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Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases
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The analysis of noisy quantum states prepared on current quantum computers is getting beyond the capabilities
of classical computing. Quantum neural networks based on parametrized quantum circuits, measurements and
feed-forward can process large amounts of quantum data to reduce measurement and computational costs of
detecting nonlocal quantum correlations. The tolerance of errors due to decoherence and gate infidelities is
a key requirement for the application of quantum neural networks on near-term quantum computers. Here
we construct quantum convolutional neural networks (QCNNs) that can, in the presence of incoherent errors,
recognize different symmetry-protected topological phases of generalized cluster-Ising Hamiltonians from one
another as well as from topologically trivial phases. Using matrix product state simulations, we show that
the QCNN output is robust against symmetry-breaking errors below a threshold error probability and against
symmetry-preserving errors provided the error channel is invertible. This is in contrast to string order parameters
and the output of previously designed QCNNs, which vanish in the presence of any symmetry-breaking errors.
To facilitate the implementation of the QCNNs on near-term quantum computers, the QCNN circuits can be
shortened from logarithmic to constant depth in system size by performing a large part of the computation in
classical postprocessing. These constant-depth QCNNs reduce sample complexity exponentially with system
size in comparison to the direct sampling using local Pauli measurements.
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I. INTRODUCTION

Existing noisy intermediate-scale quantum (NISQ) com-
puters can perform computations that are challenging for
classical computers [1]. However, quantum computing hard-
ware and quantum algorithms need to be further developed to
enable the exploitation of quantum computers in areas such as
the simulation of many-body systems [2,3] and machine learn-
ing [4]. One of the major challenges in developing scalable
quantum computers is the characterization of noisy quantum
data produced by near-term quantum hardware. With increas-
ing system size, standard characterization techniques using
direct measurements and classical postprocessing become
prohibitively demanding due to large measurement counts
and computational efforts. While many local properties can
be efficiently determined using randomized measurements
[5], global properties of quantum states are typically hard to
estimate.

Quantum machine learning techniques based on the di-
rect processing of quantum data on quantum processors can
substantially reduce the measurement costs, including quan-
tum principle component analysis [6], quantum autoencoders
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[7–9], certification of Hamiltonian dynamics [10,11], quan-
tum reservoir processing [12]. Moreover, quantum neural net-
works based on parametrized quantum circuits, measurements
and feed-forward can process large amounts of quantum data,
to detect nonlocal quantum correlations with reduced mea-
surement and computational efforts compared to standard
characterization techniques [13–17]. A key requirement for
employing quantum neural networks to characterize noisy
quantum data produced by near-term quantum hardware is the
tolerance to errors due to decoherence and gate infidelities.

The characterization of nonlocal correlations in quantum
states is of key importance to condensed matter physics.
It is required for the classification of topological quantum
phases of matter [18–21] and for understanding new strongly
correlated materials [22] such as high-temperature super-
conductors [23]. Classical machine learning tools for the
recognition of topological phases of matter have recently been
studied, uncovering phase diagrams from data produced by
numerical simulations [24–26] and measured in experiments
[27–30]. Moreover, quantum many-body states belonging to
topological quantum phases have been prepared on quantum
computers using exact matrix product state representations
[31], unitary quantum circuits [32], and measurement and
feed-forward [33]. Properties of topological phases have been
probed on quantum computers by measuring characteristic
quantities [31,34] such as string order parameters (SOPs)
[35,36]. The detection of topological phases can be en-
hanced via the processing of measurement data on a classical
computer [37]. Classical machine learning algorithms have
been shown to classify topological quantum phases from
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classical shadows formed by randomized measurements [38].
However, the rapidly increasing sample complexity with sys-
tem size remains an outstanding problem for such approaches.

In Ref. [14], quantum convolutional neural networks (QC-
NNs) have been proposed to recognize symmetry-protected
topological (SPT) phases [18,19] with reduced sample com-
plexity compared to the direct measurement of SOPs. Such
QCNNs can be trained to identify characteristics of SPT
phases from training data [14,39,40]. Alternatively, QCNNs
can be analytically constructed to mimic renormalization-
group flow [14,41], a method for classifying quantum phases
[22]. A shallow QCNN has been implemented on a 7-qubit
superconducting quantum processor in Ref. [42]. This QCNN
has exhibited robustness against incoherent errors on the
NISQ device, which allowed for the recognition of a SPT
phase with a higher fidelity than the direct measurement of
SOPs. However, the propagation of errors leads to a rapid
growth of error density in deeper QCNNs due to the reduction
of qubit number from one QCNN layer to the next, which
represents a central problem.

Here we overcome this problem by designing QCNNs for
generalized cluster-Ising models that can tolerate incoherent
errors. The QCNN circuits are constructed by alternating
layers, which mimic renormalization-group flow, and new
layers, which correct incoherent errors. Due to the tolerance
to errors, the QCNNs recognize SPT phases of exact ground
states provided access to only noisy states, which approximate
the former on NISQ devices. Apart from distinguishing SPT
phases from topologically trivial phases as previously shown
in Refs. [14,40–42], we demonstrate that QCNNs constructed
here can recognize two SPT phases from one another.

Using matrix product state (MPS) simulations, we show
that the QCNN output is robust against symmetry-breaking
errors below a threshold error probability. This enables new
quantum phase recognition capabilities for QCNNs in sce-
narios where SOPs and previous QCNN designs [14] are
impractical. SOPs rapidly vanish with an increasing length for
any probability of symmetry-breaking errors [43], whereas the
QCNN proposed in Ref. [14] rapidly concentrates symmetry-
breaking errors with increasing depth leading to a vanishing
output for any error probability.

In addition to the tolerance to symmetry-breaking errors,
the QCNNs constructed here tolerate symmetry-preserving
errors if the error channel is invertible. The error tolerance
is limited close to phase boundaries as the threshold er-
ror probability decreases with diverging correlation lengths.
Nonetheless, a sharp change in the QCNN output at the phase
boundaries allows us to precisely determine critical values of
Hamiltonian parameters.

To facilitate the implementation of QCNNs on near-term
quantum computers, we show that the QCNN circuits con-
structed here can be shortened from logarithmic to constant
depth in system size by efficiently performing a large part of
the computation in classical postprocessing. The output of the
QCNNs corresponds to the expectation value of a multiscale
SOP, which is a sum of products of individual SOPs. The
multiscale SOP can, in principle, be determined using direct
Pauli measurements on the input state without using any quan-
tum circuit. However, the constant-depth QCNN circuits we
derive here reduce the sample complexity of measuring the

multiscale SOP exponentially with system size in comparison
to direct Pauli measurements.

The remainder of this paper is structured as follows. In
Sec. II, we introduce the generalized cluster-Ising model we
consider before describing the construction of the QCNNs to
analyze it in Sec. III. We investigate the robustness of the
QCNN output against incoherent symmetry-preserving errors
in Sec. IV and show how to design QCNNs that tolerate
symmetry-breaking errors in Sec. V. We investigate the phase
transition between two SPT phases in Sec. VI and study the
tolerance to incoherent errors close to phase boundaries in
Sec. VII. In Sec. VIII, we compare the sample complexity of
QCNNs to the direct Pauli measurement of the input state be-
fore presenting concluding remarks and possible applications
of error-tolerant QCNNs in Sec. IX.

II. GENERALIZED CLUSTER-ISING MODEL IN
THE PRESENCE OF INCOHERENT ERRORS

We consider a one-dimensional chain of N qubits with
open boundary conditions described by the generalized
cluster-Ising Hamiltonian

H = −J1

N−1∑
j=2

Cj − J2

N−2∑
j=3

Dj

− h1

N∑
j=1

Xj − h2

N−1∑
j=1

XjXj+1, (1)

where Cj = Zj−1XjZ j+1, Dj = Zj−2Xj−1XjXj+1Zj+2, and Xj

as well as Zj are Pauli operators on qubit j. The Hamil-
tonian exhibits Z2 × Z2 symmetry generated by Pe/o =∏N/2

j=1 X2 j/2 j−1 as well as time-reversal symmetry (complex
conjugation). The ground states |ψ〉 of the Hamiltonian
belong to one of four phases: a paramagnetic phase, an an-
tiferromagnetic phase, a ZXZ SPT phase and a ZXXXZ SPT
phase [44]. The ZXZ (ZXXXZ) SPT phase contains the ZXZ
(ZXXXZ) cluster state, which is a stabilizer state with stabi-
lizer elements Cj (Dj) and thus the ground state for J2 = h1 =
h2 = 0 (J1 = h1 = h2 = 0). SPT phases are characterized by
SOPs [35,36]. In particular, the SOPs

S jk = Zj

⎛⎝(k− j)/2∏
i=1

Xj+2i−1

⎞⎠Zk, (2)

Tjk = ZjXj+1Yj+2

⎛⎝(k− j)/2−2∏
i=2

Xj+2i

⎞⎠Yk−2Xk−1Zk, (3)

attain nonvanishing values in the ZXZ SPT phase and the
ZXXXZ SPT phase, respectively.

NISQ computers operate in the presence of noise due to
decoherence and gate infidelities. To simulate errors that occur
during the preparation of the many-body ground states |ψ〉 of
the Hamiltonian (1) on NISQ devices, we consider an error
channel

ρ = E (|ψ〉〈ψ |) =
4N∑

l=1

Kl |ψ〉〈ψ |K†
l , (4)
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FIG. 1. Quantum convolutional neural network (QCNN). (a) QCNN quantum circuit consisting of d convolutional layers, d pooling layers,
and a final fully connected (FC) layer. The measurement of the output qubits labels whether the input state ρ belongs to a given SPT phase.
(b) QCNN circuit mimicking renormalization-group flow. In each convolutional layer f = 1, 2, ..., d , a disentangling unitary U †

N/3 f −1 and an

entangling unitary UN/3 f are applied on sublattices with N/3 f −1 qubits and N/3 f qubits, respectively. In each pooling layer f , a quantum-error-
correction unitary QEC f is performed on a sublattice with N/3 f −1 qubits. In the fully connected layer, a disentangling unitary U †

N/3d is applied.

At the end, �N/3d� qubits are measured in the X bases. (c) QCNN circuit equivalent to (b) consisting of a constant-depth quantum circuit U †
N ,

the measurement of all qubits in the X basis and classical postprocessing. The label of the quantum phase is determined as a Boolean function
G(x) of the measured bit strings x.

where Kl ∈ {√p11,
√

pX X,
√

pY Y,
√

pZ Z}⊗N are Kraus op-
erators, pE are probabilities of Pauli errors E = X,Y, Z and
p1 + pX + pY + pZ = 1. For pX = pY = pZ , this error chan-
nel describes single-qubit depolarizing noise.

We formulate quantum phase recognition on NISQ devices
as a task to identify whether the exact ground state |ψ〉 of the
Hamiltonian (1) belongs to a given quantum phase provided
access only to the noisy state ρ, which approximates |ψ〉.

III. QUANTUM CONVOLUTIONAL NEURAL NETWORKS

Our goal is to design QCNNs that detect the SPT phases of
the generalized cluster-Ising model via quantum phase recog-
nition. To perform quantum phase recognition, we process
the ground states ρ with the QCNN depicted in Fig. 1(a)
consisting of d convolutional layers, d pooling layers, and a
final fully connected layer. In each convolutional layer f =
1, 2, ..., d , a translationally invariant unitary Vf is applied. In a
pooling layer, the system size is reduced by measuring a frac-
tion of qubits and applying feed-forward gates Wf conditioned
on the measurement outcomes on the remaining qubits. In this
paper, we consider the reduction of system size by a factor
of three in each pooling layer. As a result, the maximal depth
d = �log3 N� of the QCNN is logarithmic in system size N . In
the fully connected layer, a general unitary VFC is performed
on all remaining qubits and the qubits are read out labeling
whether the ground state |ψ〉 belongs to a given SPT phase or
not.

For each SPT phase, we construct the QCNN depicted in
Fig. 1(b) by generalizing the procedure proposed in Ref. [14].
First, we identify a characteristic state belonging to each SPT
phase. For the ZXZ (ZXXXZ) SPT phase this is the ZXZ
(ZXXXZ) cluster state, which can be mapped onto a product

state by a disentangling unitary U † consisting of two (four)
layers of two-qubit gates between neighboring qubits, see Ap-
pendix B for details. The convolutional layers of the QCNN
consist of the disentangling unitary U †

N/3 f −1 mapping the cor-

responding cluster state on N/3 f −1 qubits onto a product state
and the entangling unitary UN/3 f mapping the product state on
a sublattice with N/3 f qubits onto the cluster state. As a result,
we obtain the cluster state for a reduced system size after the
measurement of the remaining qubits in each pooling layer.
By construction, the cluster state is a fixed point of the QCNN
circuit.

Next, we make all states belonging to the ZXZ (ZXXXZ)
SPT phase flow towards the ZXZ (ZXXXZ) cluster state
with the increasing depth of the QCNN. To this end, we
implement in pooling layers a procedure that is analogous
to quantum error correction (QEC), identifying perturbations
away from the cluster state as errors. These errors are de-
tected by measurements in the pooling layers and corrected
by feed-forward gates Wf on the remaining qubits, which are
conditioned on the measurement outcomes. A measurement
and a feed-forward gate can be replaced by an entangling
gate and tracing out of the “measured” qubits. Using this
equivalence, we represent the QEC procedure in each pooling
layer f as a unitary QEC f as depicted in Fig. 1(b). It has
been shown in Ref. [14] that by correcting Xj and XjXj+1

errors one can make all pure ground states of the cluster-Ising
Hamiltonian belonging to the ZXZ SPT phase (for J2 = 0)
flow towards the ZXZ cluster state. In this way, the QCNN
mimics a renormalization-group flow [22].

In the fully connected layer, we measure stabilizer ele-
ments, i.e., either Cj or Dj for the ZXZ phase or the ZXXXZ
SPT phase, respectively. This measurement is performed by
applying the disentangling unitary U †

N/3d and reading out all
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remaining qubits in the X basis. For system size N and depth
d , we have m = �N/3d� output qubits. The QCNN output

y = 1

m

(m−1)/2∑
j=−(m−1)/2

〈X N+1
2 + j×3d 〉 (5)

is thus the expectation value of X averaged over the m output
qubits.

