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Resource analysis of quantum algorithms for coarse-grained protein folding models
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Protein folding processes are a vital aspect of molecular biology that is hard to simulate with conventional
computers. Quantum algorithms have been proven superior for certain problems and may help tackle this com-
plex life science challenge. We analyze the resource requirements for simulating simplified yet computationally
challenging protein folding models on a quantum computer, assessing the feasibility of these existing approaches
in the current and near-future technological landscape. We calculate the minimum number of qubits, interactions,
and two-qubit gates necessary to build a heuristic quantum algorithm with the specific information of a folding
problem. Particularly, we focus on the resources needed to build quantum operations based on the Hamiltonian
linked to the protein folding models for a given amino acid count. Such operations are a fundamental component
of these quantum algorithms, guiding the evolution of the quantum state for efficient computations. Specifically,
we study coarse-grained folding models on the lattice and the fixed backbone side-chain conformation model and
assess their compatibility with the constraints of existing quantum hardware given different bit encodings. We
conclude that the number of qubits required falls within current technological capabilities. However, the limiting
factor is the high number of interactions in the Hamiltonian, resulting in a quantum gate count unavailable today.
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I. INTRODUCTION

Shor’s and Grover’s algorithms demonstrate exponential
and polynomial speedups compared to classical methods for
the practical problems of prime factorization [1] and unsorted
searching [2]. This breakthrough ignited the pursuit of fur-
ther quantum algorithms and use cases, aiming to achieve
quantum speedup in computations for real-world applications.
However, reaching such an advantage typically requires fully
error-corrected devices yet to be available, with around 105

qubits [3]. Until such platforms become a reality, the com-
munity explores algorithms suitable for the current noisy
intermediate-scale quantum (NISQ) computers [4], with 50
to a few hundred noisy qubits. The current efforts to realize
a quantum computer involve various approaches, such as su-
perconducting qubits [5], trapped ion qubits [6], and photonic
qubits [7], each with its technical challenges and tradeoffs
regarding qubit count, connectivity, and coherence time. The
latter limits the gate fidelities so that the computation will
be dominated by noise, usually well before performing even
1000 gates on each qubit.

In the NISQ era, hybrid quantum-classical algorithms have
attracted considerable attention for their ability to harness ex-
isting hardware capabilities and potentially provide a quantum
advantage for specific computational problems [8], with one
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notable example being the quantum approximate optimization
algorithm (QAOA) [9]. A customized variational ansatz con-
taining solutions to a problem depends on a finite number of
classically optimizable parameters related to a heuristic quan-
tum algorithm. This ansatz construction commonly involves
using problem-specific information, such as the energy or cost
function of a given optimization problem. Hybrid algorithms
are highly adaptable and thereby find applications in various
domains, including chemistry [10], machine learning [11],
and optimization [9], as well as applications in the field of
protein folding [12,13].

Studying protein folding is essential for understanding how
proteins gain their functional three-dimensional structures,
comprehending the protein’s biological functions, and design-
ing effective therapeutic interventions. The folding from an
amino acid sequence to a stable structure is deeply intricate
[14,15], and simulating the dynamics represents a complex
optimization problem where one wants to find the conforma-
tion with the lowest score according to an energy function
[16,17]. The field of in silico protein structure prediction
has seen massive success recently with classical heuristics
[18–20]. Before the availability of computational resources
enabling these fully atomistic predictions, coarse-graining
models served as an intermediary step and continue to be es-
sential in multiscale modeling today. Coarse-grained models
decrease the sampling space and lower the complexity of the
problem by assuming various levels of reduced polypeptide
chain representation [21]. As the problem remains challeng-
ing for classical deterministic algorithms, Monte Carlo or
other heuristics have become the field standard for coarse-
grained models, performing well within ranges of a few tens
of amino acids [22,23]. Similarly, due to the limited quan-
tum resources currently available, quantum algorithms must
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consider these simplifications. We focus on the coarse-grained
models previously explored in the field of quantum algorithms
to give an overview of the field: the lattice model [24,25]
with hydrophobic-polar (HP) energies [26] or Miyazawa-
Jernigan (MJ) energies [27], and an off-lattice side-chain
conformation-based model with a fixed backbone [28,29].
The HP-lattice model is used to study protein thermodynam-
ics, folding dynamics, and evolution [30], and the side-chain
conformation-based model with a fixed backbone plays a role
within broader algorithms for more complex models [31].

The first proof-of-concept proposals for finding optimal
protein folds with quantum devices consider only small
peptides due to the quantum hardware limitations. Even if
these simplified models for peptide sampling are not used
for folding predictions in realistic contexts, they remain
computationally demanding and can provide qualitatively rel-
evant results. Therefore, the quantum computing community
considers them suitable testbeds for quantum heuristic algo-
rithms. Early formulations for quantum annealers include the
HP-lattice model on a square grid, with the amino acid coor-
dinates encoded with binary strings [32]. The high resource
demand of this initial approach motivated the search for
new problem formulations, leading to a divide-and-conquer
method and a turn-based encoding of the protein conforma-
tion. Consequently, a quantum annealer successfully found the
optimal fold of a chain with six amino acids for a model with
MJ energies [33], and this formulation was adapted to QAOA
for an ion-trap experiment [34]. Subsequent works lowered
the quantum operations needed [35], which prompted further
experiments on a quantum annealer tackling the folding of a
ten-amino acid chain on a planar lattice and an eight-amino
acid chain on a cubic lattice [36]. The quantum algorithm
improvements for constrained optimization problems resulted
in the use of the quantum alternating operator ansatz [37] to
fold a four-amino acid long chain on an ion-trap quantum
computer and further explorations to incorporate efficiently
the problem constraints in the algorithm formulation [12].
Such strategic engineering of the problem formulation can
also improve the success of the folding problem on quan-
tum annealers [38]. Moreover, the field benefited from a new
resource-efficient model with MJ energies and a tetrahedral
lattice [13]. This model was first implemented experimen-
tally on a superconducting circuit quantum computer for
a seven-amino acid long chain [13]. Despite the fact that
numerical simulations of QAOA for this tetrahedral lattice
model show lower performance, even for a sequence of four
amino acids [39], when combining this model with other
algorithms such as the digitized-counterdiabatic quantum al-
gorithm, it succeeded in folding a nine-amino acid chain
on two superconducting circuit gate-based quantum devices
and an ion-trap platform [40]. Likewise, parallel efforts led
to the realization of an HP-lattice model for a 14-amino
acid long chain on a quantum annealer. The model reduced
the qubits needed for a coordinate-based conformation en-
coding by including lattice symmetries [41]. In these early
stages, the simplicity of the HP-lattice model compared to
higher-resolution descriptions positions it among the central
models for different quantum algorithms, including Grover-
based protocols [42]. Recently, the field has also expanded
into off-lattice models. These works range from formulations

of peptide packing for a quantum annealer using side-chain
conformation-based models [43,44] to methods using deep
learning for initial state generation followed by a quantum
Metropolis-Hastings algorithm to decide parametrized torsion
angles of a tetrapeptide [45].

In every previous formulation, the authors have made dif-
ferent choices regarding the protein folding model and its
encoding into the quantum computer. The models’ resolution
and translation to quantum variables impact the algorithm’s
time and space complexity. This translation includes repre-
senting a specific folding or conformation with qubits and
expressing the model’s energy function using interactions be-
tween them. In essence, the resulting problem formulation as
a quantum spin model includes the interactions between the
coarse-grained beads of the protein and the folding constraints
in the so-called cost Hamiltonian. We can customize this
Hamiltonian to focus on specific aspects of the problem or
exploit particular symmetries or properties. The size and com-
plexity of the cost Hamiltonian will affect the corresponding
required quantum circuit. That is, it impacts the run time or
circuit depth, the number of qubits, and how they interact,
which will, in turn, influence the choice of hardware. Optimal
decisions in the encoding step can reduce the need for quan-
tum hardware resources, while suboptimal ones may strain
connectivities and operations allowed in the devices. Due to
the diverse capabilities inherent in quantum platforms [46],
resource tradeoffs arise contingent upon the chosen encoding
strategy.

