This design is
a modification of the Anton Paar MRD 70/1T magnetocell including
the commercial ferromagnetic spacer ring of thickness 1.29 mm.
(a) Scheme of the whole magnetocell. (b) Zoomed picture of the
shearing region to highlight the different components of the BC.
Dotted gray colors correspond to ferromagnetic components, while
the rest are nonmagnetic. Both figures have cylindrical symmetry
around the black dashed axis.

highlighted in dotted gray colors. In our analysis, the radius of
the rotor Rr is fixed to Rr � 8 mm because of the tolerances in
the construction of the setup, and our free parameters are the
distance to the bottom surface hb and the nonmagnetic cone
angle θ0.

Computational fluid dynamics (CFD) and magnetostatic
FEM problems were solved using COMSOL Multiphysics to
optimize the design of the device. Cauchy and continuity
equations were solved in the stationary state within an ax-
isymmetric domain enclosing the sample (light blue region in
Fig. 1). The fluid domain was discretized using a structured
regular mesh with a mean element size of 0.055 mm. The
finer mesh was close to the rotor corner (mesh element size of
0.01 mm).
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Numerical FEM simulations were also carried out to solve
Maxwell’s equations in the stationary state and compute the
magnetic field distribution in the magnetocell. The axisym-
metric plan is sketched in Fig. 1(a), and it includes the
magnetic circuit (yokes), magnetic rotor, sample region, and
energized coils. The magnetic properties of each piece were
considered in these simulations through their BH curve. To
simulate the nonmagnetic surroundings of the magnetocell
and define the boundary conditions, the whole device was
placed within a cylindrical box. On its boundaries, the normal
component of the magnetic field was made zero. The height
and radius of the box were 2.3hm,c and 2rm,c, respectively,
with hm,c and rm,c the height and radius of the magnetocell,
respectively. A simulation box twice as large gave differences
<0.1% discarding size effects. Regarding the mesh, simu-
lations were carried out for finer and finer meshes until no
significant difference was observed in the results. The mesh
density changed depending on the computational domain re-
gion. The densest one was located within the gap between the
yokes (mesh element size ∼0.1 mm), while it became coarser
as it went away from that position (0.5 mm in the yokes, 2 mm
in the coil windings, and 14 mm in the external cylinder next
to its boundaries).

III. NUMERICAL CALCULATION OF THE MAGNETIC
FIELD STRENGTH

The use of a ferromagnetic BC is expected to allow the gen-
eration of homogeneous shear rates, but the resulting magnetic
field would be inhomogeneous and not parallel to the rotation
axis. In this section, we aim to find the optimal geometry
that generates a uniform field within the measuring cell. In
a previous study, we demonstrated that a strategically de-
signed soft iron plate can generate a homogeneous and equal
magnetic field above and below it [15]. This way, by adding
nonmagnetic supplementary pieces, we can give the plate a
biconical shape while preserving its homogeneous magnetic
field distribution, resulting in the device shown in Fig. 1.

When the ferromagnetic plate is placed in the center of
the magnetocell, leaving equal gaps above and below it, the
magnetic field is larger in the bottom gap due to the central
bore in the upper yoke. To address this issue, both the position
of the plate within the measuring cell and its thickness can be
adjusted. This allows the identification of an optimal position
and size that produce homogeneous fields while maintaining
a high field strength. A dimensionless number, referred to as
the change in magnetic field (CMF), was defined to quantify
the variation in the magnetic field within the gaps occupied
by the sample:

CMF = B̄b − B̄u

B̄u
, (1)

where B̄b and B̄u represent the averaged magnetic flux densi-
ties in the bottom and upper gaps, respectively:

B̄i =
∫

V Bi(r, z) dVi

Vi
. (2)

Here, the bottom gap volume Vb comprises the r < Rr region
below the plate, while the upper gap is integrated in the range
Rb < r < Rr above the plate.

(a)

(b)

FIG. 2. (a) Magnetic plate distance to the bottom surface hb,x

corresponding to CMF = 0 vs magnetic plate thickness hr for four
different currents (I = 0.5, 3, 4, and 5 A). (b) Magnetic flux density
B̄ for those positions and currents as a function of hr .