Before discussing the performance of the constructed QC-
NNs in the presence of noise due to decoherence and gate
infidelities on NISQ devices, we make a crucial observation
allowing for a substantial shortening of the QCNN circuits.
A large part of the QCNN circuits depicted in Fig. 1(b) can
be efficiently implemented in classical postprocessing if the
QEC procedures Q̃EC f = U †

N/3 f QEC f UN/3 f transformed by
the entangling unitaries UN/3 f map X -basis eigenstates |x〉
onto other X -basis eigenstates |x′〉,

Q̃EC f |x〉 ∝ |x′〉 . (6)

In this case, the QCNNs are equivalent to a constant depth
quantum circuit consisting of the disentangling unitary U †

N ,
the measurement of all qubits in the X basis and classical
postprocessing as depicted in Fig. 1(c). See Appendix B for
the derivation of these equivalent QCNN circuits. In these
equivalent QCNN circuits, only the first convolutional layer
is implemented on a quantum computer. The remaining con-
volutional layers, all pooling layers and the fully connected
layer are implemented after the measurement of all qubits in
classical postprocessing as a bit-string-valued Boolean func-
tion G(x) = x′ of the measured bit strings x = x1x2 . . . xN ,
where x j = 0, 1 corresponds to measuring Xj = +1,−1. Er-
rors perturbing the cluster states lead to flipped measurement
outcomes after the disentangling unitary U †

N . These error syn-
dromes are then corrected in classical postprocessing.

Note that the QCNN proposed in Ref. [14] satisfies the
condition (6) and its equivalent QCNN circuit consisting of
a constant-depth quantum circuit, measurement and classical
postprocessing has been developed and experimentally real-
ized in Ref. [42].

In this paper, we consider the equivalent QCNN circuits
depicted in Fig. 1(c). First, we numerically obtain the ground
states of the Hamiltonian (1) in the thermodynamic limit using
the infinite density matrix renormalization group (iDMRG)
algorithm [45], see Appendix A for details. Next, we perform
the constant-depth quantum circuit on the infinite MPSs by
sequentially applying two-qubit gates between neighboring
qubits. Then, we sample MS outcomes of the measurement
of N qubits from the infinite MPSs. Finally, we determine
the QCNN output y from the measured bit strings x using the
Boolean function G(x) as

y = 1

m

1

MS

(m−1)/2∑
j=−(m−1)/2

∑
x

[1 − 2 G(x) N+1
2 + j×3d ]. (7)

IV. TOLERANCE TO SYMMETRY-PRESERVING ERRORS

NISQ computers operate in the presence of noise due to
decoherence and gate infidelities. To enable the exploitation
of QCNNs as a characterization tool for NISQ computers, it

FIG. 2. QCNN with X -error correcting layers detecting the ZXZ
phase. The QCNN circuit consists of a constant-depth quantum
circuit, the measurement of all qubits in the X basis and classical
postprocessing. The quantum circuit performs the disentangling uni-
tary U †

N consisting of controlled Z gates between neighboring qubits.
The outcomes x of the measurement in the X basis are processed
by the Boolean function G(x), expressed as a logic circuit in terms
of AND and XOR gates. The logic circuit is composed of d layers
correcting the syndromes of X errors. Red and purple lines show
the propagation of X errors and Z errors, respectively, through the
QCNN circuit. The X -error syndrome is corrected by the XOR gate
marked in red.

is thus crucial to investigate the effects of noise on the perfor-
mance of QCNNs and to construct QCNNs whose output is
robust against noise.

We expect that the preparation of typical many-body
ground states |ψ〉 will require substantially deeper quantum
circuits than the QCNNs considered in this paper, which can
be implemented in very short constant depth as discussed
above. We thus focus on the robustness of QCNNs against
errors that occur during the preparation of many-body ground
states |ψ〉 described by the error channel (4) and neglect errors
occurring during the QCNN circuits.

We start by investigating the performance of the QCNN
proposed in Ref. [14] in the presence of incoherent X errors
described by the error channel (4) with pY = pZ = 0. We use
the compact implementation as a quantum circuit consisting
of the disentangling unitary U †

N , the measurement of all qubits
in the X basis and classical postprocessing. We show the
QCNN circuit in Fig. 2. The disentangling unitary U †

N con-
sists of controlled Z gates between neighboring qubits. The
outcomes x of the measurement in the X basis are processed
by the Boolean function G(x), which is expressed as a logic
circuit in terms of AND and XOR gates, see Fig. 2. The
key feature of the QCNN is that it identifies and corrects
perturbations away from the ZXZ cluster state. In particular,
it corrects coherent Xj and XjXj+1 errors, which drive per-
turbations away from the cluster state to other ground states
of the Hamiltonian (1) [14]. The logic circuit is composed
of d layers f = 1, 2, ..., d , which correspond to the X -error
correcting Q̃EC f procedures transformed by the disentangling
unitary U †

N .
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FIG. 3. QCNN consisting of X -error correcting layers for the
ground states of the cluster-Ising Hamiltonian (1) perturbed by in-
coherent X errors. The QCNN output as a function of h2/J1 and
different depths d of the QCNN. The orange region denotes the
ZXZ phase. (Parameters: h1/J1 = 0.5, J2 = 0, N = 1215, pX = 0.1,
pY = pZ = 0, MS = 104).

We plot in Fig. 3 the QCNN output across a cut through the
phase diagram as a function of h2/J1 for fixed h1/J1 = 0.5 and
J2 = 0 for different depths d of the QCNN. We can see that
the QCNN output converges to unity with the increasing depth
of the QCNN in the ZXZ SPT phase but vanishes with the
increasing depth outside of the SPT phase. This demonstrates
our first observation that QCNNs can tolerate incoherent X
errors since their QEC procedures can correct not only coher-
ent perturbations, that transform the cluster state to another
ground state in the SPT phase, but also incoherent errors.

The QCNN output converges to ideal noise-free values
with increasing depth d for any probability pX �= 0.5 of in-
coherent X errors, since the error channel is invertible for
these cases, see Appendix C for details. For pX = 0.5 the
situation is qualitatively different as the error channel (4) is
not invertible. Invertible symmetry-preserving error channels
for pX �= 0.5 preserve SPT order [43]. In contrast, the nonin-
vertible error channel for pX = 0.5 annihilates SOPs

E†(S jk ) = (1 − 2pX )2S jk = 0, (8)

for all j and k, where E†(O) = ∑4N

l=1 K†
l OKl is the adjoint

channel to Eq. (4). As a result, also the QCNN output vanishes
for any input ground state and any depth d .

We conclude that QCNNs recognizing the ZXZ SPT phase
can tolerate symmetry-preserving X errors, provided that the
error channel is invertible.

V. TOLERANCE TO SYMMETRY-BREAKING ERRORS

Since noise in NISQ devices typically does not preserve the
symmetries of problem Hamiltonians, it is important to inves-
tigate the robustness of QCNNs against symmetry-breaking
errors.

While coherent and incoherent X errors are tolerated by the
QCNN designed in Ref. [14], the situation is fundamentally
different for incoherent Z errors as they break the Z2 × Z2

symmetry of the Hamiltonian (1). Z errors described by the
error channel (4) with pX = pY = 0 lead to a decrease of the
SOPs

E†(S jk ) = (1 − 2pZ )
L−1

2 S jk, (9)

which scales exponentially with their length L = k − j + 1.
As a result, the SOPs rapidly vanish with the increasing length
L for any finite (nonunity) Z-error probability pZ �= 0, 1.

Similarly to SOPs, the original design [14] of the QCNN
depicted in Fig. 2 is substantially affected by Z errors. The
syndrome of a Zj error, i.e., the flipped outcome x j of the
measurement in the X basis, is denoted in Fig. 2 by a purple
line. In contrast to X -error syndromes that are corrected (see
red lines in Fig. 2), Z-error syndromes (purple line) propagate
through the QCNN circuit, see Appendix D for more details.
As the system size is reduced by a factor of three in each layer,
the density of Z-error syndromes increases with the increasing
depth of the QCNN. As a result, the output of the QCNN
rapidly decreases with the depth d both in the ZXZ SPT phase
and outside of the phase for any finite probability pZ �= 0, 1,
see Appendix E for details.

To perform quantum phase recognition on NISQ devices,
QCNNs thus need to be robust against symmetry-breaking er-
rors. In Ref. [42], symmetry-breaking errors were corrected in
the fully connected layer. While this improved the robustness
of the QCNN with depth d = 1, this approach is impractical
for deeper QCNNs due to the rapidly increasing density of
Z errors with d . To overcome this issue, we construct a new
QCNN depicted in Fig. 4 by alternating the original X -error
correcting layers with new Z-error correcting layers. The Z-
error correcting layer f consists of a new QEC procedure that
can be efficiently implemented in classical postprocessing as
the majority function

M(x j−7×3 f −1 , x j, x j+7×3 f −1 )

= [(x j−7×3 f −1 ⊕ x j ) ∧ (x j ⊕ x j+7×3 f −1 )] ⊕ x j, (10)

where ∧ is the AND gate and ⊕ is the XOR gate, see Fig. 4.
The majority function M(x j−7×3 f −1 , x j, x j+7×3 f −1 ) returns the
value of the majority of the three bits x j−7×3 f −1 , x j , and
x j+7×3 f −1 . It thus removes isolated error syndromes, see purple
lines in Fig. 4 and Appendix D for more details. The corre-
sponding QEC unitary is described in Appendix B.

We start by investigating the QCNN with alternating X -
and Z-error correcting layers for the ZXZ cluster state per-
turbed by incoherent Z errors as the input state. We plot in
Fig. 5 the QCNN output as a function of the Z-error prob-
ability pZ . We can see an alternating QCNN output after
odd and even layers. Z errors propagate through odd, X -error
correcting layers and, as the system size is reduced by a
factor of three, the density of Z errors increases. This error
concentration leads to the decrease of the QCNN output after
odd layers, compare blue and red lines in Fig. 5. In contrast,
even layers correct Z errors leading to the decrease of their
density and the increase in the QCNN output. We find that the
QCNN can tolerate Z errors for error probabilities pZ below
a threshold pth = 0.054 as the error correction in even layers
dominates over the error concentration in odd layers leading
to a net increase of the QCNN output after every two layers,
see blue lines in Fig. 5. On the other hand, Z errors cannot
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FIG. 4. QCNN with alternating layers correcting X errors and Z
errors for detecting the ZXZ phase. The QCNN circuit consists of a
constant-depth quantum circuit, the measurement of all qubits in the
X basis and classical postprocessing. The quantum circuit performs
the disentangling unitary U †

N consisting of controlled Z gates between
neighboring qubits. The outcomes x of the measurement in the X
basis are processed by the Boolean function G(x) expressed as a logic
circuit in terms of AND and XOR gates as well as of the majority
function M. The decomposition of the majority function M into AND
and XOR gates is shown on the right. Red and purple lines show
the propagation of X errors and Z errors, respectively, through the
QCNN circuit. The logic circuit consists of d layers f = 1, 2, ..., d .
Odd layers f correct the syndromes of X errors (see the XOR gate
marked in red) and even layers f correct the syndromes of Z errors
(see the majority function M marked in purple).

be tolerated above the threshold since the error concentration
dominates over the error correction leading to a net decrease
of the QCNN output. See Appendix D for the derivation of the
threshold error probability pth. This shows that implementing
a Z-error correcting layer after each X -error correcting layer

FIG. 5. QCNN consisting of alternating layers correcting X
errors and Z errors for the ZXZ cluster state perturbed by symmetry-
breaking Z errors. The QCNN output as a function of the error
probability pZ of Z errors for different depths d . The black dashed
line shows the threshold error probability pth = 0.054. (Parameters:
N = 1215, MS = 104, pX = pY = 0).

prevents the concentration of symmetry-breaking Z errors
below the threshold error probability.

We now study the error tolerance of QCNNs with alter-
nating layers for different ground states of the cluster-Ising
Hamiltonian. We consider a depolarizing channel with pX =
pY = pZ describing the presence of X errors, Z errors, and
their simultaneous appearance Y = iXZ , representing a typi-
cal situation for NISQ devices. We plot in Fig. 6(a) the QCNN
output for different ground states as a function of h2/J1 and
different depths d of the QCNN, obtained using infinite MPS
simulations. We can see that the QCNN tolerates the incoher-
ent errors as the QCNN output converges to unity with the
increasing depth d in the SPT phase and it vanishes outside of
the SPT phase [46].

The two types of layers in the QCNN play comple-
mentary roles. The X -error correcting layers implement
renormalization-group flow with states belonging to the ZXZ
phase flowing towards the ZXZ cluster state and states outside
of the ZXZ phase diverging from it. The X -error correcting
layers are thus crucial for recognizing the ZXZ phase. In
contrast, the Z-error correcting layers reduce the density of
error syndromes by removing syndromes due to symmetry-
breaking errors. As a result, the Z-error correcting layers
equip the QCNNs with the tolerance to symmetry-breaking
errors, see Fig. 6(a).

We now show that the QCNNs with alternating X - and
Z-error correcting layers can perform phase recognition pro-
vided that the probability of errors in the prepared states is
below the threshold pth. To this end, we plot the QCNN
output for the depth d = 4 as a function of h1/J1 and h2/J1

in Fig. 6(b) in the presence of depolarizing noise. We can see
that the QCNN output attains near unity value in the ZXZ
phase and vanishing value outside of the ZXZ phase. The
abrupt change of the QCNN output from near unity values
to vanishing values coincides with the phase boundary (black
crosses) determined by iDMRG simulations, see Appendix A
for more details.

In contrast to the QCNN, SOPs S jk are significantly sup-
pressed in the presence of incoherent errors. We plot in
Fig. 6(c) SOPs S jk as a function of h2/J1 for different lengths
L in the presence of depolarizing noise. We can see that the
SOPs rapidly vanish both in the ZXZ SPT phase and outside
of the phase with the increasing length L.

