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Dimers and discrete breathers in Bose-Einstein condensates in a quasi-periodic potential
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A quasi-one-dimensional Bose-Einstein condensate loaded into a quasi-periodic potential created by two
sublattices of comparable amplitudes and incommensurate periods is considered. Although the conventional
tight-binding approximation is not applicable in this setting, the description can still be reduced to a discrete
model that accounts for the modes below the mobility edge. In the respective discrete lattice, where no linear
hopping exists, solutions and their dynamics are governed solely by nonlinear interactions. Families of nonlinear
modes, including those with no linear limit, are described with a special focus on dimers, which correspond to
breather solutions of the Gross-Pitaevskii equation with a quasi-periodic potential. The breathers are found to
be stable for negative scattering lengths. Localization and stable propagation of breathers are also observed for
positive scattering lengths at relatively weak and moderate nonlinearities.
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I. INTRODUCTION

The simplest model of a quasi-periodic potential in the
one-dimensional Schrödinger equation is a superposition of
two cosine-function sublattices with incommensurate periods.
This model has received considerable attention in both exper-
imental [1–3] and theoretical [4–10] studies of Bose-Einstein
condensates (BECs). It is known [11,12] that if the depth of
such a potential is below a certain value, the respective linear
Hamiltonian does not support spatially localized states. Such
states appear for higher amplitudes, marking a localization-
delocalization transition. However, even in such potentials
the localized states are observed only for energies below a
certain value, referred to as the mobility edge (ME) [13], while
eigenstates of higher energies remain delocalized (several
MEs can exist in more complex systems). Both localization-
delocalization transition and ME in one-dimensional BECs
loaded in incommensurate cosinelike potentials were studied
numerically, see, e.g., Refs. [14] and [6,8,10], respectively.

If the incommensurate sublattices creating the potential
have significantly different amplitudes, then the deepest one
creates a potential whose lowest band is well described
within the framework of the tight-binding approximation.
The shallow lattice introduces an incommensurate modula-
tion, leading to the well-known discrete Aubry-André (AA)
model [15] (or to one of its generalizations), which is the
most commonly used and best-studied single-band discrete
quasi-periodic model.

The conventional tight-binding approximation [16], which
employs an orthogonal basis of functions localized near the
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(deep) lattice minima, is no longer applicable when the ampli-
tudes of the sublattices are of the same order. Nevertheless, if
only the low-energy states, i.e., those belonging to the energies
below the ME, are excited, these states can be considered a
new basis that spans the wave function. Since such a basis
is orthogonal, the evolution of an initially localized wave
function is relatively simple.

Nontrivial dynamics can be observed only if the coupling
of states is introduced either by external factors, such as
a weak linear force [17], or by interatomic interactions. In
the latter case, nonlinear hopping may lead to the creation
of localized states that are impossible in linear and weakly
nonlinear limits, and governing dynamics involving more than
one state. It is noteworthy that, so far, no examples of non-
linear families of the solutions have been reported in lattices
modeling quasi-periodic potentials.

In this paper we consider a Bose-Einstein condensate
loaded into a quasi-periodic potential composed of two optical
lattices with incommensurate periods within the framework
of the mean-field approximation. A discrete lattice equa-
tion governing low-energy matter waves is derived (Sec. II).
For a sufficiently general case of spatially localized initial
wave packets, the description can be reduced to a few-mode
model. We particularly focus on a dimer, corresponding to
two excited modes linked by nonlinear hopping, which can be
viewed as a two-hump breather. Such a breather has properties
very distinct from those known for a dimer of the self-trapping
model [18–21], i.e., a discrete nonlinear Schrödinger (DNLS)
equation, as well as from a dimer describing atoms in a
double-well trap [22–25] (Sec. III). In addition to families of
nonlinear modes bifurcating from the linear localized states,
the model considered here supports families of nonlinear
solutions that do not have a linear limit, i.e., existing only
if the number of atoms exceeds a critical value. Two-hump
breathers exhibit remarkably stable evolution governed by the
one-dimensional Gross-Pitaevskii equation (Sec. IV).
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II. LATTICE EQUATION