FEM simulations were carried out to determine the mag-
netic field distribution in the shearing cell. First, to minimize
the CMF for a given magnetic plate thickness hr , we sim-
ply displace it upward. In Fig. 2(a), we show the bottom
gap height hb,x (i.e., the distance from the lower surface of
the plate to the bottom of the measuring cell) that makes
CMF = 0 for a given hr at different operating currents I .
Figure 2(b) shows the averaged magnetic flux within the cell
for the same hr and I values. In this paper, we employed a soft
iron plate with a thickness of hr = 2.36 mm and a radius of
Rr = 7.95 mm (Tool#2 in Ref. [15]), which based on Fig. 2(a),
produces optimal performance at a working distance of hb,x =
1.6 mm and a current of I = 4 A. This generates a magnetic
flux density of Bs = 1.23 T and field strength of Hs = 975
kA m−1 [see Fig. 2(b)], which is sufficient to fully saturate
carbonyl iron particles. The specific values selected in this
paper are indicated in Fig. 2 with a dark-green diamond and
will be fixed during the optimization of the BC dimensions
(Sec. VI).

Thus far, we have discussed averaging fields in lower and
upper gaps. However, the magnetic field is not only equal
in both gaps but also constant along the radial direction.
The absence of field gradients prevents particle migration
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FIG. 3. Simulated magnetic flux density B as a function of the
normalized radial position r/Rr for the fabricated geometry. B is
computed in the middle height of each gap [orange dotted lines in
Fig. 1(b)]. The coil is fed with a current of 4 A. The inset shows the
magnetic flux density profile when the sample has a magnetization
of φMs for different volume fractions φ. Note that the maximum
particle loading explored in this paper is φ = 0.1.

due to magnetophoretic forces in this direction and ensures a
homogeneous distribution of the field-induced structures [13].
In Fig. 3, the magnetic field profile along the radial position
is shown for the fabricated geometry. The data reveal that the
saturating value Bs = 1.23 T is achieved in the whole cell,
with slight deviations at the rim due to edge effects. For more
detailed information on magnetic field calculations and shape
optimization, we refer to Morillas et al. [15].

It is also necessary to note that, when working with a
magnetic sample, a discontinuity will arise at the boundary
between the nonmagnetic conical surface and the MR fluid.
This fact may compromise the homogeneity of the field along
the plate radius, thus requiring an evaluation of its effect.
The inset in Fig. 3 represents the FEM simulated magnetic
field profile in the presence of a magnetic sample (instead of
air) with magnetization φMs, where Ms = 1600 kA m−1 is
the saturation magnetization of the magnetic particles used
in the experiments. As observed, for concentrations up to
φ = 0.1, which is the maximum concentration used in this
paper, field homogeneity changes very little (maximum varia-
tion of 5%). This can primarily be attributed to the small cone
angle and relatively low particle concentration. As expected,
for very large concentrations, variations become larger, as
shown in the inset of Fig. 3, for maximum packing. At very
large concentrations, field homogeneity is compromised.

IV. ANALYTICAL CALCULATION OF THE SHEAR RATE
AND SHEAR STRESS

The software controlling commercial rheometers provides
raw data in terms of torque M and angular velocity �. Hence,
to measure rheological material functions, it is necessary to
derive analytical expressions for the torque–shear stress and
angular velocity–shear rate relationships.

The torque acting on the BC due to the confined fluid can
be computed by integrating the shear stress over its surface:

M =
∫

S
r τ dS. (3)

Following the procedure outlined in Morillas et al. [15], this
torque can be obtained as the sum of four main contributions:
(i) the truncation plate surface, (ii) the bottom cone, (iii)
the upper cone, and (iv) the lateral surface [see red lines in
Fig. 1(b)]. This last contribution is treated as two concentric
cylinders, with the inner one rotating and the outer one at rest.

The shear rate on any of these surfaces can be expressed as
a function of the angular velocity �, the cone angle θ0, and
the geometrical dimensions as follows:

γ̇b,p(r) = r�

ht
, (4a)

γ̇b,c = �

θ0
, (4b)

γ̇u,c = �

θ0
, (4c)

γ̇l = 2�

1 − (Rr/R)2 . (4d)

It is worth noting that the shear rate on the conical surfaces
(γ̇b,c and γ̇u,c) is calculated assuming the low-angle approxi-
mation, and only in this case is it appropriate to talk about a
constant value.