Improving quantum algorithms requires analyzing how
the problem encoding can affect the necessary resources
and the demands on current quantum technology. Ac-
cordingly, the community has studied encoding resource
tradeoffs for quantum and discrete optimization problems
[47,48]. A more generalized approach includes an exten-
sive library of hardware-independent formulations of these
problems for quantum computing given different encodings
[49]. In contrast, another analysis focused on the feasibility
of several hybrid quantum-classical algorithms on current
quantum computers for maximum independent set—an op-
timization problem over binary variables. There, as the
encodings do not play a role, they detailed the quantum
gates and classical resources needed, showcasing tradeoffs
between gate decomposition methods for different quantum
hardware [50].

In this paper, we explore several encodings of discrete
optimization formulations of protein folding into quantum
variables and analyze the resource requirements given the
characteristics of different quantum hardware. Our objective
is to assess the suitability of gate-based quantum comput-
ers, specifically NISQ devices, to potentially fold proteins of
realistic size. Human proteins have a median length of 375
amino acids [51], whereas clinical target proteins tend to be
about 414 amino acids long on average [52]. So, what kind of
quantum computer would we need to fold 100 amino acids?
Since fully atomistic descriptions used for folding predictions
are beyond the capabilities of current quantum devices, we
examine the scaling of lattice protein folding and side-chain
packing models, earlier addressed by the quantum computing
community. We detail the required quantum resources—the
number of qubits, interactions, and the resulting two-qubit
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gates—linked to the unary, binary, and block-unary binary
(BU-binary) encodings for these computationally challenging
models. In particular, we only estimate the resources needed
to create the building block operation linked to the cost Hamil-
tonian in the quantum algorithm. That is, we provide a lower
bound of the resources required to address these protein fold-
ing models with quantum heuristics for current technology by
presenting the resources for a single cost layer of the QAOA.
It remains uncertain whether these quantum algorithms can
succeed, and additionally, how many repetitions of the build-
ing block the algorithm requires to perform well is yet to be
determined.

The paper is structured as follows. In Sec. II, we de-
scribe coarse-grained protein models and, in particular,
the discrete variable formulation of HP-lattice models and
side-chain conformation-based models. In Sec. III, we present
the unary, binary, and BU-binary encodings for translating dis-
crete variables into qubits and their application to the previous
models. Further, in Sec. IV, we analyze the tradeoffs associ-
ated with qubit growth, gates, and the size of the unfeasible
solution set in the encoding Hamiltonians. Finally, Sec. V
concludes the discussion by summarizing the key findings,
highlighting their implications, and suggesting future research
directions.

II. COARSE-GRAINED PROTEIN MODELS

Studying proteins is challenging due to the size of the
systems and their interactions. We focus on coarse-grained
protein models that lower the degrees of freedom in the
polypeptide representation [21]. Different simplifications lead
to computationally advantageous low-resolution models that
capture different system properties and behaviors, enabling
the study of protein folding mechanisms or protein structure
prediction, among others. These low-resolution models char-
acterize larger systems over longer timescales and may be
combined with atomistic simulations in multiscale modeling
schemes.

We consider coarse-grained models designed to understand
the protein folding process and suitable for quantum comput-
ing architectures. The models include two principal reductions
to ensure their feasibility with the state-of-the-art and near-
term quantum technology. First, chains of beads with different
properties represent groups of atoms in amino acids. Second,
we use discrete representations of the structures’ geometry—
the chain of beads is placed on lattice grids or discretized
spatial orientations—such that the finding of the optimal fold
can be formulated as a discrete optimization problem.

The chain representation of the protein varies according
to the level of resolution. Despite the huge simplifications of
these lattice models, finding their optimal protein conforma-
tions is an NP-hard problem that challenges the capabilities
of conventional computers [53–56]. Moreover, other methods
replace only partially the amino acid with a bead, such as
ROSETTA’s centroid representation, where the backbone re-
mains atomistic, and the beads replace the side chains. We
consider these approximations and focus on coarse-grained
models addressed previously by the quantum computing com-
munity, which can be formulated as discrete optimization
problems, namely, lattice models [12,13,32–36,38,41] and the

FIG. 1. Fully atomistic depiction of a four amino acid chain
and the corresponding coarse-grain model representations for the
(a) turn-based lattice model, (b) coordinate-based lattice model, and
(c) side-chain conformation-based model.

side-chain conformation-based model [43,44]. For the sake
of simplicity, we consider two-dimensional square and three-
dimensional cubic lattices.

To compare the resource requirements—the number of
qubits, interactions, and gates—for the quantum hardware
implementation of the different models, we use a general
formulation that accounts for the number of possible confor-
mations of each model. Given a sequence of N amino acids
(a1, . . . , aN ) for which each amino acid ai can take a confor-
mation from the finite set of integers, Ri = {1, 2, . . . , ci}, we
define a vector with the cardinalities of the sets of conforma-
tions ci = n(Ri ) as

C = (c1, c2, . . . , cN ). (1)

Given a choice ri ∈ Ri for each amino acid, we create a
bitstring x = r1r2 . . . rN encoding a protein conformation by
concatenating the binary representation of each integer ri.
Various methods exist to convert the integer information into
binary strings, presented in Sec. III. To perform the dis-
crete optimization, we need an energy function that assesses
the energy of the bitstring as we want to find the bitstring
encoding the protein conformation with the lowest energy.
This function combines negative potentials from interacting
amino acids with positive penalty terms, maintaining physical
constraints.

We use this framework to describe the lattice and side-
chain conformation-based models in Secs. II A and II B,
respectively. See Fig. 1 for a schematic representation of the
coarse-grained simplifications. The vector C varies across
models. In lattice models, it is insufficient to describe allowed
bitstrings entirely. In coordinate-based models, extra frame-
works are needed for physical conformation, while turn-based
models require additional qubits to assess bead interactions.
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A. HP-lattice models

In the HP-lattice model, a protein is represented by a chain
(a1, . . . , aN ) of hydrophobic and polar beads, ai ∈ {H,P},
placed on a lattice. This model consists of an energy func-
tion whose ground state corresponds to the optimal fold that
minimizes the exposure of hydrophobic residues to the sol-
vent while penalizing nonphysical configurations. First, one
considers a pairwise potential that depends on the distance be-
tween beads and accounts for the number of nearest-neighbor
hydrophobic beads in the conformation. Second, we impose
constraints on the possible folds such that the chain is not
overlapping—with two amino acids occupying the same lat-
tice site—or broken. With lattice grids, the distance in the
energy function can be formulated in terms of integer vari-
ables, leading to a classical discrete optimization problem.

We study the two most common ways of encoding the
sequence placement on the lattice and, therefore, the distance
between beads. On the one hand, seminal works in quantum
computation use coordinate-based encodings, for which one
needed at least DN log2 N qubits, with D the lattice dimension
and N the number of amino acids [32]. On the other hand,
further developments introduced a turn-based encoding, in
which the eventual translation to quantum hardware reduced
the qubit requirements at the cost of more operations [33].

1. Coordinate-based HP-lattice model

In this model, the protein conformation is encoded with
the lattice coordinates of each bead. That is, each integer
component of the vector in Eq. (1) is the number of possible
positions of each chain component ai on the lattice grid.
This paper focuses on the model presented in Ref. [41]. We
consider the additional checkerboard symmetry that divides
the number of available positions for each bead in half [41].
Essentially, we label the grid locations and chain beads as odd
or even, such that each bead can only be placed in a location
with the same parity. In the two-dimensional case, we repeat
a square unit cell in two directions to generate a lattice of side
lengths L1 and L2. Therefore, the number of possible available
conformations for each bead is given by the cardinality vector:

Ccoord
HP-square =

(⌈
L1L2

2

⌉
,

⌊
L1L2

2

⌋
,

⌈
L1L2

2

⌉
, . . .

)
. (2)

We also consider a three-dimensional lattice with side
lengths of L1, L2, and L3 created from a cubic unit cell. In
this case, the number of possible locations for the beads can
take values up to

Ccoord
HP-cubic =

(⌈
L1L2L3

2

⌉
,

⌊
L1L2L3

2

⌋
,

⌈
L1L2L3

2

⌉
, . . .

)
.

(3)

The energy function also utilizes checkerboard symmetry,
evaluating the pairwise potential for adjacent even and odd
sites. Penalty terms are used to enforce three constraints that
help to eliminate nonphysical bitstrings. The first constraint
ensures that each bead is assigned to exactly one lattice site
by penalizing more than one conformation per bead. The
second constraint involves calculating a self-avoidance term
that counts the number of beads that have chosen the same

conformation, thus preventing two amino acids from occu-
pying the same lattice point. The third constraint maintains
sequence order by checking the distance between consecutive
beads on the string [41].