We start with a quasi-one-dimensional Gross-Pitaevskii
equation (GPE),

i∂t� = H� + g|�|2�, H = −(1/2)∂2
x + V (x), (1)

for the dimensionless order parameter �(x, t ) normalized as∫ |�|2dx = N , such that g = +1 and g = −1 correspond to
positive and negative scattering lengths of the interatomic
interactions (the norm N can be viewed as a properly normal-
ized number of atoms). The V (x) is a quasi-periodic potential
that is deep enough for the existence of a mobility edge de-
noted below as εEM (here we consider the case of only one
ME). This means that the eigenstates of the linear stationary
Schrödinger equation Hφ j = ε jφ j (numbered by j = 1, ...)
with ε j � εEM are localized in space, and thus can be normal-
ized to 1, 〈φ j, φ j〉 = 1 (hereafter 〈 f , g〉 = ∫

f ∗gdx), while all
states with energies above εEM are extended.

Although a specific choice of the potential remains largely
unconstrained, for the sake of definiteness, the detailed anal-
ysis below will be presented for the simplest potential created
by two optical sublattices,

V (x) = V1 cos(2x) + V2 cos(2βx + θ ), (2)

with the amplitudes V1 and V2, the incommensurate relation β

between the periods (i.e., β is an irrational number), and an ar-
bitrary shift θ used to break the spatial symmetry. This type of
potential was exploited in several previous studies [4,6,9,10].
In the chosen dimensionless units, V1,2 are measured in the
units of the recoil energy, and for typical experimental settings
with the scattering length of order of 5 nm the norm N = 1
corresponds to a few hundreds of atoms. The linear limit
N → 0 corresponds to negligible scattering lengths (can be
achieved using Feshbach resonance).

Formally, a quasi-periodic potential (2) is defined on the
entire real axis, and the respective number of localized modes
is infinite. However, the extent of a real-world physical system
is finite, although it may greatly exceed the number of periods
of each sublattice. By focusing on the dynamics of initial exci-
tations localized far enough from the boundaries in this latter
case, one can employ the method of periodic approximants
[4,6,10,17,26]. This approach involves replacing the irrational
β in the truly quasi-periodic potential V (x) with its best ra-
tional approximations (BRAs) [27] pn/qn, where pn and qn

are coprime integers and n is the order of approximation.
This gives origin to a periodic potential V (n) = V1 cos(2x) +
V2 cos [2(pn/qn)x + θ ] with the period πqn. Now periodic
boundary conditions can be imposed.

The outlined approximation fairly well describes profile
and dynamics of the modes which remain localized inside
the interval In = (−πqn/2, πqn/2) sufficiently far from its
boundaries. Furthermore, in passage from the nth to n + 1-th
BRAs, the most important information about solutions of the
modes obtained in the nth BRA is preserved in the n + 1-th
BRA (the property termed a memory effect in [10,28]). By the
circles in Fig. 1(a), the distribution of linear localized states in
the coordinate-energy space (Xj, ε j ), where Xj = 〈φ j, xφ j〉 is
the center of mass (c.m.), is shown. For all numerical illus-

FIG. 1. (a) Position of the center of mass of all localized modes
in the coordinate-energy space. Blue and red asterisks in circles
indicate modes φ32 and φ37 used in numerical examples studied in
the text and shown in panel (b) with corresponding colors. Two-
mode hopping matrices χ̃ jk and χ jk for those are shown in panels
(c) and (d), respectively (the axes show mode numbers). All results
are shown for the potential V (9)(x) (i.e., for n = 9) with V1 = 1.5,
V2 = 2, and θ = 0.13. For this example there are M = 89 localized
modes (all of them are shown) with the ME εEM = ε89 ≈ 0.9330; the
energy of the first extended mode is ε90 ≈ 2.181. Note the different
color scales in panels (c) and (d).

tration in this paper, we use the n = 9th approximant V (9)(x)
with V1 = 1.5, V2 = 2, and p9/q9 = 89/55 being the 9th BRA
of the golden ratio β = (

√
5 + 1)/2. The localized modes

φ j (x) can be chosen real, and their localization is character-
ized by the inverse participation ratio (IPR) 〈φ2

j , φ
2
j 〉 � 0.1

[see (4) below].
In Fig. 1(a) one observes that the localized modes are dis-

tributed nearly homogeneously along the condensate and over
the energy axis, except one large “gap.” (Note that although
the spectrum is discrete now, the periodic boundary conditions
allow one to connect it with the band-gap spectrum of the
respective approximant considered on the whole real axis.)
Upon increase of the order of BRA, the spatial distribution
of the modes remains nearly unchanged: new modes appear
in the interval In+1/In, while density along the energy scales
increases with BRA tending to a fractal-like distribution (but
without significant changes of the large gaps in the spectrum).