To compute the integral in Eq. (3), it is necessary to assume
a constitutive equation to write the shear stress τ in terms
of the shear rate γ̇ and, through Eqs. (4a)–(4d), the system
parameters. In our case, we considered a general power-law
fluid with variable flow behavior index. This model acts as a
bridge between Newtonian and yield stress fluids of interest
in this paper [21], capturing the initial yielding regime and
the transition to the post-yield Newtonian behavior. The shear
stress–shear rate relationship in the power-law constitutive
model is given by

τ = mγ̇ n, (5)

where m is the flow consistency index and n the flow behavior
index. Therefore, introducing Eq. (5) into Eq. (3), we can
perform the integration and compute the torque exerted on the
BC as follows:

M =
∫

Sb,p

rm[γ̇b,p(r)]ndS +
∫

Sb,c

rm[γ̇b,c(r)]ndS

+
∫

Su,c

rm[γ̇u,c(r)]ndS +
∫

Sl

rm[γ̇l (r)]ndS, (6)

where Sb,p, Sb,c, Su,c, and Sl represent the surfaces of the
bottom truncation plate, bottom cone, upper cone, and lateral
cylinder, respectively. By substituting the expressions for the
shear rate from Eqs. (4a)–(4d), we obtain

M =
∫ Rs

r=0

∫ 2π

ϕ=0
rm

(
r�

ht

)n

rdϕdr

+
∫ Rr

r=Rs

∫ 2π

ϕ=0
rm

(
�

θ0

)n

rdϕdr
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+
∫ Rr

r=Rb

∫ 2π

ϕ=0
rm

(
�

θ0

)n

rdϕdr

+
∫ hl

h=0

∫ 2π

ϕ=0
Rrm

(
2�

1 − (Rr/R)2

)n

Rrdϕdh, (7)

and integrating, we arrive at

M = 2πm

{(
�

ht

)n R3+n
s

3 + n
+

(
�

θ0

)n 2R3
r − R3

b − R3
s

3

+
[

2�

1 − (Rr/R)2

]n

R2
r hl

}
. (8)

Finally, we can rewrite this equation in terms of the shear
stress on the conical surfaces, as they represent the main
contribution to the total torque. Bearing in mind that the stress
in the cone is τc = mγ̇ n

c = m( �
θ0

)
n
, Eq. (8) reads as follows:

τc = 3M

2πR3
r

{
2 − R3

b + R3
s

3R3
r

+
(

θ0

ht

)n 3

3 + n

R3+n
s

R3
r

+
[

2θ0

1 − (Rr/R)2

]n 3hl

Rr

}−1

. (9)

In the case of MR fluids in the preyield regime, the stress is
constant and equal to the yield stress τc = τy. Consequently,
the yield stress is obtained making n = 0 in Eq. (9):

τy = 3M

2πR3
r

[
2 − R3

b + R3
s

3R3
r

+
(

Rs

Rr

)3

+ 3hl

Rr

]−1

. (10)

Furthermore, for MR fluids structured under an external
field parallel to the rotor shaft, the lateral surface contribution
can be safely neglected because the field-induced chainlike
structures will not connect this surface to the lateral housing
wall. Thus, Eq. (10) becomes

τy = 3M

2πR3
r

[
2 − R3

b + R3
s

3R3
r

+
(

Rs

Rr

)3
]−1

. (11)

Conversely, when the fluid behaves as a Newtonian liquid,
Eq. (9) is simplified given that m = η and n = 1, arriving at

τc= 3M

2πR3
r

{
2 − R3

b + R3
s

3R3
r

+ 3θ0 R4
s

4ht R3
r

+ 6θ0 hl

Rr[1 − (Rr/R)2]

}−1

.

(12)

Equations (11) and (12) provide useful expressions for
the limiting behaviors corresponding to yield stress and
Newtonian fluids, respectively. However, any intermediate
rheological behavior can also be fitted by computing the local
flow behavior index n, as described in Sec. VII.

V. NUMERICAL CALCULATION OF THE SHEAR RATE
AND SHEAR STRESS

Non-Newtonian CFD was used to solve the fluid flow
problem in the sample cell. The flow is governed by the
Cauchy and continuity equations for laminar incompressible
isothermal fluids in steady state neglecting body forces:

ρ(�u · ∇ )�u = ∇ · (−PI + τ ), (13a)

ρ∇ · �u = 0. (13b)

Here, ρ is the density of the fluid, �u is the flow velocity, P
is the pressure, I is the identity tensor, and τ is the viscous
stress tensor. A power-law constitutive model is assumed for
the simulated fluid:

τ = η(γ̇ ) γ̇ , (14)

where η = mγ̇ n−1 is the shear viscosity, γ̇ = ∇�u + (∇�u)T

the shear rate tensor, and γ̇ =
√

γ̇ : γ̇ /2 the magnitude of γ̇ .