2. Turn-based HP-lattice model

We describe the protein conformation by tracking the
directions in which each amino acid turns when placed se-
quentially on the lattice. The distance between beads and
interactions in the HP-lattice energy function can be rewritten
accordingly [13,35,36].

This turn-based encoding of the beads’ placements reduces
the possible values of the location variables at the cost of
increasing the number of interactions. The elements of the
cardinality vector defined in Eq. (1) correspond here to the
lattice coordination number, and thus

Cturn
HP-square = (4, . . . , 4), (4)

Cturn
HP-cubic = (6, . . . , 6). (5)

The simplicity of encoding the conformation for each bead
in the sequence makes for a complex energy function that
calls for extra resources, i.e., additional qubits. Euclidean
distances between beads are computed by summing the turns
in all directions and converting them into coordinates based
on the protein’s conformation. Auxiliary qubits are employed
to store these distances, enabling the calculation of pairwise
interactions between sequence beads. The auxiliary bits can
also be used to construct a penalty term that discourages so-
lutions with zero distance between beads, that is, overlapping
beads.

Two versions of the turn-based model are present in the lit-
erature: the turn ancilla encoding, which places the interaction
information in auxiliary qubits, and the turn circuit encoding,
which uses multiqubit terms to keep track of this information.
The first one leads to a quadratic qubit growth with the number
of amino acids. The latter uses nonunitary half adders and
XNOR gates [12,35], which may be a more resource-efficient
encoding. We have not considered this encoding in our analy-
sis, but note that many half adders may add auxiliary bits to be
implemented to the otherwise linear qubit requirement [57].

B. Side-chain conformation-based models

Several protein folding algorithms alternate between side-
chain packing and backbone optimization to predict the
optimal protein fold. The side-chain conformation-based
models are used to find the optimal side-chain packing given
a fixed backbone sequence and variable side-chain confor-
mations. In contrast to the HP-lattice model, these models
can reach a higher resolution for this intermediate step as
we carry more information on the amino acid composition.
We focus on the side-packing problem, which is NP-complete
[58]. We consider a discrete number of torsional angles or
rotamers describing a given backbone’s amino acid side-chain
conformations. Therefore, following Eq. (1), for each amino
acid ai on a sequence, its side chain can take a limited number
of rotational conformations ci, with

∏
i ci the number of all

feasible protein structures.
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In these rotamer-based models, a function determines the
energy of each protein conformation and guides the opti-
mization toward the most energetically favorable structures.
A commonly used function is the ROSETTA energy function,
which combines physics-based potentials with knowledge-
based energies to return an energy score for a given structure
[59]. This energy function is a fundamental component of the
ROSETTA software suite used for protein structure prediction
and design, already considered for optimization with quantum
annealers [43].

Without loss of generality, we use an energy-scoring func-
tion that considers all pairwise interactions between rotamers
at different amino acids. That is, given the conformations
ri ∈ Ri from the set of possible conformations Ri of the side
chain associated with each amino acid ai, the energy function
is given by

E (r) =
N∑

i=2

N−1∑
j<i

Ei j (ri, r j ), (6)

with r = (r1, r2, . . . , rN ) a vector of integers associated with a
particular rotamer selection and protein structure. The energy
E (ri, r j ) depends on the pair of rotamers at position i and j
and contains the two-body energy between the pair.

III. ENCODINGS OF DISCRETE
VARIABLES INTO QUBITS

A function scoring the energy of a protein conformation
x = r1r2 . . . rN can be translated to a quantum cost Hamilto-
nian. With that aim, we consider the concatenation of every
integer ri represented with binary variables, such that x =
x1x2 . . . xM , with xi ∈ {0, 1}. Then, each classical variable xi

maps to a quantum variable σ z
i that can take values {1,−1}

as xi → (1 − σ z
i )/2. This cost Hamiltonian, used in quantum

annealing [60] and in gate-based quantum algorithms [9], can
be represented as a k-local spin Hamiltonian:

Hcost =
∑

i

hiσ
z
i +

∑
i j

Ji jσ
z
i σ z

j +
∑
i jk

Ji jkσ
z
i σ z

j σ
z
k + . . . , (7)

with interaction terms involving at most k qubits. Here, hi,
Ji j , and Ji jk correspond to the single-qubit, two-qubit, and
many-qubit energy coefficients, respectively. The Pauli z ma-
trix acting on the jth qubit is σ z

j . Analyzing the necessary
resources involves focusing on this cost Hamiltonian, which
encodes the problem and guides the system from the initial to
the optimal final state.

A. Encodings: Unary, binary, and BU-binary

As mentioned earlier, the protein conformation is encoded
into a bitstring x = r1r2 . . . rN . This encoding involves select-
ing one conformation ri ∈ Ri for each amino acid. Different
encodings of the integers ri result in varying resource usage.

1. Unary

In the unary encoding, an integer is denoted by a solitary
one in the binary representation, positioned at the bit corre-
sponding to the integer’s value. Each set of conformation for
a given amino acid ai is encoded by a substring of length

TABLE I. The integer to unary, binary, and BU-binary encodings
with block size variable g = 3.

Decimal Unary Binary BU-binaryg=3

0 10000 000 00 01
1 01000 001 00 10
2 00100 010 00 11
3 00010 011 01 00
4 00001 100 10 00

ci, where a single 1 represents one conformation, and the
rest of the substring is zero (see Table I). Each substring of
length ci has the Hamming weight one to ensure only one
conformation is chosen. The total length of the bitstring is∑

i ci (see Table II), and the total Hamming weight is equal
to the number of amino acids M.

2. Binary

The binary encoding represents an integer by the binary
numeral system where each digit’s place value is a power of
2, starting from the rightmost digit. Each set of conformations
for a given amino acid ai is encoded by a substring of binaries,
using n bits so that 2n � ci (see Table I). We cannot use the
Hamming weight to check if a bitstring is in F . The total
length of the bitstring is

∑
i�log2 ci� (see Table II).

3. BU-binary

Block-unary encodings can be considered as a balance
between the unary and binary encodings, being more tunable
to the limitations of the hardware. Block-unary encodings
contain blocks of size g, each with a binary encoding (see
Table I). Each block is an element in a unary string, where
each block can encode for g variables, and the rest of the bits
in the other blocks are set to zero. The all-zero state denotes
when the block is inactive. This allows each block to encode
2n − 1 = g, where n represents the number of bits in a block.
The total length of the bitstring is

∑
i� ci

g ��log2(g + 1)� (see
Table II).

B. Compiling to different quantum hardware

To implement a parametrized quantum operation related
to the cost Hamiltonian in a quantum circuit, we represent
it as eiγ Hcost with real parameter γ , mapping the quantum
variables to logical qubits. This mapping relies on the specific
operations supported by the target quantum processor, called
the native gate set. The conversion requires breaking down
complex operations in the cost Hamiltonian into elementary
gates from the native gate set. Different quantum hardware ar-
chitectures vary in both connectivity and the available number
of qubits. Platforms may be able to operate with many-qubit
interactions but offer a lower number of qubits, e.g., the ion-
trapped architecture [6,61], compared to platforms offering a
higher number of qubits that may be constrained to two-qubit
interactions, e.g., the superconducting circuit architecture [5].

In the latter case, one must decompose the many-qubit
interactions into less connected gates. Compiling the multi-
qubit interactions of the quantum algorithms analyzed here
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TABLE II. Comparison of resources for the unary, binary, and BU-binary encoding based on the cardinality vector C from Eq. (1). The
functions are valid for the side-chain conformation-based and coordinate-based lattice models. Details about correction terms εbinary and
εBU-binary can be seen in Appendix A.