In conclusion, the QCNN constructed here recognizes the
ZXZ SPT phase in the presence of symmetry-breaking errors
below the threshold error probability pth. In contrast, SOPs
rapidly vanish with the increasing length for any finite proba-
bility of symmetry-breaking errors. The previously considered
QCNN of Ref. [14] cannot tolerate symmetry-breaking errors
either as its output decreases with the increasing depth for
any error probability. As a result, it cannot recognize the SPT
phase in the presence of symmetry-breaking errors.

VI. ZXXXZ SYMMETRY-PROTECTED
TOPOLOGICAL PHASE

We now discuss the extension of phase recognition capabil-
ities of the error-tolerant QCNNs we introduced to distinguish
the ZXXXZ SPT phase from topologically trivial phases as
well as the ZXZ and ZXXXZ SPT phases from one another.
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FIG. 6. Recognition of ZXZ SPT phase by QCNN consisting of alternating layers correcting X errors and Z errors for ground states of
the Hamiltonian (1) perturbed by depolarizing noise. (a) The QCNN output y on the cut through the phase diagram as a function of h2/J1 for
different depths d of the QCNN. (b) The QCNN output y as a function of h1/J1 and h2/J1 for the depth d = 4. Black crosses show the phase
boundary identified using iDMRG simulations. (c) String order parameters (SOPs) Sjk on the cut through the phase diagram as a function of
h2/J1 for different lengths L = k − j + 1. The orange regions denote the ZXZ phase. [Parameters: pX = pY = pZ = 0.015, MS = 104, J2 = 0;
(a) N = 1215, h1/J1 = 0.5; (b) N = 135; (c) h1/J1 = 0.5].

Similarly, as for the ZXZ SPT phase, we construct a QCNN
that detects the ZXXXZ phase from the topologically trivial
paramagnetic and antiferromagnetic phases. Now the convo-
lutional layer consists of a disentangling unitary Ũ †

N mapping
the ZXXXZ cluster state onto a product state. The QEC proce-
dures are amended to correct Xj and XjXj+1 errors perturbing
the ZXXXZ cluster state, see Appendix F for more details
about the QCNN for the ZXXXZ phase. To equip the QCNN
with the tolerance to state preparation errors, we follow the
same approach as in the previous section. We alternate X -
error correcting layers and Z-error correcting layers. While
the X -error correcting layers had to be amended for the target
ZXXXZ phase, we can employ the same procedure based on
the majority function of Eq. (10) to correct Zj errors. In con-
trast to the disentangling circuit U †

N for the ZXZ cluster state,
which commutes with Zj errors, the disentangling unitary Ũ †

N
for the ZXXXZ cluster state maps Zj errors onto the errors
Ũ †

N ZjŨN = Yj−1ZjYj+1, which flip the measurement outcomes
x j−1, x j and x j+1 on the three qubits j − 1, j and j + 1. Due to
this multiplication of symmetry-breaking errors, the threshold
probability p̃th = 0.018 is reduced compared to pth = 0.054
for the ZXZ cluster state.

We determine the phase boundary between the ZXZ phase
and the ZXXXZ phase to be located at J1/J2 = 0.95 via
iDMRG simulations.

We start with a QCNN recognizing the ZXZ phase from
the ZXXXZ phase. Before showing the results, we explain
the construction of this QCNN, which requires identifying
the perturbations driving the ground states for nonvanishing
h2 and J2 away from the characteristic ZXZ cluster state.
These perturbations include the XjXj+1 interactions and the
stabilizer elements Dj . The XjXj+1 interactions are corrected
by the original X -error correcting procedure. The Dj stabi-
lizer elements are mapped by the disentangling unitary onto
U †

N DjUN = −Yj−1XjYj+1, which lead to the same syndromes
after the measurement of all qubits in the X basis (flipped
measurement outcomes at qubits j − 1 and j + 1) as Xj per-
turbations, for which U †

N XjUN = Zj−1XjZ j+1. As a result, the

QCNN depicted in Fig. 2 constructed in the previous sec-
tion for correcting Xj and XjXj+1 perturbations, corrects Dj

perturbations as well and can be readily used to recognize
the ZXZ phase from the ZXXXZ phase. To achieve tolerance
to state preparation errors on NISQ devices, we can thus
alternate the X -error correcting layers with Z-error correcting
layers in the same way as depicted in Fig. 4.

We plot the QCNN output (blue lines) as a function of
J1/J2 in Fig. 7 for different depths of the QCNN in the
presence of depolarizing noise. We can see that the QCNN
detects the ZXZ phase as its output converges to unity in
the phase (J1/J2 > 0.95) and vanishes in the ZXXXZ phase
(J1/J2 < 0.95).

FIG. 7. Distinguishing the ZXZ SPT phase and the ZXXXZ SPT
phase. The QCNN output as a function of J1/J2 for different depths
d of the QCNN for ground states perturbed by depolarizing noise.
The QCNN with alternating X -error correcting layers and Z-error
correcting layers (blue lines) as well as the QCNN with alternating C-
error and Z-error correcting layers (brown lines). (Parameters: N =
1215, MS = 103, h1/J2 = 0, h2/J2 = 0.1, pX = pY = pZ = 0.01).
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FIG. 8. Detecting the phase boundary between the ZXZ phase and the paramagnetic phase in the presence of depolarizing noise. (a) The
output of the QCNN with alternating layers correcting X errors and Z errors close to the phase boundary as a function of h2/J1 for different
depths d . (b) The slope of the QCNN output ∂y/∂h2 with respect to the Hamiltonian parameter h2. (c) The slope of SOPs ∂Sjk/∂h2 with respect
to the Hamiltonian parameter h2 close to the phase boundary as a function of h2/J1 for different lengths L = k − j + 1. The orange regions
denote the ZXZ phase. [Parameters: MS = 104, h1/J1 = 0.5, J2 = 0, pX = pY = pZ = 0.015; (a) and (b) N = 1215].

We now discuss the construction of a QCNN recognizing
the ZXXXZ phase from the ZXZ phase. Here, the stabilizer
elements Cj and XjXj+1 interactions play the role of perturba-
tions away from the ZXXXZ cluster state. The disentangling
unitary Ũ †

N for the ZXXXZ cluster state maps the Cj per-
turbations onto Ũ †

NCjŨN ∝ Yj−1XjYj+1. The Cj perturbations
have different syndromes after the measurement of all qubits
in the X basis than Xj and XjXj+1 perturbations, Ũ †

N XjŨN =
Yj−2Xj−1XjXj+1Yj+2 and Ũ †

N XjXj+1ŨN = Yj−2Zj−1Zj+2Yj+3.
As a result, we need to amend the QEC procedures to correct
the Cj perturbations, see Appendix B for more details about
this procedure. The C-error correcting procedure also corrects
XjXj+1 perturbations and Xj perturbations, where the latter
now come about only due to noise on NISQ devices, see Ap-
pendix F for more details. To achieve tolerance to incoherent
Zj errors, we alternate the C-error correcting layers with the
Z-error correcting layers based on the majority function. We
plot the resulting QCNN output (brown lines) as a function
of J1/J2 in Fig. 7 for different depths of the QCNN in the
presence of depolarizing noise. We can see that the QCNN
detects the ZXXXZ phase as its output converges to unity
in the phase J1/J2 < 0.95 and vanishes in the ZXZ phase
J1/J2 > 0.95.

We have thus demonstrated that the error-tolerant QC-
NNs we introduced can distinguish not only topological
phases from topologically trivial phases but also two topo-
logical phases from one another. To this end, the QCNN
for the ZXXXZ phase needed to be amended to cor-
rect Cj perturbations whereas the original QCNN for the
ZXZ phase was already capable of correcting Dj pertur-
bations. While the QCNNs for the ZXZ phase and the
ZXXXZ phase are designed to correct different symmetry-
preserving errors, the tolerance to symmetry-breaking errors
is achieved in a universal manner in all QCNNs by employ-
ing the same Z-error correcting layer based on the majority
function.

VII. PHASE BOUNDARY

So far, we have shown that the QCNNs we consider can
recognize SPT phases in the presence of incoherent errors.
We now investigate the tolerance of incoherent errors close to
phase boundaries. Precisely detecting phase boundaries is one
of the major challenges of many-body physics due to diverg-
ing correlation lengths and the rapid growth of entanglement
in their vicinity [22,47].

In Fig. 8(a) we plot the output of the QCNN for the ZXZ
phase close to a phase boundary between the ZXZ phase and
the paramagnetic phase in the presence of depolarizing noise.
We can see that the QCNN tolerates incoherent errors well
in the SPT phase as its output converges to unity with the
increasing depth d . On the other hand, close to the phase
boundary the QCNN does not tolerate incoherent errors as its
output decreases with the increasing depth d . We thus observe
that while symmetry-preserving X errors can be tolerated for
any ground state, the tolerance to symmetry-breaking errors is
limited close to phase boundaries.

We now further quantify the behavior close to the phase
boundary between the ZXZ phase and the paramagnetic
phase. We investigate, which probabilities pZ of symmetry-
breaking Z errors can be tolerated for each ground state
belonging to the ZXZ phase. To do so, we determine the
threshold error probability pth for various ground states below
which the QCNN output converges to unity with an increasing
depth d . Above pth the output decreases with d . We plot
in Fig. 9 the threshold error probability pth (red dots) as a
function of the correlation length ξ of the ground states [48].
We can see that the threshold error probability decreases with
the correlation length. We fit this decrease by the exponential
function pth = p0

th exp(−ξ/ξ̄ ) with the fitted parameters p0
th

and ξ̄ in Table I. We can see in Fig. 9 a similar exponential
decrease of the threshold probability pth close to the phase
boundaries between the ZXXXZ phase and the paramagnetic
state (gray diamonds) as well as between the ZXXXZ phase
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FIG. 9. Tolerance to incoherent errors close to phase boundaries.
The plot shows the threshold probability pth of symmetry-breaking
errors as a function of the correlation length ξ in the vicinity of
phase boundaries between the ZXZ phase and the paramagnetic
phase (red dots), the ZXXXZ phase and the paramagnetic phase
(gray diamonds), and the ZXXXZ phase and the ZXZ phase (green
triangles). Solid lines show fitted exponential functions and dashed
lines show threshold error probabilities of corresponding cluster
states. [Parameters: N = 1215, MS = 105, h1/J1 = 0.5 and J2 = 0
(red dots), h1/J2 = 0.5 and J1 = 0 (gray diamonds), h1 = 0 and
h2/J2 = 0.1 (green triangles)].

and the ZXZ phase (green triangles). The error tolerance is
thus strongly suppressed close to all phase boundaries when
the correlation length exceeds the characteristic value ξ̄ ≈ 26,
cf. Table I.

To identify the phase boundary between the ZXZ phase
and the paramagnetic phase in the presence of symmetry-
breaking errors, we plot in Fig. 8(b) the slope ∂y/∂h2 of the
QCNN output y with respect to the Hamiltonian parameter
h2 for different depths d of the QCNN. We can see a sharp
dip in the slope of the QCNN output precisely located at the
phase boundary. The dip becomes more pronounced with the
increasing depth d of the QCNN. This shows that while the
QCNN output decreases with the increasing depth d close
to the phase boundary, see Fig. 8(a), we can still precisely
identify the phase boundary as a sharp dip in the slope of the
QCNN output. We can see in Fig. 6(b) that the abrupt change
of the QCNN output coincides with the phase boundary (black
crosses) determined using iDMRG in the entire phase diagram
(J2 = 0). We also observe that the slope of the QCNN output
exhibits a sharp dip (or peak) at all other phase boundaries of

TABLE I. Fitted parameters of the threshold probability pth =
p0

th exp(−ξ/ξ̄ ) of symmetry-breaking errors as a function of the
correlation length ξ close to different phase boundaries.

Phase boundary p0
th ξ̄

ZXZ→ Paramagnetic 0.0588 ± 0.0005 26.1 ± 0.6
ZXXXZ→ Paramagnetic 0.0254 ± 0.0002 28.1 ± 0.6
ZXXXZ → ZXZ 0.0550 ± 0.0004 24.6 ± 0.6

the generalized cluster-Ising model also for J2 �= 0 (not shown
here).

In stark contrast to these characteristics, individual SOPs
and their slopes are largely suppressed for any finite proba-
bility of symmetry-breaking errors. We plot in Fig. 8(c) the
slope ∂S jk/∂h2 of the SOPs with respect to the Hamiltonian
parameter h2 for different lengths L = k − j + 1. We can see
that the slope of the SOPs cannot be distinguished from sam-
pling noise for the number of samples MS = 104. Crucially,
the slope of the SOPs does not become more pronounced with
increasing length L. As a result, one cannot use the SOPs to
determine the phase boundary in the presence of symmetry-
breaking noise.

The sharp dip in the slope of the QCNN output at critical
values of Hamiltonian parameters is a unique feature of phase
boundaries and it does not appear at the threshold values of
probabilities for incoherent errors, see also Appendix D. This
feature distinguishes phase boundaries from threshold proba-
bilities of incoherent errors. It thus provides further evidence
that the QCNNs we construct perform phase recognition for
the error-free ground states while processing only noisy states,
which approximate the former.

In conclusion, the tolerance of the considered QCNNs to
symmetry-breaking errors is limited close to phase boundaries
due to diverging correlation lengths. Nonetheless, we can
precisely determine critical values of Hamiltonian parameters
as a dip in the slope of the QCNN output. This is in stark
contrast to SOPs and their slopes, which rapidly vanish for
any finite probability of symmetry-breaking errors and thus
cannot be used to identify phase boundaries in the presence of
symmetry-breaking errors.

VIII. SAMPLE COMPLEXITY

We now compare QCNNs to the direct measurement of the
input state. We focus on sample complexity, which quantifies
the number of projective measurements required to identify to
which quantum phase the input state belongs. In the absence
of noise, QCNNs substantially reduce sample complexity
compared to the direct measurement of SOPs [14]. In the
presence of symmetry-breaking noise, SOPs vanish and thus
they cannot detect the SPT phase. Instead, we focus on the
observable measured by QCNNs. This observable is different
from any single SOP and it is robust against symmetry-
breaking noise. In this section, we discuss this observable for
the QCNN that detects the ZXZ phase and compare the cost
of directly sampling it from the input state to sampling the
QCNN output.