However, it is noteworthy that all CFD results presented in the
following section are restricted to the Newtonian case, as no
significant differences were appreciated.

To solve Eqs. (13a) and (13b), we assumed the following
boundary conditions:

(i) No-slip condition in the outer walls of the sample cell
(i.e., housing and yokes):

�uwall = �0; (15a)

(ii) No-slip condition in the rotating wall (i.e., over the
rotor surface):

�urot = �r θ̂ ; (15b)

(iii) Zero normal force in the gap of the shaft bore:

�f0 = �0. (15c)

With these, flow equations [Eqs. (13a) and (13b)] are
solved to obtain the velocity �u and pressure P fields, and
the stress tensor is computed using Eq. (14). Eventually, the
torque exerted on the rotor can be calculated like in the previ-
ous section, integrating Eq. (3) over the rotor surface.

VI. OPTIMIZING THE BC DIMENSIONS

Flow equations were solved to maximize the homogeneity
in the shear rate field along the shearing gap. For this aim,
CFD simulations were performed testing a wide range of
conical geometries and computing the differences with the
expected theoretical shear rate in the whole sample volume.
To quantify these errors, a shear rate reduced variance was
defined as follows:

σ 2 =
∫

V (γ̇ − γ̇0)2dV∫
V γ̇ 2

0 dV
. (16)

Here, γ̇ is the magnitude of the shear rate tensor computed by
CFD, and γ̇0 is the analytical value as given by Eqs. (4a)–(4d).

As a result of the magnetic field optimization, the bottom
gap distance was fixed to hb,x. Also, because of symmetry with
the upper gap and to avoid frictional contacts with the lower
yoke, the truncation radius was fixed to Rs. Consequently, at
this stage, the only free parameter in the optimization of the
BC dimensions is the subtended angle of the conical surfaces
with the horizontal line θ0 [see Fig. 1(b)]. Figure 4 shows
the shear rate reduced variance σ 2 as a function of the cone
angle θ0. The main error contribution comes from the lateral
surface σ 2

lat because Eq. (4d) is only valid for long cylinders
in close approach, while the discrepancies between simula-
tions and analytical predictions in the conical surfaces σ 2

cone
are orders of magnitude below. As a result, shortening the
lateral surface (i.e., increasing θ0) reduces its contribution and
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FIG. 4. Error estimation of the shear rate σ 2 as a function of the
bicone angle θ0. Contributions from the conical and lateral surfaces
are distinguished. The total reduced variance is computed by addi-
tion of both contributions. Inset pictures show computational fluid
dynamics (CFD) colormaps of the local shear rate reduced variance
for three different cone angles (θ0 = 0.75◦, 2.75◦, and 4.75◦).

makes σ 2 decrease until it reaches a minimum at large angles
(θ0 = 15◦, not shown), when the variance due to the conical
surfaces becomes the most relevant one (σ 2

cone > σ 2
lat).

Obviously, for such a large θ0, the low-angle approxima-
tion breaks, and the shear rate becomes inhomogeneous, so
smaller θ0’s are needed. Furthermore, large angles also imply
too-thin BCs (with lateral lengths shorter than the magnetic
plate thickness hr) and too-thin conical supplements. As noted
in Sec. II, the BC is manufactured by glueing nonmagnetic
conical supplements to the bottom and upper surfaces of the
magnetic plate. To be 3D printed and remain mechanically sta-
ble when glued, those supplements need to have a minimum
thickness. A thickness of hc,s = 0.18 mm [see Fig. 1(b)] was
found to be the minimum workable one that finally yielded a
cone angle of θ0 = 4◦ and a truncation gap of ht = 0.175 mm.
Table I summarizes the dimensions of the fabricated device.
Finally, color maps in Fig. 4 display the local shear rate
reduced variance over the volume in logarithmic scale. The
shear rate in the region confined between the conical surfaces
matches the analytical expression, except for the small border
effects, up to order 10−4 in view of the color scale. Higher
deviations are observed in the lateral zone, especially near the
plate border and the housing wall.

To get better insight into the variation of the shear rate in
the cell, Fig. 5 shows the reduced shear rate γ̇ /� as a function

TABLE I. Dimensions of the double-gap BC geometry.