Since localized and extended modes are separated by a gap,
when addressing low-energy excitations of the condensate
[i.e., modes with ε � 1 in the example shown in Fig. 1(a)]
it is sufficient to consider only localized modes. In such a
situation, even strong nonlinearity typically does not result in
coupling between localized and extended states, as discussed
below. Then, assuming that the number of localized states is
M, one can expand �(x, t ) = e−iμt

∑M
j=0 a j (t )φ j (x), where

μ is the chemical potential, and the amplitudes of modes aj

solve the system

i
da j

dt
= (ε j − μ)a j +

M∑
j1, j2, j3=1

χ j j1; j2 j3 a∗
j1 a j2 a j3 , (3)
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the nonlinear coefficients are given by

χ j1 j2; j3 j4 =
{

g〈φ j1φ j2 , φ j3φ j4〉, for 1 � j1, j2, j3, j4 � M,

0 otherwise
(4)

and the asterisk stands for complex conjugation. The expan-
sion coefficients are normalized:

∑M
j=1 |a j |2 = N .

The lattice (5) has only nonlinear dispersion lacking the
linear one. This imposes constraints on possible quasilinear
states, obtained in the limit N → 0. Indeed, in the limit of
negligible nonlinearity, absence of interactions prohibits ther-
malization of the lattice. This means that for a stationary state
in the limit N → 0, the chemical potential μ must approach
one of the discrete energies ε j , which corresponds to gathering
all atoms in a unique state φ j (below we discuss this effect in
more detail for a dimer). Furthermore, the explicit form of the
lattice (3) implies nonexistence of the homogeneous distri-
bution of atoms. Indeed, considering |a1| = · · · = |aM | = a,
where a = √

N/M, the system (3) with da j/dt = 0 has M
equations but only two free real parameters a and μ, thus
inhibiting solutions for M > 2 in a general situation.

Next we simplify Eq. (5). To this end we give a closer
look at the nonlinear hopping integrals. The localized states
φ j (x) can be chosen real. Thus nonlinear hopping integrals
are real too. In Figs. 1(c) and 1(d) we illustrate the matrices
χ̃ jk and χ jk , where χ jk = χk j = χ jk; jk and χ̃ jk = χ j j; jk [for
the approximant V (9)(x)]. Generally speaking, for χ̃ jk �= χ̃k j

if j �= k, and if the absolute value of at least one of these
integrals is larger than χ jk , it follows from the inequality
(
∫

φ2
j φ

2
k dx)2 �

∫ |φ3
j φk|dx

∫ |φ jφ
3
k |dx. Note that χ̃ jk is not

sign definite. The diagonal elements χ j j = χ̃ j j =: χ j are the
IPRs introduced above. One observes that each mode [see the
examples in Fig. 1(b)] overlaps appreciably with only a very
few neighboring modes [upon neglecting small integrals the
matrices χ̃ jk and χ jk become sparse].

The nonlinear coefficients involving hopping of three and
four different modes are even much smaller than either χ̃ jk or
χ jk . Therefore we neglect all terms with χ j j1; j2 j3 having three
or all four indexes different. In this approximation Eq. (3) is
recast in a form of the reduced lattice model:

i
da j

dt
= (ε j − μ)a j + χ j |a j |2a j

+
∑
k �= j

[
χ̃ jk

(
2|a j |2ak + a2

j a
∗
k

)

+ χ jk
(
2|ak|2a j + a2

ka∗
j

) + χ̃k j |ak|2ak
]
. (5)

We emphasize that the subindexes in (5) [and in (3)] indicate
the energy level rather than spatial ordering of the modes,
unlike in the conventional AA or DNLS models, where the
index stands for the lattice sites.