To determine the observable measured by the QCNN with
alternating X- and Z-error correcting layers, we represent
the QCNN circuit as a unitary UQCNN, see Appendix G for
details. The measurement of the Pauli X N+1

2
operator at the

end of the QCNN circuit corresponds to the measurement of a
multiscale SOP,

SM = U †
QCNNX N+1

2
UQCNN

=
∑

i j

η
(1)
i j Si j +

∑
i jkl

η
(2)
i jkl Si jSkl + ..., (11)
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on the input state. The multiscale SOP SM is a sum of products
of SOPs Si j at different lengths L = j − i + 1. The length of
the SOPs, L ∼ 3d , increases exponentially with the depth d of
the QCNN. Compared to the QCNN of Ref. [14], the change
in the coefficients η(n) due to our construction equips the
QCNN with error tolerance. The multiscale SOP in Eq. (11)
involves at least 23d−2

products of SOPs.
As an alternative to executing the QCNN, we can deter-

mine the expectation value of the multiscale SOP using the
direct measurements of the input state without performing any
quantum circuit. Assuming that only measurements in local
Pauli bases can be directly performed, which is the case for
most devices, we show in Appendix H that the multiscale
SOP involves at least 33d−4

products of SOPs, which cannot
be simultaneously measured via local Pauli measurements as
they require sampling in mutually incompatible Pauli bases.
As a result, the sample complexity of the direct Pauli mea-
surement scales double exponentially with the depth of the
QCNN, corresponding to an exponential scaling with system
size for the maximal depth d = �log3 N�. Instead of the direct
Pauli measurement, one could estimate the products of SOPs
via classical shadow tomography [5]. However, the sample
complexity of classical shadow tomography also scales ex-
ponentially with the length L of the SOPs. In contrast, all
products of SOPs are sampled simultaneously in the QCNN
after performing the disentangling unitary. The QCNN thus
determines the expectation value of the multiscale SOP with
a constant sample complexity in system size (and depth of the
QCNN), which exponentially reduces the sample complexity
compared to direct Pauli measurements.

Importantly, the equivalent QCNN circuit depicted in
Fig. 4, which is based on a constant-depth quantum circuit,
measurement and classical postprocessing, measures the mul-
tiscale SOP with the same sample complexity as the full
quantum QCNN circuit. The constant-depth quantum circuit
allows us to simultaneously measure all stabilizer elements
Cj . From measured bit strings, we then determine the expec-
tation value of the multiscale SOP in classical postprocessing
with the same sample complexity as for the full quantum
QCNN circuit.

QCNNs detecting the ZXXXZ phase also measure mul-
tiscale SOPs, which are sums of double exponentially many
products of SOPs Tjk . Similarly to the QCNN for the ZXZ
phase, these QCNNs also reduce sample complexity exponen-
tially compared to direct local Pauli measurements.

IX. CONCLUSIONS

We constructed QCNNs that tolerate incoherent errors due
to decoherence and gate infidelities during the preparation of
their input states. These QCNNs tolerate symmetry-breaking
errors below a threshold error probability in contrast to
previous QCNN designs and SOPs, which are significantly
suppressed for any nonvanishing error probability. Moreover,
their output is robust against invertible symmetry-preserving
error channels. The error tolerance is limited close to phase
boundaries as the threshold error probability decreases with
diverging correlation lengths. However, a steep gradient of
the QCNN output at phase boundaries between SPT phases
and topologically trivial phases as well as between two SPT

phases allows us to precisely determine critical values of the
Hamiltonian parameters.

The QCNN quantum circuits constructed here can be short-
ened from logarithmic depth in input size to short, constant
depth by performing a large part of computation in classical
postprocessing after the measurement of all qubits. This sub-
stantially improves the performance of QCNNs under NISQ
conditions by reducing the number of finite-fidelity quantum
gates. The classical postprocessing part of QCNNs consists of
logic circuits with at most logarithmic depth in input size. The
QCNNs we constructed reduce sample complexity exponen-
tially in input size in comparison to the direct sampling of the
QCNN output using local Pauli measurements.

Our paper provides insights into SPT order in open
quantum systems, which are subject to decoherence and dis-
sipation. Apart from NISQ computers, the error channel we
consider, see Eq. (4), describes typical open quantum sys-
tems [43]. On the one hand, SOPs rapidly vanish with an
increasing length for any symmetry-breaking error channel
as shown in Ref. [43]. On the other hand, our results show
that SPT order is not completely washed out for probabilities
of symmetry-breaking errors below a finite threshold. This
distinction emerges because the multiscale SOPs, that are
efficiently measured by the QCNNs we introduce, exploit in-
formation about SPT order at different length scales to detect
SPT phases in the presence of symmetry-breaking noise.

Due to the tolerance of errors and the short depth of their
quantum circuits, the QCNNs constructed here can be readily
realized on current NISQ computers to efficiently measure
characteristic nonlocal observables of SPT phases. This will
facilitate the investigation of topological quantum phases of
matter on quantum computers.

As a next step, the construction of QCNN circuits mim-
icking renormalization-group flow depicted in Fig. 1(b) could
be extended for two- and higher-dimensional systems, which
can, in addition to SPT phases, feature intrinsic topological
order [49] and symmetry enriched topological phases [50].
Using preparation circuits for characteristic ground states be-
longing to SPT phases [51] as well as symmetry enriched
topological phases [52], these ground states can be considered
as fixed points of QCNNs and the QEC unitaries in pooling
layers can be constructed in analogy to renormalization-group
decoders [53].

QCNN circuits for two- and higher-dimensional systems
can be equipped with the tolerance to incoherent errors by
using our approach. To this end, the QCNN layers mimicking
renormalization-group flow are alternated with layers correct-
ing symmetry-breaking errors. While the layers mimicking
renormalization-group flow need to be specifically designed
for each target quantum phase and given Hamiltonian per-
turbations, the correction of symmetry-breaking errors can
be implemented in a universal manner using the majority
function. In this way, all errors perturbing the characteristic
state are corrected provided that the error density is small
enough, as we demonstrated for different SPT phases of the
generalized cluster-Ising model. The majority function pro-
vides a universal tool to correct symmetry-breaking errors in
QCNNs for two- and higher-dimensional systems.

Other interesting future directions include detecting less
understood topological phases such as anyonic chains [54]
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and quantum spin liquids [55]. Another promising direction
is the training of QCNNs based on parametrized quantum
circuits to identify nonlocal observables characterizing topo-
logical phases from training data [14,39,40,56].

The QCNNs we constructed open the way for efficiently
characterizing noisy quantum data produced by near-term
quantum hardware. In addition to the recognition of topo-
logical phases, reducing the sample complexity of nonlocal
observables will substantially speed up other quantum al-
gorithms. A prominent example is the variational quantum
eigensolver for quantum chemistry problems, which involves
many repetitions of demanding measurements of molecular
Hamiltonians [57,58].
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APPENDIX A: NUMERICAL SIMULATIONS

Our main results are based on MPS simulations imple-
mented using the Python library TeNPy [45]. Using iDMRG
with the maximal bond dimension χ = 150, we obtain nu-
merically exact ground states |ψ〉 of the Hamiltonian (1) in
the thermodynamic limit to avoid finite size effects. First,
we identify phase boundaries as sharp peaks in the second
derivative of the ground-state energy with respect to h2/J1

for constant h1/J1 and J2 = 0 in Figs. 3, 6, 8, with respect to
J1/J2 for constant h1 = 0 and h2/J2 = 0.1 in Fig. 7, as well as
with respect to h2/J2 for constant h1/J2 and J1 = 0 in Fig. 14
below.

We implement the QCNN circuits depicted in Fig. 1(c)
consisting of a constant-depth quantum circuit, the measure-
ment of all qubits in the X basis and classical postprocessing.
The constant-depth quantum circuit performs the disentan-
gling unitary U †

N consisting of nearest-neighbor two-qubit
gates, which can be efficiently applied on the MPSs |ψ〉
obtained using iDMRG. We simulate the measurement out-
comes of N qubits by sampling spin configurations x
in the X basis from their probability distribution Px =
Tr[|x〉〈x|U †

N |ψ〉〈ψ |UN ] corresponding to the MPS U †
N |ψ〉 af-

ter having performed the disentangling unitary U †
N . QCNN

outputs are determined from the sampled bit strings x as a
Boolean function, which is expressed as a logic circuit, see
Figs. 2 and 4.

To explore incoherent errors using the error channel (4), we
implement the error channel E by sampling error events El =
Kl/

√
pl from their probability distribution pl = Tr[K†

l Kl ]/2N .
The error events El are products of Pauli operators, which can
be efficiently implemented on the MPSs |ψ〉. We then sample
bit strings x from the joint probability distribution

Px = plTr[|x〉 〈x|U †
N El |ψ〉 〈ψ | E†

l UN ], (A1)

which correspond to the measurement outcomes for the noisy
state E (|ψ〉 〈ψ |) after having performed the disentangling uni-
tary U †

N .
Increasing the bond dimension to χ = 200 does not lead

to a visible change in our findings showing that the MPSs
accurately describe the ground states of the Hamiltonian (1)
and their processing with the QCNNs.

APPENDIX B: QCNN CIRCUITS

In this Appendix, we describe in detail the QCNN cir-
cuits used in this work. We first discuss the QCNN detecting
the ZXZ phase. Then we describe the QCNN detecting the
ZXXXZ phase. Finally, we discuss the QCNNs distinguishing
the two SPT phases from one another.

All QCNNs considered in this paper consist of d convolu-
tional layers, d pooling layers and a fully connected layer as
depicted in Fig. 1(a). Each convolutional layer f = 1, 2, ..., d
consists of a disentangling unitary U †

N/3 f −1 on N/3 f −1 qubits
followed by an entangling unitary UN/3 f on a sublattice with
N/3 f qubits as depicted in Fig. 1(b). Each pooling layer in-
volves a QEC procedure QEC f . In the fully connected layer,
the disentangling unitary U †

N/3d is applied and all �N/3d�
remaining qubits are measured in the X basis. Note that each
QEC f procedure is preceded by the entangling unitary UN/3 f ,
which is implemented in the preceding convolutional layer,
and followed by the disentangling unitary U †

N/3 f , which is
implemented in the following convolutional layer for f < d
and in the fully connected layer for f = d , see Fig. 1(b).
The QCNN circuit is thus equivalent to a single convolutional
layer followed by d pooling layers as depicted in Fig. 10(a).
The convolutional layer performs the disentangling unitary
U †

N . The pooling layer f involves the QEC unitary Q̃EC f =
U †

N/3 f QEC f UN/3 f transformed by the entangling unitary UN/3 f .
Note that in this equivalent quantum circuit, convolutional
layers for f > 1 are absorbed into the Q̃EC f unitaries in the
pooling layers. The disentangling unitary U †

N/3d from the fully

connected layer is also absorbed into the Q̃ECd unitary. The
fully connected layer in this equivalent quantum circuit thus
consists only of the measurement of remaining qubits in the X
basis.

For conciseness, we focus here on the equivalent quantum
circuits depicted in Fig. 10(a) as the Q̃EC f procedures trans-
formed by the entangling unitary consist of fewer gates than
the bare QEC f procedures.

We first discuss the QCNN detecting the ZXZ phase. We
start with the QCNN consisting of X -error correcting layers
depicted in Fig. 10(b). The disentangling unitary U †

N con-
sists of controlled Z gates between neighboring qubits. The

transformed QEC procedure Q̃EC
X
f consists of controlled-

controlled Z gates CxCxZ, controlled Z gates CxZ, and
controlled-controlled NOT gates CxCxNOT with all controls
in the X basis. The error-tolerant design of the QCNN de-
picted in Fig. 10(c) consists of alternating layers correcting
X errors and Z errors. The new Z-error correcting procedure

Q̃EC
Z
f involves SWAP, CxZ, and CxCxZ gates.

Since all gates are controlled in the X basis and they
implement either Pauli X or Pauli Z operations on the target
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FIG. 10. QCNN quantum circuits. (a) QCNN circuit equivalent to Fig. 1(b) consisting of a single convolutional layer, d pooling layers,
and a fully connected (FC) layer. The convolutional layer performs the disentangling unitary U †

N . Each pooling layer f = 1, 2, ..., d performs
the Q̃EC f procedure transformed by the entangling unitary UN/3 f on a sublattice with N/3 f −1 qubits. The fully connected layer involves the

measurement of �N/3d� qubits in the X basis. (b) QCNN detecting the ZXZ phase with X -error correcting procedures Q̃EC
X
f . (c) QCNN

detecting the ZXZ phase with alternating procedures Q̃EC
X
f and Q̃EC

Z
f +1 correcting X errors and Z errors, respectively. The disentangling

unitary U †
N involves controlled Z gates with controls in the computational basis. The Q̃EC

X
f procedure consists of controlled-controlled Z

gates CxCxZ, controlled Z gates CxZ, and controlled-controlled NOT gates CxCxNOT with all controls in the X basis. The Q̃EC
Z
f +1 procedure

consists of SWAP, CxCxZ, and CxZ gates.

qubit, the Q̃EC
X
f and Q̃EC

Z
f procedures map X -basis eigen-

states |x〉 onto other X -basis eigenstates ± |g f (x)〉, where g f :
{0, 1}N → {0, 1}N is a Boolean function. As we also measure
in the X basis in the fully connected layer, the processing
of a quantum state ρ by the QCNN can be implemented in
classical postprocessing as a Boolean function G(x) = (gd ◦
gd−1 ◦ ... ◦ g1)(x) after measuring all qubits in the X basis. In
particular, the output

〈Xj〉 = Tr[XjQdU †
NρUN Q†

d ] =
∑

x

Px(1 − 2G(x) j ), (B1)

of qubit j measured in the fully-connected layer of the full
quantum QCNN circuit [Fig. 10(a)] can be determined from
bit strings x measured after the convolutional layer by using
the jth element of the output of the Boolean function G(x),
where Px = Tr[|x〉〈x|U †

NρUN ] is the probability of measuring
a bit string x after the first convolutional layer and

Qd = Q̃ECd ...Q̃EC2Q̃EC1. (B2)

We thus only need to apply the single disentangling unitary
U †

N on a quantum computer, measure all qubits in the X basis
and determine the QCNN output in classical postprocessing
from the measured bit strings x, see Fig. 1(c). The QCNN
quantum circuits depicted in Figs. 10(b) and 10(c) can thus
be implemented as equivalent circuits depicted in Figs. 2 and
4, respectively. The Boolean function g f corresponding to
the pooling layer f performing the Q̃EC f procedure can be
expressed as a logic circuit with a constant depth in system
size, see Figs. 2 and 4. As a result, the Boolean function G
corresponding to the QCNN with d pooling layers can be
implemented as a logic circuit with a depth proportional to

d , which can be at most d = �log3 N� logarithmic in system
size N .