Resource Unary Binary BU-binary

Qubits
∑

i ci
∑

i�log2 ci�
∑

i� ci
g ��log2(g + 1)�

k locality 2 �log2[max(ci )]� + �log2[max2(ci )]� 2�log2(g + 1)�
Interactions

∑
i ci + (∑

i ci
2

) ∑
i�log2 ci� + (∑

i�log2 ci�
2

)+ ∑
i� ci

g ��log2(g + 1)� + (∑
i� ci

g ��log2(g+1)�
2

) +∑
i< j

∑k
m=3

(�log2 ci�+�log2 c j�
m

) − εbinary

(∑
i� ci

g �
2

)∑2�log2(g+1)�
m=3

(2�log2(g+1)�
m

) − εBU-binary

into controlled-NOT (CNOT) and single-qubit gates gives rise
to a quadratic overhead; see Appendix B for a detailed
description. Other native gate sets and the availability of
higher-order gates such as three-qubit gates [62] may reduce
the depth of the quantum algorithms and required resources.
In Sec. IV B, we present how many k-qubit operations appear
in the cost Hamiltonians of the protein folding models and
how many one- and two-qubit operations would be needed
to decompose the higher-order operations given a limited
native set.

During the compilation process, optimization techniques
can be applied to improve the overall efficiency and perfor-
mance of the quantum circuit. These techniques include gate
merging, gate cancellation, and gate reordering to minimize
the circuit depth. We assume all-to-all connectivity and do
not consider the distance between qubits, which could lead
to decoherence. However, if the hardware lacks all-to-all con-
nectivity, a naive qubit routing procedure might demand an
additional circuit depth of O(n3). To tackle this problem, a
SWAP network can be employed, offering a quadratic reduction
in circuit depth compared to naive routing, resulting in a linear
increase in operations [63–65].

IV. RESOURCE TRADEOFFS

We generate instances of folding and packing problems
with amino acid chain lengths N ranging from 3 to 100 amino
acids for five models, described in Sec. II, to compare the
quantum resources required. For each problem instance, we
have calculated the resources needed to form the variational
state for the corresponding cost Hamiltonian, depending on
the encoding used: unary, binary, or BU-binary.

Figures 2 and 3 present the resources for the coordinate-
based HP model on the two- and three-dimensional lattice,
respectively. The number of resources depends on the size
of the lattice one chooses to fold the amino acid sequence
on. We calculate resources for all rectangular and cubic
grids containing a total number of lattice sites between N
and 1.5N . This range yields approximately ten problem in-
stances for each sequence length N . Therefore, the presented
resources represent averages and include one standard de-
viation. The resources for turn-based lattice models directly
depend on the number of amino acids N . Figures 4 and 5
illustrate the number of resources needed for encoding the
two- and three-dimensional cases, respectively. The side-
chain conformation-based model’s resources depend on the
number of considered choices for each side chain. We gener-
ate 2000 instances to account for different proteins. For each

FIG. 2. Coordinate-based model on the square lattice. The num-
ber of (a) qubits, (b) interactions, and (c) two-qubit gates required
to implement a parametrized quantum operation based on the cost
Hamiltonian: e−iγ Hcost , with Hcost given in Eq. (7), and a real parame-
ter γ . We plot the required resources with unary (green cross), binary
(blue rhombus), and BU-binary (red triangle) encodings as a function
of the number of amino acids N . The problem instance size ranges
from N = 3, . . . , 100, and each figure inset zooms in on the results
for fewer amino acids N = 3, . . . , 9. For each N , we consider all
rectangular grids with an area (number of sites) ranging from the
lower bound N to the upper bound 50% larger than the lower bound,
1.5N . The bars indicate one standard deviation.
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FIG. 3. Coordinate-based model on the cubic lattice. The num-
ber of (a) qubits, (b) interactions, and (c) two-qubit gates required
to implement a parametrized quantum operation based on the cost
Hamiltonian: e−iγ Hcost , with Hcost given in Eq. (7), and a real parame-
ter γ . We plot the required resources with unary (green cross), binary
(blue rhombus), and BU-binary (red triangle) encodings as a function
of the number of amino acids N . The problem instance size ranges
from N = 3, . . . , 100, and each figure inset zooms in on the results
for fewer amino acids N = 3, . . . , 9. For each N , we consider all
cubic grids with a volume (number of sites) ranging from the lower
bound N to the upper bound 50% larger than the lower bound, 1.5N .
The bars indicate one standard deviation.

sequence length N , the number of conformations for each
amino acid is drawn from a uniform distribution between 2
and 100. The average and standard deviation for the corre-
sponding resources are shown in Fig. 6.

Furthermore, we compare our resource results to Ref. [13],
where they consider a turn-based model on the tetrahedral
lattice. The paper details the exact resource requirements of
the number of qubits and interactions for up to 15 amino acids
with fitted curves and presents the scaling of the number of
terms in the Hamiltonian. Thus, we focus our comparison on
the provided amino acid range of 15 and the scaling provided

FIG. 4. Turn-based model on the square lattice. The number
of (a) qubits, (b) interactions, and (c) two-qubit gates required to
implement a parametrized quantum operation based on the cost
Hamiltonian: e−iγ Hcost , with Hcost given in Eq. (7), and a real parame-
ter γ . We plot the required resources with unary (green cross), binary
(blue rhombus), and BU-binary (red triangle) encodings as a function
of the number of amino acids N . The problem instance size ranges
from N = 3, . . . , 100, and each figure inset zooms in on the results
for fewer amino acids N = 3, . . . , 9.

in the paper. Notably, we contrast the resource requirements of
the tetrahedral lattice with the square lattice, due to their iden-
tical coordination numbers, despite their inherent differences.

In Sec. IV A, the analysis focuses on the number of qubits
required for representing the protein structure as a bitstring for
the different models given the three encodings. Section IV B
studies the gates and many-body interactions needed, examin-
ing the computational complexity of implementing the various
encoding schemes. Lastly, Sec. IV C investigates the size of
the unfeasible solution set, examining the problem encoding
efficiency and reduction of the search space, which may be re-
lated to the challenges of finding valid protein conformations
within the given constraints.
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FIG. 5. Turn-based model on the cubic lattice. The number of
(a) qubits, (b) interactions, and (c) two-qubit gates required to
implement a parametrized quantum operation based on the cost
Hamiltonian: e−iγ Hcost , with Hcost given in Eq. (7), and a real parame-
ter γ . We plot the required resources with unary (green cross), binary
(blue rhombus), and BU-binary (red triangle) encodings as a function
of the number of amino acids N . The problem instance size ranges
from N = 3, . . . , 100, and each figure inset zooms in on the results
for fewer amino acids N = 3, . . . , 9.

Here, we summarize our main findings based on the anal-
ysis. First, our calculations demonstrate that the minimum
number of required qubits needed for encoding a protein with
100 amino acids in any of the considered models is around
600. This baseline is drawn by the binary encoding in the side-
chain conformation-based and coordinate-based lattice model.
Second, the unary encoding requires the highest number of
qubits, but the binary encoding needs the most interactions
and has a higher locality. The size of the unfeasible solu-
tion set—bitstrings corresponding to nonvalid solutions—is
smaller for the binary encoding. The BU-binary encoding
strikes a middle ground between the other two encodings.
The block size variable g only shifts the BU-binary encoding

FIG. 6. Side-chain conformation-based model. The number of
(a) qubits, (b) interactions, and (c) two-qubit gates required to
implement a parametrized quantum operation based on the cost
Hamiltonian: e−iγ Hcost , with Hcost given in Eq. (7), and a real parame-
ter γ . We plot the required resources with unary (green cross), binary
(blue rhombus), and BU-binary (red triangle) encodings as a function
of the number of amino acids N . The problem instance size ranges
from N = 3, . . . , 100, with the number of conformations for each
amino acid uniformly distributed, U (2, 100). Each figure inset zooms
in on the results for fewer amino acids N = 3, . . . , 9 and a reduced
number of conformations, U (2, 20). The bars indicate one standard
deviation.

closer to or further from the binary encoding with a larger
or smaller g, respectively. For the sake of simplicity, we
have used g = 3 throughout the paper. Third, the difference
between folding on a two- or three-dimensional lattice is neg-
ligible compared to the total number of resources for sequence
length N , both in the number of qubits and interactions. Fi-
nally, we note that the turn-based model on the tetrahedral
lattice with the turn-based modeling of Ref. [13] is generally
more resource efficient. Still, there are lattice sizes where
the coordinate-based model with the binary encoding uses
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the least amount of qubits and interactions to represent the
same number of amino acids. Notably, the coordinate-based
model has a higher k locality for the binary encoding than
the turn-based model on the tetrahedral lattice. The opposite
is true for the unary encoding, where the coordinate-based
model has a lower k locality.