III. NONLINEAR DIMER

The simplest approximate solution of (5) is a monomer,
when only one, say jth mode is excited a j = √

N with the
chemical potential μ j (N ) = ε j + Nχ j .

A dimer corresponds to the choice of only two excited
states. The particular relevance of such a reduced model for
the lattice (5) stems from the results shown in Figs. 1(c) and

1(d), where for nearly each arbitrarily chosen state, say the jth
one, non-negligible nonlinear coupling can be found only for
one (or a very few) other site, say the k state. Thus, either |χ̃ jk|
or |χ̃k j | coefficients are much larger than other nonlinear hop-
ping integrals. Having chosen two nonlinearly coupled states
j and k while neglecting all others, the system (5) is reduced to
a dimer. Like other dimer models studied previously [10,22–
24], the dimer considered here is conveniently described by
the ansatz

a j =
√

N (1 + z)

2
ei(θ−ϕ)/2, ak =

√
N (1 − z)

2
ei(θ+ϕ)/2, (6)

where z(τ ) is the population imbalance, 2ϕ(τ ) is the phase
mismatch, and θ (τ ) is a global rotating phase, as well as the
rescaled time τ = Nχ jkt . Setting the chemical potential as

μ = μ j (N/2) + μk (N/2) + χ jk, (7)

one verifies that the evolution of z(τ ) and ϕ(τ ) does not
depend on θ (τ ) and is governed by Hamilton’s equations,

dz

dτ
= (1 − z2) sin(2ϕ) +

√
1 − z2(η−z + η+) sin ϕ, (8)

dφ

dτ
= ν + ξ− − (1 − ξ+)z − 2z cos2 ϕ

− 2η−z2 + η+z − η−√
1 − z2

cos ϕ, (9)

with the Hamiltonian given by

H = (1 − z2) cos2 ϕ +
√

1 − z2(η−z + η+) cos ϕ

− 1 − ξ+
2

z2 + (ν + ξ−)z, (10)

and parameters defined by

ν = ε j − εk

χ jkN
, ξ± = χ j ± χk

2χ jk
, η± = χ̃ jk ± χ̃k j

χ jk
.

The dependence of the global phase on time is obtained from
the compatibility of (8) and (9) with (5) written for two modes
and has the form

θ =
∫ τ

0

(
η+z2 − η−z − 2η+√

1 − z2
cos ϕ − 2 cos2 ϕ − ξ−z

)
dτ ′

(11)

[it is set θ (0) = 0]. Thus, unlike in most previous dimer
models, the dimer described here features a global phase that
varies over time. Since this phase does not affect the popula-
tions and superfluid currents, it will not be considered in detail
below.

One can prove that fixed points of system (8), (9) exist
only for ϕ = 0, π (mod 2π ), which readily gives an alge-
braic equation for determining population imbalances of the
stationary solutions:

ν = (1 − ξ+)z − χ− + σ
η+z2 − η−z − 2η+√

1 − z2
. (12)

Here σ = +1 and −1 stand for in-phase (alias unstaggered),
ϕ = 0, and out-of-phase (staggered), ϕ = π , superposition of
the states j and k, respectively.

Since the number of atoms N enters (12) through the pa-
rameter ν, Eq. (12) yields dependence N (z). Subsequently,
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FIG. 2. Families of the nonlinear modes in (a), (c) and depen-
dence of the number of atoms N on the imbalance z in (b), (d) are
shown for negative (upper panels) and positive (lower panels) scat-
tering lengths. The green (unstaggered) and blue (staggered) families
bifurcate from the linear states φ32 and φ37, respectively. The mixed
state having no linear limit is shown by the red line. Vertical dashed
lines in (b) and (d) show population imbalances at which N diverges.
The parameters of the potential are the same as in Fig. 1.

having found μ(z), one obtains a parametric form of the func-
tion N (μ) describing the families of solutions. The analytical
expression of N (μ) is simple but cumbersome. Therefore
we illustrate the dependence N (μ) graphically in Figs. 1(a)
and 1(c), for two modes φ j = φ32 and φk = φ37 depicted in
Fig. 1(b) (this pair of nonlinearly coupled modes was chosen
arbitrarily: note that none of them is the ground state).