We now describe QCNNs detecting the ZXXXZ phase.
The QCNN consisting of alternating layers correcting X errors
and Z errors is depicted in Fig. 13(a) below. The disentangling
unitary Ũ † consists of controlled Z gates CZ between all
neighboring qubits controlled in the computational basis, con-
trolled Y gates CyY between all neighboring qubits controlled
in the Y basis and Z gates. The X -error correcting procedure

Q̃EC
X
f consists of controlled Y gates CxY and controlled-

controlled Y gates CxCxY with controls in the X basis. The

Z-error correcting procedure Q̃EC
Z
f is the same as for the ZXZ

phase involving SWAP, CxZ, and CxCxZ gates. The QCNN
consisting of alternating layers correcting C errors and Z
errors is depicted in Fig. 13(b) below. The C-error correcting

procedure Q̃EC
C
f consists of CxY and CxCxY gates.

As all Q̃EC f procedures consist of gates controlled in the
X basis implementing the Pauli Y operation or the Pauli Z
operation on the target qubit, they satisfy the condition (6)
and thus they can be implemented in classical postprocessing
as a Boolean function g f (x) = x′. The output

〈Xj〉 = Tr[XjQdŨ †
NρŨN Q†

d ] =
∑

x

P̃x(1 − 2G(x) j ), (B3)

of qubit j measured in the fully connected layer of the full
quantum QCNN circuit can be determined from bit strings x
measured after the first convolutional layer Ũ †

N by using the
jth element of the output of the Boolean function G(x), where
P̃x = Tr[|x〉〈x|Ũ †

NρŨN ].
Note that the Boolean function corresponding to the C-

error correcting procedure for the ZXXXZ phase is the same
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as the Boolean function performing the X -error correcting
procedure for the ZXZ phase depicted in Fig. 2.

APPENDIX C: PROPAGATION OF
SYMMETRY-PRESERVING ERRORS IN QCNN CIRCUITS

In this Appendix, we discuss the propagation of symmetry-
preserving X errors in the QCNN detecting the ZXZ phase
and consisting of X -error correcting layers. We exploit that
the QCNN can be implemented as the constant-depth quan-
tum circuit U †

N , measurements in the X basis and classical
postprocessing. We focus on the propagation of errors in the
constant-depth quantum circuit U †

N and the logic circuit im-
plemented in classical postprocessing.

The ZXZ cluster state |C〉 is mapped by the disentangling
unitary U †

N onto the product state |+〉⊗N , where |+〉 is the
+1 eigenstate of the Pauli X operator. The subsequent mea-
surement thus deterministically yields the outcome x j = 0
corresponding to Xj = +1 for all qubits j. A single Xj error
perturbing the cluster state Xj |C〉 is mapped onto U †

N XjUN =
Zj−1XjZ j+1 by the disentangling unitary U †

N leading to the
flip of two measurement outcomes x j±1 = 1, see red lines
in Fig. 2. This X -error syndrome is corrected by the X -error
correcting procedure such that g(x)k = 0 for all N/3 classical
bits k propagating to the next layer, see Fig. 2. The other
2 × N/3 bits are discarded.

We now investigate the cluster state K |C〉 perturbed by
an arbitrary number ϒ = ∑N

j=1 υ
(0)
j of X errors as the input

state, where K = ∏N
j=1 X

υ
(0)
j

j and υ
(0)
j = 0, 1. The perturbed

cluster state is mapped by the disentangling unitary U †
N onto

the product state
⊗N

j=1 |±〉 j , where qubit j is in the state

|+〉 if υ
(0)
j−1 ⊕ υ

(0)
j+1 = 0 and in the state |−〉 otherwise. The

subsequent measurement in the Pauli X basis thus yields the
deterministic outcome x j = υ

(0)
j−1 ⊕ υ

(0)
j+1. The measured bit

string x is processed in the logic circuit depicted in Fig. 2
consisting of X -error correcting layers. A bit x j at the out-
put of each X -error correcting layer f depends on five bits
x j−4×3 f −1 , x j−2×3 f −1 , x j , x j+2×3 f −1 , and x j+4×3 f −1 at the input

of this layer. We express the bit string x j = υ
( f )
j−3 f ⊕ υ

( f )
j+3 f

at every layer f > 0 in terms of υ
( f )
j = 0, 1 similarly to the

bit string x j = υ
(0)
j−1 ⊕ υ

(0)
j+1 at layer f = 0, i.e., directly after

the measurement. We can interpret υ
( f )
j as the syndrome of

the Xj error on the sublattice with N/3 f qubits. Each X -error
correcting layer implements the majority function

υ
( f )
j = M

(
υ

( f −1)
j−2×3 f −1 , υ

( f −1)
j , υ

( f −1)
j+2×3 f −1

)
(C1)

for the X -error syndromes. As a result, all X -error syndromes
are corrected for a small initial number ϒ � N of X errors
and a sufficiently large depth d . The QCNN output thus con-
verges to unity with the increasing depth d .

As shown in Fig. 3, the QCNN output converges to unity
for all states in the ZXZ phase. The phase boundary coincides
with a threshold density of coherent X errors perturbing the
cluster state [14,41]. Above the threshold density, X -error syn-
dromes are concentrated in the QCNN circuit and the QCNN
output vanishes with increasing depth d .

We now discuss the propagation of incoherent X errors in
the QCNN for the cluster state E (|C〉〈C|) with the probabil-
ity pX of X errors described by the error channel (4) with
pY = pZ = 0. At layer f = 0, the probability p0 = pX of the
X error is uniform at every qubit and the probabilities of X
errors at different qubits j and k are not correlated. We will
now describe the probability p f of X -error syndromes υ

( f )
j

at each layer f . The majority function (C1) dictates that the
probabilities of error syndromes at different qubits remain
uniform and uncorrelated. According to the majority function,
the error probabilities follow the recursion relation

p f = p2
f −1(3 − 2p f −1). (C2)

After d X -error correcting layers, we obtain x j = υ
(d )
j−3d ⊕

υ
(d )
j+3d = 1 with the probability 2pd (1 − pd ).

We can exactly determine the QCNN output

y = 1 − 4pd (1 − pd ) (C3)

for the initial error probability p0 by iterating the recursion
relation (C2). The probability p f after each X -error correcting
layer decreases, i.e., p f < p f −1, for 0 < p f −1 < 0.5 and it
increases, i.e., p f > p f −1, for 0.5 < p f −1 < 1. As a result,
all X -error syndromes are corrected for p0 < 0.5 and a suffi-
ciently large depth d . The QCNN output converges to unity
with increasing depth. For p0 > 0.5, the error probability pd

monotonously increases with increasing depth d . For large
depths d , we obtain pd ≈ 1 and thus the QCNN also attains
a near unity output. The situation is qualitatively different
for p0 = 0.5. This value of the error probability is the fixed
point p f = p f −1 = 0.5 of the recursion relation (C2) and the
QCNN output vanishes for every depth d .

The action of the error channel E on the cluster state is
qualitatively different for p0 = pX �= 0.5 and pX = 0.5. For
pX �= 0.5, the error channel is invertible and it thus preserves
SPT order [43]. In the presence of incoherent errors, the
SOPs S jk decrease by the factor (1 − 2pX )2 but they retain
nonvanishing values, see Eq. (8). In this case, the QCNN
is able to correct the incoherent errors and it attains ideal
noise-free values for a sufficiently large depth d . In contrast,
the error channel is not invertible for pX = 0.5. The SOPs are
annihilated by the error channel [see Eq. (8)] and SPT order
is completely washed out [43]. In this case, the QCNN is not
able to correct the incoherent errors and it attains a vanishing
output for every depth d as discussed above.

APPENDIX D: PROPAGATION OF
SYMMETRY-BREAKING ERRORS IN QCNN CIRCUITS

In this Appendix, we discuss the propagation of symmetry-
breaking Z errors in QCNNs detecting the ZXZ phase.

The situation is more complicated for Z errors than for
symmetry-preserving X errors discussed in Appendix C. A
single Zj error perturbing the cluster state Zj |C〉 leads to
the flip of a single measurement outcome x j = 1 as the
error Zj commutes with the disentangling unitary U †

N , see
Fig. 2. This syndrome of the Zj error propagates through
the X -error correcting layer such that g(x)k = 1 for bits k on
the sublattice with N/3 bits in the next layer if k = j − 2,
k = j, or k = j + 2. As 2 × N/3 bits are discarded in each
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layer, the density of error syndromes increases. This leads
to a decreasing QCNN output for any probability pZ �= 0 or
pZ �= 1 of Z errors. To correct Z errors, we construct a new
Z-error correcting Q̃EC

Z
f procedure, depicted in Fig. 10(c),

with a corresponding logic circuit depicted in Fig. 4. This
logic circuit consists of the majority function, see Eq. (10).
The majority function M(x j−7×3 f −1 , x j, x j+7×3 f −1 ) in layer f
returns the value of the majority of the three bits x j−7×3 f −1 ,
x j , and x j+7×3 f −1 . It thus removes isolated syndromes x j = 1
of Zj errors, see Fig. 4. Provided that the initial density of Zj

errors is small enough, the majority vote further decreases the
density of error syndromes, preventing their concentration in
the QCNN circuit.

We now investigate the propagation of Z errors in the
QCNN with alternating X -error and Z-error correcting layers
for the cluster state ρ = E (|C〉 〈C|) with the probability pZ of
Z errors described by the error channel (4) with pX = pY = 0.
As Z errors commute with the disentangling unitary U †

N , we
measure x j = 1 with the identical probability pZ at all qubits
j. Moreover, the probabilities of measuring the values x j = 1
and xk = 1 on different qubits j and k are not correlated.
We will now describe how the probability p f of Z-error
syndromes evolves in each layer f of the QCNN. We first
note that the probability p f remains identical in each layer,
i.e., the same for all qubits j, as the QCNN circuit is trans-
lationally invariant. We also assume that the probability of
Z-error syndromes on different qubits remains uncorrelated.
This assumption is well justified by the agreement with our
numerical simulations showing that correlations between er-
ror syndromes that build up in the logic circuit are negligible.

We start with the probability p0 = pZ of measuring x j = 1
at each qubit j after the disentangling unitary U †

N . The mea-
sured bit strings x are now processed in the X -error correcting
layers for f odd and in the Z-error correcting layers for f
even. A bit x j at the output of the X -error correcting layer
f depends on five bits x j−4×3 f −1 , x j−2×3 f −1 , x j , x j+2×3 f −1 , and
x j+4×3 f −1 at the input of this layer, see Fig. 4, each of which
has the value 1 with the probability p f −1. Using a truth table
for the output of the X -error correcting layer, we determine
that the output value x j = 1 occurs with the probability

p f = fX (p f −1)

= p3
f −1 + p f −1(1 − p f −1)2

(
3 − 2p f −1 + 4p2

f −1

)
. (D1)

The probability p f after each X -error correcting layer in-
creases, i.e., p f > p f −1 for 0 < p f −1 < 0.5 resulting in a
decreased QCNN output. This can also be seen in Fig. 5,
where after each X -error correcting layer, the QCNN output
decreases, compare red and blue lines.

A bit x j at the output of the Z-error correcting layer f
depends on three bits x j−7×3 f −1 , x j , and x j+7×3 f −1 at the input
of this layer, see Fig. 4, each of which has the value 1 with
the probability p f −1. Using a truth table for the output of the
Z-error correcting layer, we determine that the output value
x j = 1 occurs with the probability

p f = fZ (p f −1) = p2
f −1(3 − 2p f −1). (D2)

The probability p f after each Z-error correcting layer de-
creases, i.e., p f < p f −1 for 0 < p f −1 < 0.5 resulting in an
increased QCNN output. This can also be seen in Fig. 5,

FIG. 11. QCNN consisting of alternating layers correcting X
errors and Z errors for the ZXZ cluster state perturbed by symmetry-
breaking Z errors. The slope ∂y/∂ pz of the QCNN output with
respect to the probability pZ of Z errors as a function of the
probability pZ for different depths d . The black-dashed line shows
the threshold error probability pth = 0.054. (Parameters: N = 1215,
MS = 105, pX = pY = 0).

where after each Z-error correcting layer the QCNN output
increases, compare red and blue lines.

We identify two distinct regimes depending on the initial
error probability p0 = pZ . For error probabilities below the
threshold pZ < pth, error correction in even (Z-error correct-
ing) layers dominates over error concentration in odd (X -error
correcting) layers resulting in a net reduction of errors af-
ter two subsequent layers. For error probabilities above the
threshold pZ > pth, error concentration in odd layers domi-
nates over error correction in even layers resulting in a net
concentration of errors after two subsequent layers. We deter-
mine the threshold probability pth = 0.054 as the fixed point
of the recursion relation p f = fZ ( fX (p f −2)).

We now study the slope of the QCNN output with respect
to the error probability pZ . We plot the slope as a function
of the probability pZ in Fig. 11 for different depths d of the
QCNN. We can see a key difference compared to the slope of
the QCNN output with respect to the Hamiltonian parameter
h2 depicted in Fig. 8(b). The slope with respect to h2 exhibits
a sharp dip precisely located at the phase boundary between
the ZXZ SPT phase and the paramagnetic phase. In contrast,
the slope with respect to the probability pZ keeps decreasing
with the increasing probability pZ above the threshold value
pth = 0.054. We conclude that the sharp dip in the slope of the
QCNN output with respect to the Hamiltonian parameters is a
unique feature of phase boundaries, which distinguishes them
from the behavior of the QCNN output at the threshold error
probability pth.