In the insets of the figures, we present the results for
reduced chain lengths N = 3, . . . , 9, and for the side-chain
conformation-based model we reduce the maximum number
of side-chain conformations to 20, averaging over 6000 in-
stances for each sequence length N . Refer to Table II for
an overview of the required resources calculated analyti-
cally based on the cardinality vector C from Eq. (1) for the
coordinate-based model and side-chain conformation-based
model. For a detailed breakdown of the required number of
terms and auxiliary qubits as a function of sequence length N
for the turn-based lattice model, please refer to Appendix C.

A. Number of qubits

The subfigures (a) of Figs. 2–6 show the number of qubits.
The required qubits grow linearly with the number of amino
acids for the side-chain conformation-based models, as seen in
Fig. 6 and Table II. For the turn-based model, the number of
required qubits is quadratic due to the required number of aux-
iliary qubits—needed to implement penalty terms mentioned
in Sec. II A (see Fig. 4 and Appendix C). The coordinate-
based lattice model may look linear with the number of amino
acids as observed in Table II, but as seen in Figs. 2 and 3, the
number of needed qubits is quadratic for the unary case and
ND log N in the binary case. The nonlinear behavior comes
from summing over the elements ci of the cardinality vector
C containing the lattice size, which, in turn, depends on the
length of the amino acid sequence, as illustrated in Eq. (5).
The sum equates to the number of amino acids times the num-
ber of qubits needed to encode each amino acid’s position, N
for the unary encoding and D log N for binary encoding.

The number of qubits for the unary encoding for the
coordinate-based model and the conformation-based one is
simply the sum of all elements in C. The binary encoding
reduces the number of qubits needed, compared to the unary
encoding, to

∑
i�log2 ci�. The advantage of the binary en-

coding becomes apparent in Figs. 2, 3, and 6. It requires
nearly an order of magnitude fewer resources than the unary
encoding. For the turn-based model, the improvement of using
the binary encoding is not as significant (see Figs. 4 and 5).
The BU-binary encoding lies in between the binary and unary
encoding, and the total number of qubits needed is the sum
of all the blocks used times the number of qubits per block.
The number of blocks is inversely proportional to g,

∑
i� ci

g �,
and the number of qubits in a block is binary logarithmic in
g, �log2(g + 1)�. As the all-zero state in the blocks cannot be
used to encode any information, each block encodes one less
integer than the binary equivalent. As g approaches the upper
limit equal to the largest element of C, one obtains the binary
encoding without possibly using the all-zero state. Using the
lower limit g = 1 yields the unary encoding instead.

Comparing two- and three-dimensional models, the qubit
difference is negligible relative to the total number of qubits
required. For the coordinate-based model, the difference is

only a few hundred because the minimum number of sites to
allocate the amino acid chain is the same for two and three
dimensions. The two-dimensional case has an average of more
qubits as it is easier to pack the same number of sites tighter
on a cubic lattice than on a square lattice. For the turn-based
model, the number of needed qubits is similar because the
number of possible directions in three dimensions causes two
extra qubits per bead, which is insignificant compared to the
number of auxiliary qubits needed.

For a 15-amino acid chain encoded with unary/binary on
the tetrahedral lattice, 76/53 qubits are needed. Compared
to the other two models with coordination number 4,
the turn-based model requires 404/226 qubits, and the
coordinate-based model needs an average of 135/52.5 qubits
(SD = 15/7.5), with SD denoting standard deviation, for
coordination number 4. The number of qubits required for
the two models is similar, with the binary encoding making
the coordinate-based model more resource efficient than the
turn-based model on the tetrahedral lattice. If the smallest
lattice sizes are used in the coordinate-based model, it
outperforms the turn-based model on the tetrahedral lattice
from 13 amino acids onwards. The scaling of the required
number of qubits for the turn-based tetrahedral lattice [13]
is comparable to the coordinate-based model with a qubit
requirement scaling as N2.

B. Gates and many-body interactions

The subfigures (b) of Figs. 2–6 indicate the number
of terms in the cost Hamiltonian. The k locality of the
Hamiltonian—specifying that the Hamiltonian terms act on
at most k qubits—will depend crucially on the encoding.
For specific hardware, the terms need to be decomposed into
native gates. The higher the k locality of the terms, the more
two-qubit gates are required. We have chosen native two-qubit
CNOT gates as an example (see Appendix B), which is, e.g.,
relevant for the superconducting circuit platforms. The subfig-
ures (c) show the number of two-qubit gates. Table II presents
the analytical expressions for the number of gates and k local-
ity for the coordinate-based lattice models and the side-chain
conformation model. For details about the number of gates
required for the turn-based lattice model, see Appendix C.
The unary encoding in the coordinate-based and side-chain
conformation-based models involves only one- and two-body
interactions. Thereby, the curve for the unary encoding re-
mains the same in subfigures (b) and (c) in Figs. 2, 3, and 6.
The number of one-body interactions with the unary encoding
is

∑
i ci, with ci the number of possible conformations for the

ith amino acid. The number of two-body interactions is then
given by

(∑
i ci

2

)
. There are no higher-order interactions, that is,

the Hamiltonian is two-local.
The binary encoding will have a higher k in the k local-

ity than the unary encoding. For the coordinate-based and
side-chain conformation-based models, the binary encoding
k locality depends on the two largest elements ci of the cardi-
nality vector C. Each amino acid ai will need �log2 ci� qubits,
and the two largest such values added together will yield
the value of k. On average, the number of gates needed for
the binary encoding is much larger than unary. To pairwise
connect amino acids ai and a j , all the qubits associated with
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the two amino acids, i.e., �log2 ci� + �log2 c j�, need to be
connected, resulting in a m-body (m � 3) interaction require-
ment of

(�log2 ci�+�log2 c j�
m

)
for each pair. As explained in Sec. III,

each classical binary variable xi maps to (1 − σ z
i )/2, and the

multiplication of these binary variables leads to multiqubit
terms of all orders. The total number of m-body interactions
needed is then given by summing over all m and all pairs of
amino acids. If �log2 ci� � 3, we count higher-order interac-
tions that are not unique to the pair and are present in every
pair that includes ai. These interactions could be grouped
together and subtracted with a correction term εbinary, as seen
in Appendix A. The number of one-body interactions coin-
cides with the number of qubits

∑
i�log2 ci�. The number of

two-body interactions is
(∑

i�log2 ci�
2

)
, that is, all combinations

of two qubits. The highest contribution to the number of gates
for the binary encoding will be the double sum over all amino
acids and all higher-order interactions m = {3, . . . , k}.

In the BU-binary encoding, the k locality of the Hamil-
tonian is set with the integer variable g, which means that
for a given hardware with k-body gates, it is possible to
set g to match the hardware. Similar to the binary encod-
ing, the number of one-body interactions in the BU-binary
encoding is the same as the number of qubits and is given
by

∑
i� ci

g ��log2(g + 1)�. The number of two-body inter-
actions is equal to the number of pairwise combinations

of all qubits
(∑

i� ci
g ��log2(g+1)

2

)�. Analogously to the binary
encoding, the number of m-body interactions needed is
calculated by considering pairwise interactions of blocks,
as described in Sec. III A, and summing over all m-
body terms that contribute to a pair of blocks, written

as
(∑

i� ci
g

2

)�∑2�log2(g+1)�
m=3

(2�log2(g+1)�
m

)
. Additionally, if g � 4,

there will be interactions that appear multiple times and could
be grouped, and again we subtract a small correction term
εBU-binary, described in Appendix A.

For the turn-based model, the k locality of the interactions
with the unary encoding is also lower than that of the binary
encoding. However, in contrast to the other two models, this
k locality of the unary encoding is now larger than 2. The
number of gates needed for the unary is similar to, but still
less than, the number of gates required for the binary and BU-
binary encodings (see Figs. 4 and 5). Upon decomposition,
the unary encoding demands even fewer gates than the binary
encoding, especially evident in the three-dimensional case, as
depicted in Fig. 5. Comparing Figs. 2 and 3 to Figs. 4 and 5,
it is evident that the coordinate-based model requires fewer
interactions than the turn-based model in both the two- and
three-dimensional cases.