Figures 2(a) and 2(c) show the families of solutions for at-
tractive and repulsive interactions, respectively. In both cases
there are two families bifurcating from the single linear states
φ32 (green line) with ε32 ≈ −0.790 and φ37 (blue line) with
ε37 ≈ −0.647. No superposition of such states is possible for
relatively small number of particles. Physically this is a con-
sequence of the absence of linear hopping. Mathematically,
this follows from the limit N → 0 corresponding to |ν| → ∞
in (12), which is possible only if |z| → 1. In the linear limit
it is straightforward to compute the bifurcation angles of the
families N ≈ χμ. These slopes in Figs. 2(a) and 2(c) for
attractive (g = −1) and repulsive (g = 1) nonlinearities are
given by χ32 ≈ g × 0.589 and χ37 ≈ g × 0.567. Note, how-
ever, that the effect of both modes is accounted for at any
N > 0: the blue and green nonlinear families are staggered,
and unstaggered modes for negative and positive scattering
length, respectively. When the number of atoms increases,
the mentioned families deviate from each other. The results
in Fig. 2(c) resemble the known families of solutions of a
dimer obtained in Ref. [18], with the difference that now the
staggered mode has higher energy than the unstaggered one.
A peculiarity of the dimer (8), (9) appears when the number
of atoms is larger than a certain threshold value Nth, Eq. (12).

FIG. 3. Phase portraits for attractive (g = −1) in (a), (b) and
repulsive (g = 1) in (c), (d) nonlinearities, shown for N = 0.3 in
(a), (c) and N = 2 in (b), (d), i.e., below and above the threshold
nonlinearities (see the text). The parameters of the discrete lattice are
obtained for the modes shown in Fig. 1(b).

Then two additional real roots of (12) corresponding to two
new families emerge through a saddle-node bifurcation. For
the parameters used in Figs. 2(a) and 2(c), Nth ≈ 0.416 and
Nth ≈ 0.401, respectively. The modes of the upper family are
unstaggered in the case of attractive interactions [Fig. 2(a)]
and staggered in the case of repulsive interactions [Fig. 2(c)],
i.e., the upper family modes have a type opposite to the modes
bifurcating from the linear limit which intersect on the dia-
grams (z, N ) shown in (b) and (d).

The total number of atoms N defines possible imbalances
of populations of the modes as shown in Figs. 2(b) and 2(d)
for attractive and repulsive interactions, respectively. Now it
is possible to obtain a mode with equally populate states
(corresponding to z = 0), which belongs the higher families
without linear limit. We also observe that there exist intervals
of imbalances inhibited for any N .

To describe the dynamics of the dimer in Fig. 3, we present
the phase portraits for attractive (upper panels) and repulsive
(lower panels) interactions. The numbers of atoms is below
the bifurcation threshold N = 0.3 < Nth in the left column and
above bifurcation threshold N = 2 > Nth in the right column.
Below the threshold value Nth, as one could expect from the
dependencies N (z) in Figs. 2(b) and 2(d), the dynamics is
characterized by relatively weak changes in the population im-
balance in both cases: weak oscillations around stable points
and rotation with the evolving phase ϕ(t ) [see Figs. 3(a) and
3(c)]. However, the population of states may not fully depict
the atomic density distribution in physical space due to in-
terference effects between states [as seen in Fig. 1(b)]. This
interference effect is highlighted in the example presented in
Fig. 4(a1), where atoms undergo significant transfer between
the two spatial locations. Comparing panels (a) and (c) in
Fig. 3, we observe qualitatively similar dynamics for both
types of nonlinearities.

Figures 3(b) and 3(d) show phase portraits of the dimer
for N = 2 > Nth. In each panel there are three centers [in (b)
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FIG. 4. Evolution of the two-mode initial condition (14) for a
negative scattering length. In panels (a) z0 = 0, ϕ0 = π , N = 0.3;
(a1) shows the density over long-time (Tfin = 500) evolution, (a2)
and (a3) show the current density over the two initial and two final
(computed) periods. Panels (b) show the evolution of the density (b1)
and the current density over the two initial (b2) and two final (b3)
periods for the initial condition (14) with z0 = 0.451, ϕ0 = 0, and
N = 2. The system parameters are the same as in Fig. 1.

they are approximately at (ϕ, z) = (0,−0.80), (π,−0.64),
and (π, 0.85)] and one hyperbolic fixed point [at (ϕ, z) =
(0, 0.45) in panel (b)]. Consequently, both families emerging
from the linear limit [represented by the blue and green lines
in Fig. 2(b)] are stable. The families without a linear limit are
stable if dN/dz < 0 for attractive interactions and dN/dz > 0
for repulsive interactions, while they are unstable otherwise.
It is noted that the amplitude of variation of z is significantly
larger for strong nonlinearities compared to weak nonlineari-
ties.