APPENDIX E: QCNN CONSISTING
OF X -ERROR CORRECTING LAYERS

In this Appendix, we discuss the QCNN recognizing the
ZXZ SPT phase consisting of X -error correcting layers and
how it is affected by symmetry-breaking errors. The compact
implementation of the QCNN as a quantum circuit consisting
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FIG. 12. QCNN detecting the ZXZ SPT phase consisting of X -error correcting layers for the ground states of the cluster-Ising Hamiltonian
(1) perturbed by incoherent symmetry-breaking errors. (a) The QCNN output for the ZXZ cluster state perturbed by Z errors as a function of
the error probability pZ for different depths d of the QCNN. (b) The QCNN output as a function of h2/J1 and different depths d in the presence
of depolarizing noise. (c) The slope of the QCNN output ∂y/∂h2 with respect to the Hamiltonian parameter h2 close to the phase boundary
between the ZXZ phase and the paramagnetic phase as a function of h2/J1 for different depths d . The orange regions denote the ZXZ phase.
[Parameters: N = 1215, MS = 104; (a) pX = pY = 0; (b) and (c) h1/J1 = 0.5, J2 = 0, pX = pY = pZ = 0.02].

of the disentangling unitary U †
N , the measurement of all qubits

in the X basis and classical postprocessing is depicted in
Fig. 2.

We start by investigating the QCNN for the ZXZ cluster
state perturbed by incoherent Z errors as the input state. We
plot in Fig. 12(a) the QCNN output as a function of the Z-error
probability pZ . We can see that the QCNN output decreases
with increasing depth for all error probabilities. Z errors prop-
agate through the X -error correcting layers and, as the system
size is reduced by a factor of three in each layer, the density
of Z errors increases. As a result, the probability of Z errors
increases with increasing depth d according to the recursion
relation (D1). This error concentration leads to the decrease
of the QCNN output for any initial error probability pZ . This
is in contrast to the QCNN consisting of alternating layers
correcting X errors and Z errors that tolerates symmetry-
breaking Z errors below the threshold error probability
pth = 0.054.

We now study the QCNN consisting of X -error correct-
ing layers for different ground states of the cluster-Ising
Hamiltonian in the presence of depolarizing noise. We plot
in Fig. 12(b) the QCNN output as a function of h2/J1 and
different depths d of the QCNN. We can see that the QCNN
output vanishes with increasing depth d both in the SPT
phase (orange region) and outside of the SPT phase (white
regions). This is in contrast to the QCNN consisting of alter-
nating layers correcting X errors and Z errors that tolerates
symmetry-breaking errors and thus attains near unity values
in the SPT phase for large depths d .

We plot in Fig. 12(c) the slope ∂y/∂h2 of the QCNN output
y with respect to the Hamiltonian parameter h2 for different
depths d of the QCNN close to the phase boundary between
the ZXZ phase and the paramagnetic phase. We can see a
dip in the slope of the QCNN output located at the phase
boundary. However, the dip vanishes for large depths d � 4 of
the QCNN. This is again in contrast to the QCNN consisting
of alternating layers correcting X errors and Z errors. For this

network, the dip in the slope becomes more pronounced with
increasing depth due to the tolerance of errors.

We conclude that the QCNN consisting of X -error correct-
ing layers is largely affected by symmetry-breaking errors.
Due to the concentration of symmetry-breaking errors in the
QCNN, the QCNN output rapidly vanishes with the increasing
depth d . Also the slope of the QCNN output at phase bound-
aries vanishes with the increasing depth. This is in contrast to
the QCNN consisting of alternating layers correcting X errors
and Z errors that tolerates symmetry-breaking errors and thus
attains near unity values in the SPT phase for large depths.
Moreover, the dip in the slope of the QCNN output at phase
boundaries becomes more pronounced with increasing depth.

APPENDIX F: ZXXXZ SPT PHASE

In this Appendix, we discuss QCNNs recognizing the
ZXXXZ SPT phase and their tolerance to different types of
errors. Similarly, as for the ZXZ SPT phase, we construct a
QCNN to recognize the ZXXXZ SPT phase from the para-
magnetic phase and the antiferromagnetic phase. The X -error

correcting procedure Q̃EC
X
f is depicted in Fig. 13(a).

The ZXXXZ cluster state |D〉 is mapped by the disen-
tangling unitary Ũ †

N in the first convolutional layer onto the
product state |+〉⊗N . The subsequent measurement thus de-
terministically yields the outcome x j = 0 for all qubits j. A
single Xj error perturbing the cluster state Xj |D〉 is mapped
onto Ũ †

N XjŨN = Yj−2Xj−1XjXj+1Yj+2 by the disentangling
unitary Ũ †

N leading to the flip of two measurement outcomes
x j±2 = 1. This error is corrected by the X -error correcting
QEC procedure such that g(x)k = 0 for all N/3 classical bits k
propagating to the next layer. Similarly, the syndrome x j±2 =
x j−1 = x j+3 = 1 of a XjXj+1 error is corrected by the X -error
correcting procedure.

We now investigate the QCNN with X -error correcting
layers. We plot in Fig. 14(a) the QCNN output across a
cut through the phase diagram as a function of h2/J2 for
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FIG. 13. QCNN quantum circuit detecting the ZXXXZ phase. (a) QCNN with alternating procedures Q̃EC
X
f and Q̃EC

Z
f +1 correcting X

errors and Z errors, respectively, for the recognition of the ZXXXZ phase from topologically trivial phases. (b) QCNN with alternating

procedures Q̃EC
C
f and Q̃EC

Z
f +1 correcting C errors and Z errors, respectively, for the recognition of the ZXXXZ phase from the ZXZ phase.

The disentangling unitary Ũ † involves controlled Z gates CZ with controls in the computational basis, controlled Y gates CyY with controls

in the Y basis and Z gates. The Q̃EC
X
f procedure consists of SWAP gates as well as controlled-controlled Y gates CxCxY and controlled Y

gates CxY with all controls in the X basis. The Q̃EC
Z
f +1 procedure consists of SWAP, CxCxZ, and CxZ gates. The Q̃EC

C
f procedure consists of

CxCxY and CxY gates.

J1 = 0 and different depths d of the QCNN in the pres-
ence of incoherent X errors. We can see that the QCNN
output converges to unity with the increasing depth of the
QCNN in the ZXXXZ SPT phase (gray region). On the
other hand, the QCNN output vanishes with the increasing
depth in the topologically trivial phases (white regions). This
shows that the QCNN can recognize the ZXXXZ SPT phase
from topologically trivial phases in the presence of incoher-
ent X errors. Incoherent X errors can be tolerated for any
probability pX �= 0.5.

To equip the QCNN with the tolerance to symmetry-
breaking Z errors, we alternate X -error correcting layers with

Z-error correcting layers, see Fig. 13(a). The Q̃EC
Z
f proce-

dure, correcting Z errors, is the same as that for the ZXZ
phase, cf. Fig. 10(c), which can be implemented in classi-
cal postprocessing as the majority function (10), depicted in
Fig. 4. We start by investigating the QCNN with alternating
layers for the ZXXXZ cluster state perturbed by incoherent
Z errors as the input state. We plot in Fig. 14(b) the QCNN
output as a function of the Z-error probability. We can see

FIG. 14. QCNN recognizing the ZXXXZ phase from the paramagnetic phase and the antiferromagnetic phase. (a) The output of the
QCNN consisting of X -error correcting layers for ground states of the cluster-Ising Hamiltonian (1) perturbed by incoherent X errors as a
function of h2/J2 for different depths d of the QCNN. (b) The output of the QCNN consisting of alternating layers correcting X errors and
Z errors as a function of the Z-error probability pZ for the ZXXXZ cluster state for different depths d . The black dashed line shows the
threshold error probability p̃th = 0.018. (c) The output of the QCNN consisting of alternating layers correcting X errors and Z errors for
ground states of the cluster-Ising Hamiltonian (1) perturbed by depolarizing noise as a function of h2/J2 for different depths d . The gray
regions denote the ZXXXZ phase. [Parameters: N = 1215, MS = 104; (a) pX = 0.1, pY = pZ = 0, h1/J2 = 0.5, J1 = 0; (b) pX = pY = 0;
(c) pX = pY = pZ = 0.005, h1/J2 = 0.5, J1 = 0].
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an alternating QCNN output after odd and even layers. Z
errors propagate through odd X -error correcting layers and,
as the system size is reduced by a factor of three, the den-
sity of Z errors increases. This error concentration leads to
the decrease of the QCNN output after odd layers, compare
brown and yellow lines in Fig. 14(b). In contrast, even layers
correct Z errors leading to the decrease of their density and
the increase of the QCNN output. The QCNN can tolerate
Z errors below the threshold error probability p̃th = 0.018 as
the error correction in even layers dominates over the error
concentration in odd layers. This shows that implementing
the Z-error correcting layer after each X -error correcting layer
prevents the concentration of symmetry-breaking Z errors for
small error probabilities.

The threshold probability p̃th = 0.018 for the ZXXXZ
phase is smaller than the threshold probability pth = 0.054 for
the ZXZ phase. This decrease in the tolerated error probabil-
ities can be understood by investigating the propagation of Z
errors in the QCNN circuit. In contrast to the disentangling
circuit U †

N for the ZXZ phase, which commutes with Zj errors,
the disentangling unitary Ũ † for the ZXXXZ phase maps Zj

errors onto three errors Ũ †
N ZjŨN = Yj−1ZjYj+1, which flip the

measurement outcomes x j = x j±1 = 1 on qubits j − 1, j and
j + 1. This error syndrome is corrected by the Z-error correct-
ing procedure provided that the Zj error is isolated. However,
the threshold error probability p̃th is smaller than for the ZXZ
phase due to the multiplication of symmetry-breaking errors
by the disentangling unitary.

We now study the error tolerance of the QCNN with alter-
nating layers for different ground states of the cluster-Ising
Hamiltonian (1) perturbed by depolarizing noise. We plot
in Fig. 14(c) the QCNN output as a function of h2/J2 for
J1 = 0 and different depths d of the QCNN. We can see that
the QCNN tolerates the incoherent errors due to depolarizing
noise as its output converges to unity with the increasing depth
d in the ZXXXZ phase (gray region) and vanishes in the
topologically trivial phases (white regions).

In conclusion, we constructed a QCNN for the ZXXXZ
phase that tolerates symmetry-preserving X errors if the er-
ror channel is invertible and symmetry-breaking Z errors for
small error probabilities. The QCNN is constructed similarly
as for the ZXZ phase by amending the QEC procedures to
correct Xj and XjXj+1 errors perturbing the ZXXXZ cluster
state. As the disentangling unitary Ũ †

N for the ZXXXZ phase
maps Zj errors onto three errors, Ũ †

N ZjŨN = Yj−1ZjYj+1, the
threshold probability p̃th = 0.018 of Z errors is reduced com-
pared to the QCNN for the ZXZ phase.

We finally discuss the propagation of errors in the QCNN
detecting the ZXXXZ phase from the ZXZ phase. This
QCNN consists of alternating C-error and Z-error correcting
layers as depicted in Fig. 13(b) and discussed in Sec. VI of the
main text. The C-error correcting layers are essential for the
detection of the ZXXXZ phase while the Z-error correcting
layers equip the QCNN with error tolerance. A single Cj error
is transformed by the disentangling unitary Ũ †

N as Ũ †
NCjŨN ∝

Yj−1XjYj+1 and thus leads to the error syndrome x j±1 = 1.
This error syndrome is corrected by the C-error correcting
procedure. Xj and XjXj+1 errors are mapped onto Ũ †

N XjŨN =
Yj−2Xj−1XjXj+1Yj+2 and Ũ †

N XjXj+1ŨN = Yj−2Zj−1Zj+2Yj+3

with the corresponding error syndromes x j±2 = 1 and x j±2 =
x j−1 = x j+3 = 1, respectively. The syndrome x j±2 = 1 of the
Xj error is corrected by the C-error correcting layer only if
bit j propagates to the next layer. If bit j is discarded, the
Xj-error syndrome is transformed into either x j−2 = x j+4 = 1
or into x j−4 = x j+2 = 1. On the sublattice with N/3 bits in the
next layer, this corresponds in both cases to the Ck-error syn-
drome xk±3 = 1. In the subsequent Z-error correcting layer,
we take the majority value M(xk−7×3, xk, xk+7×3) of every
triple of qubits xk−7×3, xk , and xk+7×3. As these bits are sep-
arated by the distance 7 × 3, the single Ck-error syndrome
does not change any of the majority values and it is thus
removed. Similarly, also XjXj+1-error syndromes are removed
by two subsequent layers. The QCNN can thus distinguish the
ZXXXZ phase from the ZXZ phase, see Fig. 7.

Note that the QCNN consisting of only C-error correcting
layers also corrects Xj and XjXj+1 errors. As we discussed
above, the syndrome of the Xj error is transformed by the
C-error correcting layer into the Ck-error syndrome on the
sublattice with N/3 bits. This Ck-error syndrome is corrected
in the subsequent C-error correcting layer. Similarly, the syn-
drome of a single XjXj+1 error is also corrected by two
subsequent C-error correcting layers.

APPENDIX G: MULTISCALE STRING
ORDER PARAMETER

In this Appendix, we describe the multiscale SOP SM,
see Eq. (11), that is measured by the QCNNs considered
in this work. First, we show that SM is a sum of products
of SOPs S jk . Then, we demonstrate that the length of the
SOPs involved in SM increases exponentially with the depth
d of the QCNN. Finally, we determine a lower bound for
the number of products of SOPs that are summed together to
construct SM.

We focus here on the QCNN detecting the ZXZ phase,
consisting of alternating X -error and Z-error correcting layers.
We consider the form of the QCNN depicted in Fig. 10(c)
with all convolutional layers for f > 1 and the fully connected
layer absorbed into the Q̃EC f procedures in pooling layers.
The QCNN circuit thus performs the unitary

UQCNN = Q̃EC
X
d Q̃EC

Z
d−1...Q̃EC

Z
2 Q̃EC

X
1 U †

N (G1)

consisting of the disentangling unitary U †
N and d pooling

layers Q̃EC f where f = 1, 2, ..., d . For odd (even) f , the
pooling layers perform the X -error (Z-error) correcting pro-

cedure Q̃EC
X
f (Q̃EC

Z
f ), see Fig. 10(c). We also assume that

the QCNN has an odd number d of layers.
Sum of products of string order parameters. We first show

that the observable measured by the QCNN corresponds to the
multiscale SOP SM, which is a sum of products of SOPs, cf.
Eq. (11).