Parameter Measurement

Cell radius (R) 10.0 mm
Cell height (h) 4.7 mm
Bore radius (Rb) 3.0 mm
Shaft radius (Rs) 2.5 mm
Magnetic plate radius (Rr) 7.95 mm
Magnetic plate thickness (hr) 2.36 mm
Magnetic bottom gap (hb,x) 1.6 mm
Total lateral thickness (hl ) 3.59 mm
Truncation gap (ht ) 0.175 mm
Cone angle (θ0) 4◦

FIG. 5. Reduced shear rate (γ̇ /�) as a function of the radial r
(vertical z) distance on the conical (lateral) surfaces for the fabricated
geometry. Solid lines represent the theoretical expressions for the
reduced shear rate on different surfaces, computed following Eq. (4)
and assuming a Newtonian constitutive equation. Symbols represent
computational fluid dynamics (CFD) simulation results computed for
a Newtonian fluid with viscosity 1 Pa s, sheared at an angular speed
of � = 1 s−1.

of the radial r (vertical z) distance along the conical (lateral)
surface for the fabricated geometry. The agreement between
analytical calculations and numerical simulations is very good
for the conical surfaces. As expected, deviations are observed
at the rim of the cone and near the shaft due to edge effects.
In the case of the lateral surface, the agreement is not so
good because the shear rate between concentric cylinders is
strictly constant only in the narrow gap limit (Rr/R → 1) and
for long cylinders (hl � R), which is not our case. Moreover,
there exists a dependence on the constitutive equation that is
also neglected [22]. Nevertheless, relative errors for the lat-
eral surface are <6% in the central position and, considering
the results presented in the following section, no substantial
errors emerge when comparing the experimental, analytical,
and simulated torques. Finally, it is also worth noting that, out
of this lateral surface, well inside the sample, border effects
are minimized, resulting in a greater degree of homogeneity
for the shear rate, as seen in the color maps of Fig. 4.

VII. EXPERIMENTAL VALIDATION WITH
NEWTONIAN FLUIDS

To test the validity of the BC device, experiments were
conducted using Newtonian fluids. Silicone oils were chosen
for this purpose because they are Newtonian at typical tem-
peratures and shear rates [23], and their viscosity, density, and
surface tension can be precisely controlled.

First, we compare both analytical calculations and simula-
tions for the BC geometry with experimental measurements.
In Fig. 6(a), the torque M dependence on angular velocity � is
plotted. These are the raw data measured by the rheometer and
can be directly compared with analytical equations [Eq. (8)]
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(a)

(b)

FIG. 6. Validation of the fabricated geometry for three silicone
oils (SO500, SO1000, and SO10000) employed as model of New-
tonian fluids. (a) Torque M vs angular velocity � curves. Symbols
correspond to experimental measurements. Solid lines correspond to
computational fluid dynamics (CFD) simulations assuming a Newto-
nian fluid with the same viscosity η as measured with the cone-plate
(CP) geometry. Dashed lines are obtained using the analytical ex-
pression [Eq. (8)] assuming a Newtonian fluid with n = 1 and m = η.
(b) Constitutive curves (shear stress vs shear rate) for the Newtonian
fluids measured with a commercial CP geometry (open symbols) and
the proposed bicone (BC) geometry (filled symbols).

and CFD simulations, assuming a Newtonian behavior with
n = 1 and m = η, the viscosity of the fluid (measured with
the CP geometry). The results show good agreement between
the experimental, analytical, and simulated data for the three
investigated fluids, which supports the effectiveness of our
predictions.

The constitutive curve can be obtained from the data shown
in Fig. 6(a). In Fig. 6(b), we show the shear stress τc vs shear
rate γ̇c at the conical surface. Filled symbols represent values
measured in the BC device, while open symbols are measure-
ments with the commercial CP geometry. Again, there is good
agreement between both sets of measurements, which demon-
strates that conversion from torque (angular velocity) to shear

stress (shear rate) is done correctly using Eq. (9). It is worth
noting that no assumptions about the Newtonian behavior of
the fluid were made a priori for the measured data. Instead, the
conversion from torque to shear stress is computed using a lo-
cal value of the flow behavior index n, which is dependent on
the angular velocity following n = d ln(M )/d ln(�). Despite
this, a nearly Newtonian behavior is obtained as expected,
with n values [i.e., the slope in Fig. 6(a)] always close to unity.
The only exception is observed in high-molecular-weight sili-
cone oils at elevated shear rates, where a minor shear-thinning
effect is appreciated, as previously reported in the literature
[24]. The viscosity plot is also provided in the Supplemental
Material [16].