IV. TWO-HUMP BREATHERS

Apart from the neglected hopping between three and four
states, the discrete model (5) fails to account for the effect of
spatial dispersion, which is different for positive and negative
scattering lengths. Specifically, the stability of localized states
in the GPE (1) generally differs from the dynamical stability
discussed in the preceding section. Moreover, as previously
mentioned, the interference of nonlinearly interacting modes
can significantly impact the spatial distribution of atomic
density in real space due to the finite spatial extension of
these modes. Consequently, a more complete characterization
of real-space evolution involves studying superfluid current
densities alongside the spatial distribution:

J = 1

2i
(�∗�x − ��∗

x ). (13)

Additionally, the dynamics reported in Fig. 3 does not explic-
itly show dependence on time, while the number of atoms

determines both the system parameters and the timescale τ =
χ jkNt .

To address the above issues, we consider direct evolution
of solutions obtained numerically from the GPE (1) with the
initial conditions constructed based on the dimer solution:

�(x, 0) =
√

N (1 + z0)

2
ψ j (x) + eiϕ0

√
N (1 − z0)

2
ψk (x).

(14)

Here z0 and ϕ0 are the initial imbalance of atomic population
and phase mismatch of the states, respectively. In the par-
ticular examples below, j = 32 and k = 37. In all numerical
results reported below, a noise perturbation of approximately
3% of the input amplitude was added to the initial condition
(14).

Starting with the attractive nonlinearity, it was verified
that the stationary states, i.e., dynamically stable families in
Fig. 2(a) [and centers in Fig. 3(a)], remain stable in the direct
evolution governed by the GPE (not show here). Figure 4(a)
demonstrates the oscillatory behavior of the rotating-phase
solution with a number of atoms below the threshold Nth. Al-
though at t = 0 the modes φ32 and φ37 [z(0) = 0] are equally
populated, there is a significant imbalance of atoms near the
c.m. of the modes [depicted in Fig. 1(a)]. The higher energy
mode with k = 37 is, on average, more populated than the
lower energy mode with j = 32, which is a manifestation of
the effect of interference.

While the oscillatory dynamics in Fig. 4(a) resembles the
one reported in [10] for a boson-Josephson junction, there
is a substantial difference. The boson-Josephson oscillations
occur due to the superposition of two linear states, whereas
oscillations reported here are enabled by the nonlinearity and
vanish at N → 0. This decrease, and eventually vanishing of
oscillations with decreasing N , can be observed in comparison
to the oscillation periods in panels (a) and (b) of Fig. 4:
Tosc ≈ 50 for N = 0.3 and Tosc ≈ 5 for N = 2, respectively.
The nonlinear nature of the respective oscillatory solutions
suggest their interpretation as two-hump breathers.

In the evolution shown in Fig. 4(b), where N = 2 > Nth ≈
0.416, the initial condition corresponds to the hyperbolic fixed
point in Fig. 3(b). The instability of the dynamical system
(8), (9) leads to excitation of a stable two-hump breather. The
higher-energy mode remains more populated at any time.

The evolution of the breathers is accompanied by alternat-
ing superfluid currents, as shown in panels (a2,3) and (b2,3) for
the initial and advanced time intervals. In the former case, due
to atomic exchange, the current density is maximal between
the two spatial locations of the center of mass (c.m.) of the
modes. In the last case, where the breather corresponds to
an unstaggered mode of the dimer, the maxima of current
densities remain localized near the c.m. of the modes, which
are oppositely directed. In both cases the directions of the
current densities periodically vary over time.