When examining the number of interactions in the turn-
based model on both square and tetrahedral lattices, in
agreement with prior research [13], it is evident that the latter
model uses fewer interactions and has a lower locality. Our
analysis shows that the coordinate-based model scales the
same in the number of interactions as the turn-based model
on the tetrahedral lattice. The coordinate-based model has a
scaling of O(N4) (see Table II), and the turn-based model on
the tetrahedral lattice has O(N4), as presented in Ref. [13].
Comparing the interactions needed for encoding a 15-amino
acid chain in the coordinate-based model calls for a higher
number of gates in general. For the unary encoding, the

TABLE III. Comparison of the relative size of the feasible so-
lution set, |F |

|S| , for the unary, binary, and BU-binary encoding. These
results are solely based on choosing one conformation per amino acid
and thereby exact for the side-chain conformation-based model and
approximate for the two lattice models.

Encoding Relative size of feasible set

Unary
∏

i ci/2ci

Binary
∏

i ci/2�log2(ci )�

BU-binary
∏

i ci/22� ci
g �

coordinate-based model has 9292.5 terms on average (SD =
2032.5), and the turn-based model on the tetrahedral lattice
has 4997 terms. For the binary encoding, the coordinate-based
model has 14 550 terms on average (SD = 9300), and the
turn-based model on the tetrahedral lattice has 9994 terms.
Again, there are smaller lattices where the coordinate-based
model using the binary encoding calls for fewer resources.

C. Size of the unfeasible solution set

The feasible solution set F encompasses all bitstrings
encoding valid physical solutions, where precisely one con-
formation is selected for each amino acid, and no constraints
are violated. The choice of the encoding for the problem
will affect the size of this feasible solution set compared to
all possible solution bitstrings. Here, we discuss the ratio
between the sizes of the feasible solution set F and the total
solution set S, which contains the feasible and unfeasible so-
lution sets, as an additional measure of the problem encoding
efficiency. We aim to minimize the unfeasible solution set
to reduce the search space. However, a smaller unfeasible
solution set does not ensure ease in finding the optimal state,
as the energy landscape can still be intricate and challenging
to navigate. This landscape may exhibit barren plateaus or
steep mountains, potentially leading to entrapment in local
minima.

The bitstrings constituting the feasible solutions for the
coordinate-based lattice model are determined by three
penalty terms presented in Sec. II A. In Fig. 7, we show an
approximate upper bound of the relative size of the feasible
solution set for the coordinate-based lattice model. We have
only considered two model constraints: one amino acid per
site and one site per amino acid. The approximate feasible
solution set F∗ contains solutions that may have a broken
chain. Similarly, we present an approximate upper bound of
|F∗|/|S| for the turn-based model in Fig. 8, as the calculations
are only based on the cardinality vector in Eq. (5) and do
not contain the overlap constraint. The auxiliary qubits of the
turn-based lattice model are not accounted for in this section,
as they do not affect the feasibility of the bitstrings. For the
side-chain conformation-based model, we present the exact
results in Fig. 9. Table III includes the analytical expression of
the relative sizes of the feasible solution sets. The calculations
are based on the bitstrings generated by choosing just one
conformation per amino acid for the three encodings.

The relative size of the feasible solution set decreases
rapidly with the increasing number of amino acids for all
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FIG. 7. Coordinate-based model on square (a) and cubic (b) lat-
tices. Ratio between the size of the approximate feasible solution
set |F∗| and the number of possible bitstrings |S| as a function of
the number of amino acids N for the unary (green cross), binary
(blue rhombus), and BU-binary (red triangle) encodings. For each
N , we consider all square/cubic grids with an area/volume (number
of sites) ranging from the lower bound N to the upper bound 50%
larger than the lower bound, 1.5N . The bars indicate one standard
deviation.

encodings. The turn-based model on the two-dimensional
lattice stands out as the only exception, with a relative size
exceeding 25% from nine amino acids onwards, as shown
in Fig. 8. The unary encoding will have a high number of
unfeasible solutions, as we need to keep Hamming weight 1
for each block of ci qubits, with ci the elements of the vector
in Eq. (1). Thereby, for the unary encoding, the ratio |F |/|S|
tends to zero as the number of conformations per amino acid
increases. It is upper bounded by 2−N , where each amino acid
only has two conformations.

In contrast, the binary encoding will generally have a
smaller unfeasible solution set than the unary encoding, even
if its size depends highly on the structure of the problem
instance. In the best-case scenario for the binary encoding,
the unfeasible solution set is empty when each amino acid
has 2l , l ∈ N conformations. The turn-based model in two
dimensions is an example of a best-case scenario of the binary
encoding, with each amino acid having 22 = 4 conformations
(see Fig. 8). In the worst-case scenario for the binary
encoding, when each amino acid has 2l + 1 conformations,
the unfeasible solution set tends to zero as with the unary
representation. Both the worst case and the general case of the
binary encoding are better than the unary encoding, though,
as seen in Fig. 9. While the restriction of only using two-level
systems applies to specialized hardware such as quantum

FIG. 8. Turn-based model on square (a) and cubic (b) lattices.
Ratio between the size of the approximate feasible solution set |F∗|
and the number of possible bitstrings |S| as a function of the number
of amino acids for the unary (green cross), binary (blue rhombus),
and BU-binary (red triangle) encodings.

annealers, a gate-based quantum computer theoretically
permits working with qudits of any dimension d , leading to a
best-case scenario of dl conformations. Again, the BU-binary
encoding falls between the unary and binary encodings, but

FIG. 9. Side-chain conformation-based models. Ratio between
the size of the feasible solution set |F | and the number of possible bit-
strings |S| as a function of the number of amino acids N for the unary
(green cross), binary (blue rhombus), and BU-binary (red triangle)
encodings. The problem instance size ranges from N = 3, . . . , 9,
with the number of conformations for each amino acid uniformly
distributed, U (2, 20). The bars indicate one standard deviation. The
dashed blue line without a marker is the worst-case scenario for the
binary encoding.
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the relative size of the feasible set rapidly approaches zero,
as seen in Figs. 7–9, since multiple blocks are required to
encode conformations for each amino acid.

V. CONCLUSION AND OUTLOOK

In summary, we have analyzed the resources for five
coarse-grained models: HP models on the lattice, with a turn-
based and coordinate-based representation of the amino acids
locations, and the off-lattice side-chain packing model. In
particular, we have computed the required qubits, interactions,
and two-qubit gates for problem formulations associated with
three encodings: unary, binary, and BU-binary.

We conclude that current NISQ devices are unsuitable for
simulating protein folding instances larger than a proof of
concept due to the significant gate requirement. The num-
ber of gates needed to address average-sized human proteins
reaches at least 107, which is significantly greater than what
is now possible with current gate fidelities of 99.9% [66,67].
However, the necessary number of qubits is attainable within
the NISQ era [68], with the side-chain packing problem and
protein folding using coordinate-based lattice models being
the most feasible applications. For instance, when employing
the binary encoding, a chain of 100 amino acids can be repre-
sented with fewer than 1000 qubits on average.

When comparing the resource requirements of the three en-
codings, we observe that using the binary representation calls
for the least number of qubits and yields a smaller unfeasible
solution set, but translates to the highest-order interactions
in the Hamiltonian. The binary encoding is thereby more
suitable for quantum hardware with access to multiqubit gates,
like ion-trap computers. Conversely, hardware limitations for
the k locality of the quantum gates, such as with supercon-
ducting qubits, favor using the unary encoding, even if it
requires more qubits to represent the same problem instance.
The BU-binary encoding, with the flexibility of choosing the
block size, can strike a balance between the unary and bi-
nary encodings to accommodate specific device limitations.
Our conclusions echo earlier results analyzing encodings for
quantum simulations of quantum models [47].

Counterintuitively, we find that the coordinate-based model
is more resource efficient than the turn-based model for the
square and cubic lattice, both in time and space complexity.
Even if the turn-based model requires fewer qubits for encod-
ing protein conformations, we need additional auxiliary qubits
to prevent overlapping conformations and encode pairwise
interactions. These additional qubits significantly increase the
qubit requirement by one order of magnitude compared to
the coordinate-based model. Further, the improved turn-based
model on the tetrahedral lattice [13] scales as the coordinate-
based model on the square lattices in the number of qubits and
gates needed. For shorter chains with a maximum of 15 amino
acids, the turn-based model on the tetrahedral lattice generally
uses fewer resources. Still, the coordinate-based model with
the unary encoding has a lower k locality than the tetrahedral
model, and with the binary encoding it requires fewer qubits
and gates for small lattices.