VIII. STEADY SHEAR FLOW CURVES IN SATURATED
MR FLUIDS

Testing the BC geometry with Newtonian fluids enabled
us to verify the calibration accuracy of the device. However,
our primary objective was to study the behavior of MR fluids
under saturating magnetic fields using all advantages the BC
device features with respect to the commonly/previously used
geometries in magnetorheology (e.g., plate-plate and double-
gap ones). Namely, employing a conical geometry provides a
more accurate measurement of the sample constitutive equa-
tion if compared with a plate-plate one. This is so because the
cone creates a uniform shear rate field in the bottom and upper
gaps and minimizes the impact of the mechanical history of
the sample on the measurements.

Contrary to the common CP geometry, the shear stress
measured in our BC device depends on the fluid constitutive
equation through the flow behavior index n. This comes from
the truncation plate and lateral surfaces and appears in the
third and fourth terms inside the curly brackets of Eq. (9).
Nevertheless, this dependence is not very strong. First, due to
the short shaft radius, the truncation plate term is <2% of the
conical surface ones (two first terms inside the curly brackets)
even in the worst case (n = 0). Secondly, in the case of MR
fluids, the field-induced structures are expected to grow in the
rotating axis direction. Thus, they are parallel to the lateral
surface, are not strained by the flow field, and consequently,
give rise to a negligible shear stress on that surface.

Another important advantage of the BC geometry is its
smaller sample gap if compared with the double-gap case.
In a homogeneous, saturating magnetic field, the double-gap
geometry requires sample gaps as large as 1.36 mm. In MR
fluids, this can be an issue when working at low particle
volume fractions because field-induced structures could not
span the whole gap, leading to a lower-than-expected yield
stress [25]. Therefore, accurate double-gap measurements are
limited to volume fractions φ � 0.15 [26]. In contrast, the BC
geometry has a gap of only ht = 0.175 mm in the truncated
apex, growing up to 0.56 mm at the rim. In the worst case, the
sample gap in the BC is 2.5 times smaller than in the double
gap, making it particularly suitable for working at low particle
volume fractions as demonstrated below.

Figure 7(a) shows the flow curves for two different MR
fluids prepared by dispersion of carbonyl iron in SO10000
at 0.3% and 1% particle volume fractions. Both curves were
initially measured in the absence of an external magnetic
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(a)

(b)

FIG. 7. Flow and viscosity curves of silicone oil SO10000-based
magnetorheological (MR) fluids at 0.3 and 1 vol. % concentration.
MR fluids were structured under a continuous saturating magnetic
field and measured in the bicone (BC). (a) Shear stress vs shear rate
without applied field (empty symbols) and at a saturating magnetic
field (filled symbols). Solid lines correspond to a Casson model fit
for the yielding fluids. (b) Dimensionless viscosity η/η∞ vs reduced
Mason number Mn/Mn∗ for both particle suspensions at saturating
magnetic fields. The solid line corresponds to the universal master
curve [Eq. (17)].

field, exhibiting a behavior very similar to that of the carrier
fluid alone because of the low concentration of the particulate
phase. The particle contribution to the stress is negligible
when compared with the viscous stress of the carrier.

Next, a saturating magnetic field Hs is applied to the
sample. This external magnetic field causes interparticle ag-
gregation due to the emergence of magnetostatic interactions
resulting in a yield stress. The yield stress is manifested
by a low shear plateau in the shear stress vs shear rate
curve [see Fig. 7(a)]. By gradually increasing the shear rate
the field-induced structure is progressively broken, and the

sample begins to flow until the rheogram matches the field-off
curve in the high shear rate regime.

These flow curves encompass the preyield and postyield
regimes of MR fluids under a homogeneous saturating mag-
netic field and a homogeneous shear rate profile. Many
challenges had to be overcome to observe the solid-liquid
transition. First and most important, saturating magnetic fields
generate strong interparticle forces and therefore a very large
particle contribution to the total stress that is typically or-
ders of magnitude larger than the carrier liquid contribution.
Second, commercial rheometers are limited to maximum mea-
surable torques and angular speeds that do not typically allow
the observation of the high shear viscosity plateau. Finally, for
small particle concentrations, field-induced structures are not
capable of spanning the whole sample gap.