Peculiarities of the evolution of breathers in the case of
repulsive interatomic interactions are shown in Fig. 5. Pan-
els (a) illustrate the evolution of a staggered breather mode.
Almost all atoms are concentrated in the lower-energy mode
φ32 without manifesting transfer to the second mode. This is
confirmed by both density in Fig. 5(a1) and alternating-current
density in Fig. 5(a2,3), thus offering a quite different evolution
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FIG. 5. Evolution of the mode corresponding to fixed point
z(0) ≈ 0.7886, ϕ(0) = π , and N = 2 [see Fig. 2(d)] is shown in
panels (a). Panels with indices 1, 2, and 3 show the long-time (T =
500) evolution of the density ρ(x, t ), currents at the initial and final
stages of evolution, respectively. (b) Evolution of the same initial
wave packet but for N = 8. In both cases N = 2, and the system
parameters the same as in Fig. 1.

pattern as compared with those shown in Fig. 4. In spite
of repulsive interactions and moderate number of particles
(N = 2), there is no dispersive spreading of the breather that
would be observable over large time intervals.

In the meantime, for the chosen parameters of the system
and of the pair of modes, the dispersion occurring due to
the repulsive nonlinearity becomes visible at shorter evolution
times when higher nonlinearities are present. In Fig. 5(b) the
fast dispersive decay of the breather is shown for N = 8.

V. DISCUSSION AND CONCLUSION

We have shown that the description of matter waves in
one-dimensional quasi-periodic potentials created by optical
lattices of comparable amplitudes can be reduced to a dis-
crete model for low-energy initial states. This lattice model
features nonlinear dispersion without a linear counterpart.
Consequently, in the limit of a relatively small density of
atoms, its stationary solutions are represented only by families
bifurcating from the single linear modes, while high nonlin-
earities lead to the emergence of upper families of nonlinear
modes. Interestingly, in this sense the lattice model can be
viewed as opposite to the known self-trapping (or discrete
nonlinear Schrödinger type) models, where the anticontinuum
limit [29], i.e., the limit of completely decoupled modes, oc-
curs at formally infinite nonlinearities. In our model such an
anticontinuum limit occurs at zero nonlinearities. On the other

hand, a similarity between both types of models is observed
in the property of a growing number of possible nonlinear
localized states with increasing nonlinearity.

From the experimental point of view, in the limit of very
large (infinite) nonlinearities the lattice model (3) [and re-
spectively (5)] fails to describe the full dynamics of the BEC
in a quasi-periodic potential, because localized and extended
states become coupled. However, this occurs at excessively
high values of N , making the range of applicability of the
model large enough. Indeed, if initially only localized states
are excited, the effect of extended ones on the dynamic is
determined by the hopping between the (normalized) states
below and above ME. For a system with spatial extension
L, amplitudes of extended states are ∼1/

√
L (due to the

normalization factor), which approximately determines the
amplitude of their hopping with localized states. Such non-
linear hopping can be neglected compared with the nonlinear
hopping between localized states if 1/

√
L � 1. In the di-

mensional units for the 9th BRA of the golden ratio used
here 1/

√
L = 1/

√
πqn ≈ 0.076, and rapidly decreases with

the order of BRA. This explains, in particular, the remarkable
stability of the breathers observed in the full-scale dynamical
simulations even for finite magnitudes of both attractive and
repulsing nonlinearities.

The approach adopted in this paper is based on periodic
approximants. The validity of the approach of periodic ap-
proximants, adopted in this paper, can be justified by the
so-called memory effect [10,28], which, loosely speaking,
means that the n + 1-th approximant introduces only small
corrections to the results obtained for the nth approximant
within a single spatial period. These corrections become neg-
ligible with increasing order of the BRA. Meanwhile, the
setting using periodic boundary conditions can be viewed,
alternatively, as a quasi-one-dimensional description of a BEC
in a toroidal trap (experimentally such traps are created rou-
tinely; see, e.g., [30,31]) in the presence of an additional
periodic potential (similar to one considered in [32]).

Finally, the theory developed here for a quasi-one-
dimensional BEC can be extended to two- and three-
dimensional nonlinear systems which are now experimentally
available. Examples include BECs in twisted lattices [33] and
in quasicrystals [34,35], as well as light propagation in nonlin-
ear photorefractive moiré lattices [36] when, strictly speaking,
the conventional tight-binding approximation is not applicable
anymore.
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