The measurement of the Pauli operator

〈X N+1
2

〉 = Tr[X N+1
2

UQCNNρU †
QCNN]

= Tr[U †
QCNNX N+1

2
UQCNNρ] (G2)

at the end of the QCNN circuit corresponds to the mea-
surement of the observable U †

QCNNX N+1
2

UQCNN on the input
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TABLE II. Backpropagation of the measured observable through the QCNN circuit with the depth d . The table displays the measured
observable backpropagated to layer f , where the ellipsis denotes products of two and more products of Pauli strings. The table also displays
the number of products of Pauli strings G( f )

jk involved in the measured observable and the unitary performed at layer f . The multiscale

SOP SM measured on the input state and the number of products of SOPs involved in SM are stated in the last row. We use H (d−2)
jk =

G(d−2)
jk G(d−2)

( j+3d−2 )(k−3d−2 )
, i = N+1

2 , α′, β ′ ∈ {0, 2 × 3d−1, 4 × 3d−1}, γ ′ = 4 × 3d−1, κ ∈ {−7 × 3d−2, 0, 7 × 3d−2}, λ ∈ {−6 × 3d−2, 6 × 3d−2},
and λ′ ∈ {−6 × 3d−2, 0, 6 × 3d−2}.

f Measured observable # of products

d G(d )
ii = Xi 1 Q̃EC

X
d

d − 1 1
4

∑
α′β ′ G(d−1)

(i−α′ )(i+β ′ ) − 1
4

∑
α′ G(d−1)

(i−α′ )iG
(d−1)
(i+γ ′ )(i+γ ′ ) − 1

4

∑
α′ G(d−1)

(i−γ ′ )(i−γ ′ )G
(d−1)
i(i+α′ ) . . . 16 Q̃EC

Z
d−1

d − 2 1
8

∑
κ G(d−2)

(i+κ )(i+κ ) − 1
16

∑
λ G(d−2)

(i+λ−3d−2 )(i+λ+3d−2 )
+ 1

32

∑
λ′ H (d−2)

(i+λ′−3d−2 )(i+λ′+3d−2 )
. . . 2500 Q̃EC

X
d−2

...

0
∑

i j η
(1)
i j G(0)

(i+1)( j−1) + ∑
i jkl η

(2)
i jkl G

(0)
(i+1)( j−1)G

(0)
(k+1)(l−1) + . . . �(23d−2

) U †
N

Input SM = ∑
i j η

(1)
i j Si j + ∑

i jkl η
(2)
i jkl Si jSkl + . . . �(23d−2

)

state ρ. We used the cyclic property of the trace in the second
equality in Eq. (G2). We backpropagate the measured

observable through the QCNN circuit to the input state (zeroth
layer). To this end, we use the recursion relations

Q̃EC
X †
f G( f )

jk Q̃EC
X
f = 1

4

[∑
αβ

G( f −1)
( j−α)(k+β ) −

∑
α

G( f −1)
( j−α)kG( f −1)

(k+γ )(k+γ ) −
∑

α

G( f −1)
( j−γ )( j−γ )G

( f −1)
j(k+α) + G( f −1)

( j−γ )( j−γ )G
( f −1)
jk G( f −1)

(k+γ )(k+γ )

]
,

(G3)

Q̃EC
Z †
f G( f )

jk Q̃EC
Z
f = 1

2l f

∏
δ

[Xδ−ε + Xδ + Xδ+ε − Xδ−εXδXδ+ε], (G4)

for f odd and f even, respectively, where α, β ∈ {0, 2 ×
3 f −1, 4 × 3 f −1}, γ = 4 × 3 f −1, δ ∈ { j, j + 2 × 3 f , ..., k} and
ε = 7 × 3 f −1. These relations describe the backpropagation
of Pauli strings

G( f )
jk =XjXj+2×3 f ...Xk . (G5)

The length of the Pauli strings G( f )
jk is defined as l f = (k −

j)/(2 × 3 f ) + 1.
The backpropagation of the measured observable is sum-

marized in Table II. The Pauli operator X N+1
2

measured at
the end of the QCNN circuit corresponds to the Pauli string
G(d )

N+1
2

N+1
2

= X N+1
2

with the minimal length ld = 1. The recur-

sion relation (G3) dictates that backpropagating this operator

through the X -error correcting layer Q̃EC
X
d gives rise to a sum

of 16 terms including nine Pauli strings G(d−1)
jk , six products

of two Pauli strings G(d−1)
jk and a single product of three Pauli

strings G(d−1)
jk at layer f = d − 1, see Table II.

Next, we backpropagate these Pauli strings and the prod-

ucts of Pauli strings through the layer Q̃EC
Z
d−1 performing the

Z-error correcting procedure. Due to the linearity of the uni-

tary Q̃EC
Z
d−1, we can separately backpropagate each product

in the sum. Each Pauli string G(d−1)
jk gives rise to 4ld−1 products

of Pauli Xi operators at layer f = d − 2, see Eq. (G4). These
products can be expressed in terms of Pauli strings G(d−2)

jk by

using Eq. (G5). We thus again obtain a sum of products of
Pauli strings G(d−2)

jk at layer f = d − 2, see Table II.
We continue backpropagating these products of Pauli

strings towards the input state at layer f = 0. Backpropagat-
ing the Pauli string G( f )

jk through the X -error correcting layer

Q̃EC
X
f gives rise to 16 products of Pauli strings G( f −1)

jk , see
Eq. (G3). In every X -error correcting layer as well as in every
Z-error correcting layer, we again obtain a sum of products
of Pauli strings G( f )

jk . At layer f = 0, Pauli strings G(0)
jk are

mapped by the disentangling unitary U †
N onto SOPs,

UN G(0)
jk U †

N = S( j−1)(k+1), (G6)

see Table II. As a result, we measure on the input state a sum
of products of SOPs, i.e., the multiscale SOP SM of Eq. (11).

Length of string order parameters. The backpropagation
of all Pauli strings and their products is intractable due to
their rapidly increasing number with the depth of the QCNN,
see Table II. However, we now show that the multiscale SOP
involves a SOP whose length increases exponentially with the
depth d of the QCNN.

To this end, we focus on the product

H ( f )
jk = L( f )

j G( f )
jk G( f )

( j+3 f )(k−3 f )R
( f )
k (G7)

of Pauli strings G( f )
jk , G( f )

( j−3 f )(k+3 f ), L
( f )
j and R( f )

k . The Pauli

strings L(d−2)
j = R(d−2)

k = 1 reduce to the identity operator
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TABLE III. Backpropagation of products H ( f )
jk of Pauli strings

through the QCNN circuit with the depth d . We focus on a single
product at each layer f = 1, 2, ..., d − 2. The table displays the
length l f of the Pauli string G( f )

( j+3 f )(k−3 f )
in the product H ( f )

jk and the

unitary performed at layer f . The corresponding product of SOPs
measured on the input state and the length L of the SOP S(i−l0 )(i+l0 )

are displayed in the last row. Operators L̃ and R̃ are defined in
Appendix I and i = N+1

2 .

f Product of Pauli strings l f

d − 2 H (d−2)
(i−3d−2 )(i+3d−2 )

1 Q̃EC
X
d−2

...

f even H ( f )
(i−l f ×3 f )(i+l f ×3 f )

3d− f +13
8 Q̃EC

Z
f

f odd H ( f )
(i−l f ×3 f )(i+l f ×3 f )

3d− f −1
8 Q̃EC

X
f

...

0 H (0)
(i−l0 )(i+l0 )

3d +13
8 U †

N

Input L̃S(i−l0−1)(i+l0+1)S(i−l0 )(i+l0 )R̃ L = 3d +17
4

at layer f = d − 2 and they are defined recursively for f <

d − 2 by relations

L( f )
j = L( f +1)

j+2×3 f , (G8)

R( f )
k = R( f +1)

k−2×3 f , (G9)

for f being even and

L( f )
j = L( f +1)

j−5×3 f Xj−6×3 f Xj−3×3 f , (G10)

R( f )
k = Xk+3×3 f Xk+6×3 f R( f +1)

k+5×3 f , (G11)

for f being odd.
We show in Appendix I that the product H ( f )

jk appears
at every layer f � d − 2. The backpropagation of the prod-
ucts H ( f )

jk is summarized in Table III. The first product

H (d−2)
( N+1

2 −3d−2 )( N+1
2 +3d−2 )

appears at layer f = d − 2, see Table II.

The product H ( f )
jk recursively appears at every layer f <

d − 2. After the disentangling unitary U †
N at layer f = 0, the

product H (0)
jk gives rise to a product of SOPs, see Table III.

The Pauli sting G(0)
( N+1

2 −l0+1)( N+1
2 +l0−1)

in the product

H (0)
( N+1

2 −l0 )( N+1
2 +l0 )

at layer f = 0 attains the length l0 = 3d +13
8 ,

see Table III. The Pauli string G(0)
( N+1

2 −l0+1)( N+1
2 +l0−1)

is mapped

by the disentangling unitary U †
N onto the SOP S( N+1

2 −l0 )( N+1
2 +l0 )

with the length

L = 2l0 + 1 = 3d + 17

4
∼ 3d . (G12)

This shows that the multiscale SOP (11) involves a SOP
whose length increases exponentially for large depths d of
the QCNN. For the depth d = log3 N , this SOP exhibits the
length L ≈ N/4 comparable to system size N . By extending
the analysis presented here, it can be shown that the multi-
scale SOP SM involves also other SOPs with exponentially
increasing lengths L ∼ 3d as well as SOPs at all length scales
between L = 1 and L ∼ 3d .

TABLE IV. Backpropagation of products of Pauli strings through
the QCNN circuit with the depth d . We focus on a single product
of Pauli strings H (2)

jk at layers f = 1, 2 and display all products of
SOPs measured on the input state that emerge by backpropagating

the product H (2)
jk through Q̃EC

X
1 U †

N . The table displays the length l f

of the Pauli string G( f )
( j+3 f )(k−3 f )

in the product H ( f )
jk and the unitary

performed at layer f . Cζ = S(ζ−1)(ζ+1) are stabilizer elements as
defined in the main text, Aζ and Bζ are defined in Eqs. (G14) and
(G15), respectively, operators L̄ and R̄ are defined in the Appendix I,
ζ ∈ { N+1

2 − 9l2,
N+1

2 − 9(l2 − 1), ..., N+1
2 + 9l2}, and i = N+1

2 .

f Products of Pauli strings l f

2 H (2)
(i−9l2 )(i+9l2 )

3d−2+13
8 Q̃EC

Z
2

1 H (2)
(i−9l2 )(i+9l2 ) Q̃EC

X
1 U †

N

Input L̄
(∏

ζ AζCζ Bζ

)
R̄

Number of products of string order parameters. Finally, we
determine a lower bound for the number of products of SOPs
in the multiscale SOP SM. To this end, we focus on products
of Pauli strings displayed in Table IV.

We start with the product H (2)
( N+1

2 −9l2 )( N+1
2 +9l2 )

, which appears

at layer f = 2, see Table III. The recursion relation (G4)
dictates that this product appears at layer f = 1 as well.
In contrast to the discussion above, we now focus on the
product H (2)

( N+1
2 −9l2 )( N+1

2 +9l2 )
at layer f = 1. The Pauli strings

G(2)
[ N+1

2 −9(l2−1)][ N+1
2 +9(l2−1)]

and G(2)
( N+1

2 −9l2 )( N+1
2 +9l2 )

in this prod-

uct have lengths l2 = 3d−2+13
8 and l2 + 1. We backpropagate

this product through the X -error correcting layer Q̃EC
X
1 and

the disentangling unitary U †
N ,

UN Q̃EC
X †
1 H (2)

(i−9l2 )(i+9l2 )Q̃EC
X
1 U †

N

= L̄

⎛⎝∏
ζ

AζCζ Bζ

⎞⎠R̄, (G13)

where ζ ∈ {N+1
2 − 9l2,

N+1
2 − 9(l2 − 1), ..., N+1

2 + 9l2},
Cζ = S(ζ−1)(ζ+1) are stabilizer elements as defined in the main
text, and

Aζ = 1
2

(
Cζ−4Cζ−2 − Cζ−4 + Cζ−2 + 1

)
, (G14)

Bζ = 1
2

(
1 + Cζ+2 − Cζ+4 + Cζ+2Cζ+4

)
. (G15)

In Eq. (G13), we used the recursion relation (G3) as well
as Eq. (G6), see Appendix I for details. The product (G13)
involves 2l2 + 1 = 3d−2+17

4 > 3d−2

4 terms Aζ and Bζ . By dis-
tributing the parentheses in all terms Aζ and Bζ , we obtain
a sum of 162l2+1 > 23d−2

products of SOPs S jk . Note that
these products of SOPs emerge from only the single product
H (2)

( N+1
2 −9l2 )( N+1

2 +9l2 )
at layer f = 1. This places the lower bound

23d−2
on the total number of products of SOPs in the multiscale

SOP SM, which involves also many other products of SOPs.
In summary, we showed in this Appendix that the QCNN

with alternating X -error and Z-error correcting layers detect-
ing the ZXZ phase measures the multiscale SOP SM, see
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Eq. (11). This multiscale SOP is a sum of products of SOPs
S jk whose length L ∼ 3d increases exponentially with the
depth d of the QCNN. The lower bound for the number of
products of SOPs in the sum is 23d−2

.

APPENDIX H: SAMPLE COMPLEXITY OF THE
MULTISCALE STRING ORDER PARAMETER

In this Appendix, we discuss the sample complexity of
directly sampling the multiscale SOP of Eq. (11) from the
input state via local Pauli measurements without using any
quantum circuit.