Matching magnetostatic and hydrodynamic contributions
at measurable stresses can be achieved by either reducing the
particle content and/or increasing the viscosity of the carrier.
There is a linear relationship between the particle stress and
the particle volume fraction φ (at low φ) as well as between
the viscous stress of the carrier and the shear rate assuming
a Newtonian response. In this paper, we interrogate particle
concentrations in the range φ ∼ 0.01–0.1 and high viscosity
Newtonian carriers η ∼ 10 Pa s.

Flow curves were fitted to a Casson plastic equation, which
is represented by the solid lines in Fig. 7(a). This equation
is given by τ 1/2 = τ 1/2

y + (η∞γ̇ )1/2, where τy is the dynamic
yield stress and η∞ the high shear viscosity. Even though it
only has two fitting parameters, the Casson model provides
a more gradual transition from the yield to the Newtonian
region than the Bingham model and has been demonstrated
to fit the shear response of conventional MR fluids better [27],
at least in the magnetic linear regime. Once τy and η∞ have
been determined by model fitting, data can be collapsed onto
a single master curve, as shown in Fig. 7(b), which expresses
the dimensionless viscosity (η/η∞) as a function of the Mason
number (Mn):

η

η∞
= 1 +

(
Mn

Mn∗

)−1

+ 2

(
Mn

Mn∗

)−1/2

. (17)

The Mason number is defined as Mn = 72ηc γ̇

μ0μcr〈M〉2 and is the
ratio between hydrodynamic and magnetostatic interactions
[28,29]. Here, 〈M〉 is the average magnetization of the par-
ticles, which turns to be the saturation magnetization Ms in
this case, μ0 is the permeability of the vacuum, μcr = 1 is
the relative permeability of the carrier fluid, and ηc its vis-
cosity. Here, Mn∗ = 72τy

μ0μcr〈M〉2
ηc

η∞
is the critical Mason number

and demarcates the transition from magnetostatic to hydrody-
namic control of the suspension structure. It solely depends on
the particle volume fraction through the dynamic yield stress
τy (note that, in the saturation and diluted regimes, neither 〈M〉
nor η∞ is expected to introduce any additional dependence
on φ). The good fit provided by the master curve of Eq. (17)
and the particular values of Mn∗ (see next section) obtained
in these experiments agree with previously reported viscosity
curves for conventional MR fluids in the linear regime [30,31],
extending the theoretical framework of the latter to the satura-
tion and low-concentration regimes.
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FIG. 8. Static yield stress τy as a function of particle volume
fraction φ under saturating magnetic fields. Squares correspond to
experiments from this paper (values from nonpercolating structures
are marked with open symbols). Previously reported values for
higher particle loadings are also plotted (circles), measured with
the double-gap device applying toggled fields. The solid line cor-
responds to finite element method (FEM) simulations at saturation,
and the dashed one is the asymptotic behavior τy ≈ 0.137μ0M2

s φ at
low volume fractions [17].

IX. YIELD STRESS IN SATURATED MR FLUIDS

Apart from generating the full flow curve of MR flu-
ids under homogeneous and saturating magnetic fields, the
BC geometry operates under narrow gaps and is therefore
especially useful to measure at small and intermediate vol-
ume fractions, where the double-gap geometry fails to give
accurate yield stress data. We also performed an extensive
investigation on the dependence of the saturating yield stress
with particle loading in this small-to-intermediate concentra-
tion regime.

In a previous work, a theoretical model for the yield stress
at saturation was developed [17]. This model predicts that the
dependence of the yield stress on particle volume fraction
is linear at small particle loadings (also in agreement with
models in the linear magnetization regime [32–35]), τy ≈
0.137μ0M2

s φ. However, for very large concentrations the
yield stress levels off. Very good agreement with the theoreti-
cal model was obtained with carefully conducted experiments
on MR fluids that were structured under the superposition of
toggled magnetic fields instead of the conventional continuous
steady fields [26]. The rationale behind this is that the theo-
retical model assumes the formation of a crystalline structure
under the field, and this kind of structure is more closely
formed by allowing particle rearrangements, due to Brownian
motion, during the field-off periods of toggled fields.