Even with a resource-efficient model, using a hybrid quan-
tum algorithm does not guarantee finding the native structure
of the protein. As presented by previous work [12,34,39], the

more challenging part of achieving a quantum advantage in
protein folding simulations may be the classical optimization
of the parameters in the quantum circuit. These obstacles
generate skepticism about QAOA’s ability to address the pro-
tein folding problem in the near future [39]. Research in
optimizing the quantum circuit goes hand in hand with the
search for resource-efficient model formulations. A potential
approach to address the requirement for auxiliary qubits could
involve applying unequal penalization to the inequality con-
straints [69]. We hope our paper will spur exploration for more
resource-efficient models for protein folding and stimulate
further research into qualitatively better quantum computing
systems.

The code used in this paper can be found in Ref. [70]. All
calculations are performed in PYTHON with NUMPY [71] and
SCIPY [72], and all the plots are generated with MATPLOTLIB

[73].
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APPENDIX A: CORRECTION TERM FOR BINARY
AND BU-BINARY ENCODING

In Sec. IV B of the main text, we calculate the num-
ber of interactions in the cost Hamiltonian of the side-chain
conformation-based and coordinate-based lattice models. To
compute the number of higher-order Hamiltonian terms for
the binary encoding, we consider all pairwise amino acid
interactions and all combinations of multiqubit terms ranging
from order 3 to the total number of qubits associated with each
amino acid pair. We need all the terms because, as explained in
Sec. III, each classical binary variable xi maps to (1 − σ z

i )/2,
and the multiplication of these binary variables leads to mul-
tiqubit terms of all orders. An amino acid ai has ci possible
conformations, as shown in Eq. (1). If the amino acid ai is
encoded by at least three qubits, a binomial term accounting
for all possible m-element qubit combinations (with m � 3)
will include some terms that only involve qubits encoding
the amino acid ai. However, we only want to count these
m-element terms once, and therefore, we need to subtract
them for every pairwise interaction in which the amino acid
ai is included except one.

We can group these extra multiqubit interactions in cor-
rection terms and subtract them from the total number. The
correction terms are given by

εbinary =
N∑
i

�log2(ci )�∑
m=3

(�log2(ci )�
m

)
(N − 2), (A1)

for the binary encoding, where we assume that N > 2.
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FIG. 10. A circuit based on CNOT ladders implementing the Pauli
tensor evolution in Eq. (B1) in terms of two-qubit interactions.

For the BU-binary encoding, instead of amino acids, we
consider all pairwise block interactions. By an analogous ar-
gument, the correction term is given by

εBU-binary =
(

−2 +
N∑
i

⌈
ci

g

⌉) �log2(g+1)�∑
m=3

(�log2(g + 1)�
m

)
.

(A2)

Note that for the number of qubits that encode one block to be
at least 3, we need �log2(g + 1)� � 3, or g � 4. In this paper
we used g = 3, so εBU-binary = 0. In general, both correction
terms are small compared to the number of interactions.

APPENDIX B: COMPILATION OF MULTIQUBIT GATES
INTO UNIVERSAL GATE SETS

In Sec. IV of the main text, we calculate the number of
two-qubit interactions in each of the five models, together
with the encodings. To transition from k-body interaction to
two-body interactions, we decompose the higher-order gates
as follows. The phase gadgets are a class of unitaries re-
lated to Pauli tensor evolution operators, essential blocks in
variational quantum algorithms. The multiqubit interactions
relevant to the quantum algorithms analyzed in this paper can
be implemented in a superconducting circuit processor using
CNOT-staircase constructions. In particular, we consider the
general operation

U i jk�

Z (α) = exp

[
−i

α

2
σ i

z · · · σ j
z σ k

z · · · σ �
z

)]
, (B1)

which can be implemented with CNOT ladders, as shown in
Fig. 10. With such construction, one needs 2(m − 1) two-
qubit gates for an m-body Pauli tensor, i.e., an interaction term
acting upon m qubits. Here, we do not consider reductions
due to successive applications of these blocks or overheads
for two-qubit gates between distant qubits.

This well-known CNOT-staircase construction is
particularly suitable for quantum hardware with a gate
set comprising single- and two-qubit operations, such as
superconducting circuits. The final gate count depends
on the particular available gate set and compilation. For
instance, access to multiqubit gates [74,75] and controlled

arbitrary-phase gates CZφ reduces the algorithm depth [76].
Moreover, the particular qubit connectivity of the device
introduces a gate overhead due to routing steps comprising
additional SWAP gates that allow distant qubits to interact.

APPENDIX C: LOCALITY AND INTERACTION
IN THE TURN-BASED LATTICE MODEL

In Sec. IV of the main text, we calculate the number of
qubits and interactions of the turn-based model on the square
and cubic lattice. Here, we review previous work on the turn-
based lattice model. We pay attention to the locality of terms
and count the interactions associated with each equation. In
Ref. [35], the authors construct a cost Hamiltonian which
encodes a two-dimensional (D = 2) HP-lattice model with the
binary encoding. In Ref. [36], the authors expand the earlier
model to three dimensions (D = 3) using the MJ energies,
also with the binary encoding.

1. Cost Hamiltonian

The cost Hamiltonian has a general form consisting of
three terms: one term that penalizes the choice of two con-
secutive turns folding back onto itself Hback, one term that
penalizes overlapping later in the amino acid chain Hoverlap,
and Hpair which is is the two-body interaction term (HP or MJ
potential).

2. Taking a turn

To begin, some equations are designed to represent turns in
specific spatial directions. These equations evaluate as TRUE if
the jth turn occurs in the specified spatial direction, such as
the x direction:

d j
+x = (1 − q3 j−4) q3 j−5q3 j−3, (C1)

d j
−x = (1 − q3 j−3) q3 j−5q3 j−4. (C2)

These equations are then used to calculate how many times
each turn has occurred in the previous chain, thereby getting
the coordinate of the amino acid of interest. In the unary
encoding, the turn equation for each direction only includes
one qubit, as noted earlier [12]. Each equation has a locality
of the lattice dimension D in the binary and BU-binary case
and one in the unary case.

3. Not turning back

The term Hback uses AND functions (∧) that take two turns
as input and return true if the second goes backward. For
example, to penalize turning right, +x, at turn j AND then left,
−x, in turn j + 1, we have the circuit

d j
+x ∧ d j+1

−x = [(1 − q3 j−4)q3 j−5q3 j−3]

× [(1 − q3 j )q3 j−2q3 j−1]

= (1 − q3 j−4 − q3 j + q3 jq3 j−4)

× q3 j−5q3 j−2q3 j−3q3 j−1. (C3)
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To penalize turning right then left OR (∨) left then right, we
have (

d j
+x ∧ d j+1

−x

) ∨ (
d j

−x ∧ d j+1
+x

)
= (

d j
+x ∧ d j+1

−x

) + (
d j

−x ∧ d j+1
+x

)
. (C4)

By combining all versions of right then left, left then right,
and so on,(
d j

+x ∧ d j+1
−x

) ∨ (
d j

−x ∧ d j+1
+x

) ∨ (
d j

+y ∧ d j+1
−y

) ∨ (
d j

−y ∧ d j+1
+y

)
,

(C5)

it is possible to penalize all backturns. The Hback results in
at most two-dimensional-local terms in the binary and BU-
binary encodings, and two-local terms in the unary encoding.
The final Hback is then given by

Hback = λback

{(
q0 ∨ d2

−x

) + [
(1 − q0) ∨ d2

−y

]

+
N−3∑
j=2

[(
d j

+x ∧ d j+1
−x

) + (
d j

−x ∧ d j+1
+x

)

+ (
d j

+y ∧ d j+1
−y

) + (
d j

−y ∧ d j+1
+y

)
+ (

d j
+z ∧ d j+1

−z

) + (
d j

−z ∧ d j+1
+z

)]}
. (C6)

The number of interactions on the three-dimensional lattice
is (N − 5), from the summation, times the terms in the AND

expressions, which is 4 × 2 for the x axis and z axis and
12 × 2 for the y axis and sums to 20 terms. The number of
interactions on the two-dimensional lattice is 2N − 10, from
the summation, times 11.

4. Position of the amino acids

Further, we need equations to describe the position of
amino acid i with the help of the boolean turn equations above,
e.g., in the x direction, we have

xi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if i = 0
(a0 occupy the origin),

1 + q0+∑i−1
j=2

(
d j

+x − d j
−x

)
, otherwise,

(C7)

which summarizes the left and right turns of previous amino
acids to determine which x coordinate the amino acid has.
The locality of the position equations is lower than for the
turn equations; the minus sign inside the summation in xi

cancels out the highest-local term, resulting in, at most, next-
to-highest-local terms in the 3D case, and we get

d j
+x − d j

−x = (1 − q3 j−4)q3 j−5q3 j−3

− (1 − q3 j−3)q3 j−5q3 j−4

= q3 j−3q3 j−5 − q3 j−3q3 j−4q3 j−5

− q3 j−4q3 j−5 + q3 j−3q3 j−4q3 j−5

= q3 j−3q3 j−5 − q3 j−4q3 j−5, (C8)

which also holds for yi and zi. This is repeated in the two-
dimensional case where two-local equations for the position

TABLE IV. Qubits needed to encode the information on the dis-
tance between two amino acids for each encoding, that is, the variable
u in Eq. (C13).

Encoding Qubits (u)

Unary (j−i)
Binary log2( j − i)
BU-binary �( j − i)/g��log2 (g + 1)�

are reduced to one-local. The position equations have the
locality of D − 1 in binary and BU-binary encodings and a
locality of 1 in the unary encoding.

5. Distance between amino acids

Moreover, we need equations that give the distance be-
tween two amino acids j and k:

Di j = (xi − x j )
2 + (yi − y j )

2 + (zi − z j )
2. (C9)

All terms in the distance equation are 2(D − 1)-local for the
binary and BU-binary encodings, and two-local for the unary
encoding, as all other ordered terms cancel out. The number
of interactions in the distance equation will be the sum of all
possible pairs of the terms in the position equations. The terms
for the maximal distance N will contain the other distance
terms, and the maximal number of terms is thus

(N
2

)
.

6. Avoiding overlap

Auxiliary qubits are introduced to enforce the bounds on
the distance function

0 � Di j � (i − j)2, (C10)

and to ensure no amino acids overlap,

Di j 	= 0, if i > j + 3, (C11)

thereby enforcing the inequality constraints

Di j � 1. (C12)

The total number of auxiliary qubits needed to encode the
information of the distance between amino acids for all amino
acid pairs in the binary encoding is

Mdist
aux =

N−5∑
i=0

N−1∑
j=i+4

�2u(|1 + i − j| mod 2)�, (C13)

where the number of qubits u to encode the information will
differ between the encodings according to Table IV.

We introduce the slack variables αi j from the qubit index
DN − 7 onward. Each slack variable is encoded on μi j qubits,
with the qubit pointer given by

pi j = (DN − 8) +
i∑

u=0

N−1∑
n=u+4

μun −
N−1∑
m= j

μim. (C14)

We can thus write the slack variables as

αi j =
μi j−1∑

j=0

qpi j+ j2
μi j−1− j . (C15)
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TABLE V. The number of interactions and type of interaction for each operator in the double sum in Eq. (C17). Here, we denote the
dimensionality of the lattice D, the number of amino acids N , the number of auxiliary qubits for encoding the distance Mdist

aux , the equation for
distance between two amino acids Di j from Eq. (C9), the slack variables’ value αi j from Eq. (C15), and the number of qubits needed to store
the slack variables μi j .

Operator Interactions Interacting qubits k-locality binary and BU-binary k-locality unary

2μi j 2 − 2μi j+1 0

D2
i j

((N
2

)
2

)
q0,...,(DN−8) 4(D−1) 4

α2
i j

(Mdist
aux
2

)
q(DN−7),...,Mdist

aux
2 2

2Di jαi j

(N
2

)
Mdist

aux q0,...,Mdist
aux

2(D − 1) + 1 3

−2μi j+1αi j Mdist
aux q(DN−7),...,Mdist

aux
1 1

The final Hamiltonian to avoid the overlap

Hoverlap = λoverlap

N−5∑
i=0

N−1∑
j=i+4

(|1 + j − i| mod 2)

× (2μi j − Di j − αi j )
2, (C16)

where μi j is an integer. Hence, we calculate the needed qubits
by counting the terms linked to the following operators except
the first one:

(2μi j − Di j − αi j )
2 = 2μi j 2 − 2μi j+1 + D2

i j + α2
i j

+ 2Di jαi j − 2μi j+1αi j . (C17)

See Table V for an overview of the k locality and interacting
qubits associated with the previous operators. The number of
interactions in the term D2

i j is all combinations of connecting
two amino acids, and then all combinations of connecting
these combinations 2 and 2:((N

2

)
2

)
= 1

8
(N4 − 2N3 − N2 + 2N ) ∝ N4, (C18)

and the locality is 4(D − 1) for the binary and BU-binary
encodings, and 4 for the unary encoding. The number of
interactions in the α2

i j is all combinations of connecting the
auxiliary qubits Mdist

aux pairwise. The number of interactions in
the term 2Di jαi j is the number of interactions in Di j times the
number of terms in αi j , which is equal to Mdist

aux . The last term
2μi j+1αi j has locality 1.

7. Pairwise amino acid interaction

The complexity of the Hamiltonian Hpair in the turn-based
model arises from the need for encoding distance information
between amino acids to calculate their lattice interactions.
This requires circuit-based calculations, demanding additional
qubits to track interactions between specific amino acids ( j
and k) on the lattice:

ω jk =
{

1, if Djk = 1

0, otherwise,
(C19)

and the number of auxiliary qubits needed is

Mpair
aux =

N−4∑
j=0

N−1∑
k= j+3

[(| j − k|) mod 2]. (C20)

The auxiliary qubits can then be used with an energy matrix
(either MJ or HP potential) Pjk , and the expression on the
pairwise Hamiltonian is formulated as

Hpair =
N−4∑
j=0

N−1∑
k= j+3

(| j − k| mod 2)ω jkPjk (2 − Djk )

=
N−4∑
j=0

N−1∑
k= j+3

(| j − k| mod 2)Pjk (2ω jk − Djkω jk ).

(C21)

The number of interactions to build the pair Hamiltonian is
thereby given by the number of terms in Di j times the number
of auxiliary qubits:

Kpair =
(

N

2

)
Mpair

aux . (C22)

8. Total number of interactions

We get the total interaction for the turn-based lattice model:

K total = (DN − 8)c1

+
((N

2

)
2

)
+

(
Mdist

aux

2

)
+

(
N

2

)
Mdist

aux

+
(

N

2

)
Mpair

aux , (C23)

where the constant c1 is dependent on the lattice dimension
and is small in comparison to the other terms.

9. Total number of qubits

The total number of qubits is given by

Mtotal = Mconf + Mdist
aux + Mpair

aux . (C24)

For the binary encoding this is

Mbinary
total = (DN − c1)

+
N−5∑
i=0

N−1∑
j=i+4

�2 log2 ( j − i)�(|1 + j − i| mod 2)

+
N−4∑
j=0

N−1∑
k= j+3

(| j − k| mod 2), (C25)
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but here, we changed the order of i and j in the logarithm, as
j is always larger than i, and we cannot take the logarithm of
a negative value. Asymptotically, the number of qubits grows
as

Mbinary
total = 1

2
N2 log2 N −

(
1

4
− 3

4 ln 2

)
N2 + O(N ). (C26)

Next, the total number of qubits needed for the unary
encoding is then

Munary
total = 2DN +

N−5∑
i=0

N−1∑
j=i+4

�2( j − i)�(|1 + j − i| mod 2)

+
N−4∑
j=0

N−1∑
k= j+3

(| j − k| mod 2). (C27)

In this case, the number of qubits grows asymptotically as

Munary
total = 1

6 N3 + 1
4 N2 + O(N ). (C28)

Lastly, the total number of qubits needed for the BU-binary
encoding is

MBU-binary
total = �log2 (g + 1)��ND/g�

+
N−5∑
i=0

N−1∑
j=i+4

2�( j − i)/g�

�log2 (g + 1)�(|1 + j − i| mod 2)

+
N−4∑
j=0

N−1∑
k= j+3

(| j − k| mod 2). (C29)

This number scales asymptotically as

MBU-binary
total = log2(1 + g)

6g
N3

+ log2(1 + g)

4g
N2 + O(N ). (C30)
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