In Fig. 8, we show yield stress measurements for differ-
ent volume fractions together with previously reported data.
Samples were prepared by suspending carbonyl iron particles
in a 1:1 mixture of water and glycerol with a viscosity of
4.7 mPa s. This low-viscosity carrier fluid was chosen to allow
particle diffusion during the application of the toggled field
and the subsequent rearrangement of the structures. Magnetic
pulses of 4 s were applied for 120 s during the structuration
step to reduce defects in the chain structures (this protocol

FIG. 9. Critical Mason number Mn∗ as a function of the particle
volume fraction φ. × squares correspond to values obtained from the
static yield stress measured in this paper. Previously reported values
for conventional magnetorheological (MR) fluids (CMRFs) at linear
regime (+ squares), finite element method (FEM) simulations (solid
squares), inverse ferrofluids (IFFs; + circles) and molecular dynam-
ics simulations (MD; solid circles) are also included [37,38]. Solid
red line corresponds to the linear fit of IFFs and MD simulations,
Mn∗ = 0.24φ, as obtained by Ref. [37].

was found optimal in Ref. [26]), hence increasing yield stress
of the sample [26], just before applying a continuous steady
magnetic field during the shearing step. Data in Fig. 8 show
that the saturating yield stress grows linearly with the volume
fraction from φ � 0.01 up to values of φ ≈ 0.1. In this load-
ing range, there is good agreement between the theoretical
prediction, numerical simulations, and experiments. Note that
the particle loading range is one order of magnitude wider
than the one explored with the double-gap geometry [26]. As
observed in Fig. 8, the yield stress dramatically decreases for
concentrations below φ = 0.01 because particle structures are
presumably not capable of connecting the conical surfaces.

Yield stress data reported in Fig. 8 can help us understand
the volume fraction dependence of the critical Mason number
Mn∗. Even though Mn∗ is defined in terms of the dynamic
yield stress τy, the latter can be safely approximated by the
static yield stress, given the good agreement between FEM
simulations and experiments [36] and the similar values mea-
sured under stress- and strain-controlled experiments [37]. A
Quemada-like expression was used for the calculation of the
high shear rate viscosity: ηc/η∞ = (1−φ/φ0)2, where φ0 is
the maximum packing fraction for spheres, assumed to be
φ0 = 0.64. In any case, this correction is not expected to be
significant in our dilute MR fluids because η∞ ≈ ηc in view of
the flow curves. In Fig. 9, we show the calculated Mn∗ values
at different volume fractions along with previously studied
experimental systems [conventional MR fluids (CMRFs) in
the linear regime and inverse ferrofluids (IFFs)] and simu-
lations [FEM and molecular dynamics (MD)]. According to
Fig. 9, FEM simulations show much better agreement with
experiments than MD for MR fluids, while the behavior of
IFFs is well explained by the latter. Both IFFs and MR fluids
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present a linear dependence (at least at low volume fractions)
although their Mn∗ values differ by more than an order of
magnitude. Deviations at φ < 0.01 for MR fluids were at-
tributed to wall slip in nontexturized plates [36]. At large
volume fractions, linearity is broken, and Mn∗ decreases. This
is a direct consequence of the yield stress being a continuous
function of the concentration (explained through the FEM
model in Ref. [17], see Fig. 4) and the viscosity diverging at
the maximum packing (as it is empirically captured by the
Quemada expression).

X. CONCLUSIONS

In this paper, we have designed and built a BC device that
can generate homogeneous saturating magnetic fields and a
constant shear rate profile. In this way, common artifacts in
commercial devices (such as particle migration or ill-defined
shearing history) are avoided. By only employing a strategi-
cally placed ferromagnetic plate, we can generate magnetic
fields >1 T while maintaining good homogeneity within the
measuring volume (maximum variation of 5%). Addition-
ally, we demonstrate that the addition of nonmagnetic conical
supplements to the plate provides the desired shear rate
homogeneity.

Using the BC device, flow curves under saturating mag-
netic fields have been reported, revealing that they can be

fitted to a Casson master curve following a similar behavior
previously found in the literature for weaker magnetic fields.
Consequently, it can be deduced that shear and magnetostatic
forces are the two prevailing ones in this regime as well.
Furthermore, low and intermediate particle concentrations can
be measured with this device because the working gaps are
lower than those employed in conventional plate-plate geome-
tries and the field-induced structures can easily connect the
biconical surfaces. This allowed us to demonstrate a linear
dependence of the saturating yield stress with the volume
fraction in the range from φ = 0.01 to 0.1.
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