A local Pauli measurement consists of simultaneously
reading out all qubits j in the basis of Pauli operators σ j =
Xj,Yj, Zj . We thus measure in the basis of the tensor product
B = ⊗N

j=1 σ j of the Pauli operators σ j . A product of SOPs
can be sampled via the local Pauli measurement in any Basis
B in which it is diagonal. Several products of SOPs that are
diagonal in the same tensor product basis can be simultane-
ously sampled in this basis. We can express the multiscale
SOP

SM =
b∑

m=1

Om (H1)

in terms of operators Om, which are sums of products of
SOPs that are diagonal in the tensor product basis Bm. To
determine the expectation value of the multiscale SOP, we
can individually measure each operator Om using local Pauli
measurements. While the sample complexity of this measure-
ment depends on the variance 〈O2

m〉 − 〈Om〉2 of the operators
Om, the number b of different bases Bm in which we need
to measure places a lower bound on the sample complex-
ity. Note that the decomposition (H1) of the multiscale SOP
is not unique as a product of SOPs can be diagonal in
several bases Bm. To determine the lower bound for the
sample complexity of the multiscale SOP, we now investi-
gate the minimal number B of bases in which we need to
measure.

To this end, we focus on the products (G13) of SOPs. We
rewrite the products (G13) as

L̄

⎛⎝∏
ζ

AζCζ Bζ

⎞⎠R̄ = L̄A N+1
2 −9l2

⎛⎝∏
ζ

Cζ

⎞⎠
×

⎛⎝∏
ζ ′

Kζ ′

⎞⎠B N+1
2 +9l2R̄, (H2)

where ζ ′ ∈ {N+1
2 − 9l2 + 4, N+1

2 − 9l2 + 13, ..., N+1
2 + 9l2 −

5} and

Kζ ′ = 1
4 [(Cζ ′−2 + 1)(Cζ ′+3 + 1) (H3)

+ (Cζ ′−2 − 1)Cζ ′ (Cζ ′+3 + 1) (H4)

+ (Cζ ′−2 + 1)Cζ ′+1(Cζ ′+3 − 1) (H5)

+ (Cζ ′−2 − 1)Cζ ′Cζ ′+1(Cζ ′+3 − 1)]. (H6)

Crucially, each operator Kζ ′ involves terms that need to be
measured in three different tensor product bases. Recalling

that Cζ ′ = Zζ ′−1Xζ ′Zζ ′+1, the terms in the line (H4) are diago-
nal in the X basis on qubit ζ ′ and in the computational basis
on qubit ζ ′ + 1. The terms in the line (H5) are diagonal in the
computational basis on qubit ζ ′ and in the X basis on qubit
ζ ′ + 1. The terms in the line (H6) are diagonal in the Y basis
on qubits ζ ′ and ζ ′ + 1. As a result, we need to measure in
three different bases Xζ ′Zζ ′+1, Zζ ′Xζ ′+1 and Yζ ′Yζ ′+1 on qubits
ζ ′ and ζ ′ + 1. The terms in the line (H3) are diagonal in any of
these three bases as they act as the identity operator on qubits
ζ ′ and ζ ′ + 1.

The product of SOPs (H2) involves 2 l2 = 3d−2+13
4 > 3d−4

operators Kζ ′ . Distributing the parentheses in all opera-
tors Kζ ′ on the right-hand side of Eq. (H2) gives rise
to products of SOPs with mutually incompatible bases⊗

ζ ′ {Xζ ′Zζ ′+1, Zζ ′Xζ ′+1,Yζ ′Yζ ′+1} on qubits ζ ′ and ζ ′ + 1. As

a result, we need to measure in 32l2 > 33d−4
different tensor

product bases Bm. This places the lower bound 33d−4
for the

sample complexity of measuring the multiscale SOP via local
Pauli measurements.

APPENDIX I: BACKPROPAGATION OF PRODUCTS (G7)
OF PAULI STRINGS THROUGH THE QCNN CIRCUIT

In this Appendix, we discuss the backpropagation of prod-
ucts H ( f )

jk of Pauli strings defined in Eq. (G7) through the

QCNN circuit. We show that the product H ( f )
jk recursively

appears at every layer f < d − 2 of the QCNN. We also de-
rive Eq. (G13) describing the backpropagation of the product

H (2)
jk through the first X -error correcting layer Q̃EC

X
1 and the

disentangling unitary U †
N .

Following the recursion relations (G8)–(G11), the Pauli
strings L( f )

j and R( f )
k in the product H ( f )

jk for f being odd can
be explicitly expressed as

L( f )
j =

(d−4− f )/2∏
g=0

Xj−κg−3×3 f +2gXj−κg, (I1)

R( f )
k =

(d−4− f )/2∏
g=0

Xk+κgXk+κg+3×3 f +2g, (I2)

where

κg = 23 × 32g + 1

8
3 f . (I3)

For f being even, the Pauli strings L( f )
j and R( f )

k can be
explicitly expressed as

L( f )
j =

(d−5− f )/2∏
g=0

Xj−λg−9×3 f +2gXj−λg, (I4)

R( f )
k =

(d−5− f )/2∏
g=0

Xk+λgXk+λg+9×3 f +2g, (I5)

where

λg = 69 × 32g − 13

8
3 f . (I6)

The Pauli strings L( f )
j and R( f )

k involve 2�(d − f − 2)/2�
Pauli Xl operators at layer f .

033111-20



ERROR-TOLERANT QUANTUM CONVOLUTIONAL NEURAL … PHYSICAL REVIEW RESEARCH 6, 033111 (2024)

Backpropagation of products (G7) of Pauli strings.
We now show that the product H ( f )

jk appears at every
layer f < d − 2, see Table III in Appendix G. We start
with H (d−2)

( N+1
2 −3d−2 )( N+1

2 +3d−2 )
at layer f = d − 2. The product

H ( f )
( N+1

2 −l f ×3 f )( N+1
2 +l f ×3 f )

backpropagates through the X -error

correcting layer Q̃EC
X
f according to the recursion relation

Q̃EC
X †
f H ( f )

( N+1
2 −l f ×3 f )( N+1

2 +l f ×3 f )
Q̃EC

X
f

→ H ( f −1)
( N+1

2 −l f −1×3 f −1 )( N+1
2 +l f −1×3 f −1 )

, (I7)

where l f −1 = 3l f + 2. Due to the distance |l − m| � 3 × 3 f

between every pair of Pauli operators Xl and Xm in the
strings L( f )

N+1
2 −l f ×3 f and R( f )

N+1
2 +l f ×3 f , each Pauli Xl operator

separately backpropagates through the odd X -error correct-

ing layer Q̃EC
X
f according to Eq. (G3). The Pauli strings

G( f )
( N+1

2 −l f ×3 f )( N+1
2 +l f ×3 f )

and G( f )
[ N+1

2 −(l f −1)×3 f ][ N+1
2 +(l f −1)×3 f ]

in

the product H ( f )
( N+1

2 −l f ×3 f )( N+1
2 +l f ×3 f )

also separately backprop-

agate through the X -error correcting layer Q̃EC
X
f according

to Eq. (G3). As a result, backpropagating the product
H ( f )

( N+1
2 −l f ×3 f )( N+1

2 +l f ×3 f )
through the X -error correcting layer

Q̃EC
X
f gives rise to a sum of 162(d− f −1) terms including

the product H ( f −1)
( N+1

2 −l f −1×3 f −1 )( N+1
2 +l f −1×3 f −1 )

, where we used

Eqs. (G8) and (G9). We focus on the single product
H ( f −1)

( N+1
2 −l f −1×3 f −1 )( N+1

2 +l f −1×3 f −1 )
as indicated by the recursion re-

lation (I7) and displayed in Table III.
The product H ( f )

( N+1
2 −l f ×3 f )( N+1

2 +l f ×3 f )
backpropagates

through the Z-error correcting layer Q̃EC
Z
f according to

the recursion relation

Q̃EC
Z †
f H ( f )

( N+1
2 −l f ×3 f )( N+1

2 +l f ×3 f )
Q̃EC

Z
f

→ H ( f −1)
( N+1

2 −l f −1×3 f −1 )( N+1
2 +l f −1×3 f −1 )

, (I8)

where l f −1 = 3l f − 5. Each Pauli string in the product
H ( f )

( N+1
2 −l f ×3 f )( N+1

2 +l f ×3 f )
backpropagates separately through the

Z-error correcting layer Q̃EC
Z
f according to Eq. (G4) giving

rise to a sum of 42(l f +d− f )−5 terms including the product
H ( f −1)

N+1
2 −l f −1×3 f −1 )( N+1

2 +l f −1×3 f −1 )
as indicated by the recursion re-

lation (I8) and stated in Table III. To show this, we distribute
the parentheses in Eq. (G4) and exploit Eqs. (G10) and (G11)
as well as that

G( f −1)
jk = Xj+2×3 f −1 Xj+4×3 f −1 Xj+8×3 f −1

(∏
δ′

Xδ′−εXδ′+ε

)

×
(∏

δ′′
Xδ′′

)
Xk−8×3 f −1 Xk−4×3 f −1 Xk−2×3 f −1 , (I9)

and

G( f −1)
( j+3 f −1 )(k−3 f −1 ) = Xj+3 f −1 Xj+5×3 f −1 Xj+11×3 f −1

×
(∏

δ′
Xδ′

)(∏
δ′′

Xδ′′−εXδ′′+ε

)
× Xk−11×3 f −1 Xk−5×3 f −1 Xk−3 f −1 , (I10)

where δ′ ∈ { j + 7 × 3 f −1, j + 13 × 3 f −1, ..., k − 7 × 3 f −1},
δ′′
∈ { j + 10 × 3 f −1, j + 16 × 3 f −1..., k − 10 × 3 f −1}, and
ε = 7 × 3 f −1.

To summarize the backpropagation of the products
H ( f )

( N+1
2 −l f ×3 f )( N+1

2 +l f ×3 f )
in the QCNN circuit, we start with

the first product H (d−2)
( N+1

2 −3d−2 )( N+1
2 +3d−2 )

at layer f = d − 2,

cf. Table III. Using the recursion relations (I7) and (I8)

for odd layers Q̃EC
X
f and even layers Q̃EC

Z
f , respectively,

we obtain the product H ( f )
( N+1

2 −l f ×3 f )( N+1
2 +l f ×3 f )

at every layer

f < d − 2. Note that the product H ( f )
( N+1

2 −l f ×3 f )( N+1
2 +l f ×3 f )

at layer f emerges only by backpropagating the product
H ( f +1)

( N+1
2 −l f +1×3 f +1 )( N+1

2 +l f +1×3 f +1 )
from layer f + 1. The recursion

relations (G3) and (G4) dictate that all other products of Pauli
strings at layer f + 1 give rise to products at layer f different
to H ( f )

( N+1
2 −l f ×3 f )( N+1

2 +l f ×3 f )
.

We now investigate the length l f of the Pauli
string G( f )

[ N+1
2 −(l f −1)×3 f ][ N+1

2 +(l f −1)×3 f ]
in the product

H ( f )
( N+1

2 −l f ×3 f )( N+1
2 +l f ×3 f )

at every layer f . We start with ld−2 = 1

at layer f = d − 2, see Table III. By backpropagating through
the X -error correcting layer, the length l f −1 = 3l f + 2 of the
Pauli string G( f −1)

[ N+1
2 −(l f −1−1)×3 f −1][ N+1

2 +(l f −1−1)×3 f −1]
at layer

f − 1 increases by a factor of three compared to the length
l f of the Pauli string G( f )

[ N+1
2 −(l f −1)×3 f ][ N+1

2 +(l f −1)×3 f ]
at layer

f , see Eq. (I7). By backpropagating through the Z-error
correcting layer, the length l f −1 = 3l f − 5 also increases by a
factor of three, see Eq. (I8). After two successive layers—the
first layer correcting X errors and the second layer correcting
Z errors—the length of the Pauli string increases by a factor
of nine from l f to l f −2 = 9l f + 1. At every odd layer f , the
length can be expressed as a sum

l f =
(d− f −2)/2∑

g=0

9g = 3d− f − 1

8
. (I11)

At every even layer f , the length can be expressed as l f =
3d− f +13

8 , cf. Table III.
The product H (0)

( N+1
2 −l0 )( N+1

2 +l0 )
at layer f = 0 is mapped by

the disentangling unitary U †
N onto the product of SOPs

UN H (0)
( N+1

2 −l0 )( N+1
2 +l0 )

U †
N = L̃S(i−l0−1)(i+l0+1)S(i−l0 )(i+l0 )R̃,

(I12)
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see Table III where

L̃ = UNL(0)
N+1

2 −l0
U †

N

=
(d−5)/2∏

g=0

C N+1
2 −l0−λg−9×32gC N+1

2 −l0−λg
, (I13)

R̃ = UNR(0)
N+1

2 +l0
U †

N

=
(d−5)/2∏

g=0

C N+1
2 +l0+λg

C N+1
2 +l0+λg+9×32g. (I14)

Derivation of Eq. (G13). In Eq. (G13), we backpropagate
the product H (2)

( N+1
2 −9l2 )( N+1

2 +9l2 )
that appears at layer f = 1

through the first X -error correcting layer Q̃EC
X
1 and the dis-

entangling unitary U †
N using the recursion relation (G3) and

Eq. (G6), respectively. Note that every Pauli operator Xζ

in the product H (2)
( N+1

2 −9l2 )( N+1
2 +9l2 )

separately backpropagates

through the X -error correcting layer Q̃EC
X
1 due to the distance

at least 9 between these Pauli operators. The Pauli strings
G(2)

[ N+1
2 −9(l2−1)][ N+1

2 +9(l2−1)]
and G(2)

( N+1
2 −9l2 )( N+1

2 +9l2 )
in the product

H (2)
jk involve l2 = 3d−2+13

8 and l2 + 1, respectively, Pauli Xζ

operators. Backpropagating these Pauli strings through the

layer Q̃EC
X
1 and the disentangling unitary U †

N gives rise to the

product

UN Q̃EC
X †
1 G(2)

( N+1
2 −9l2 )( N+1

2 +9l2 )

× G(2)
[ N+1

2 −9(l2−1)][ N+1
2 +9(l2−1)]

Q̃EC
X
1 U †

N =
∏
ζ

Eζ (I15)

of 2l2 + 1 = 3d−2+17
4 terms Eζ = AζCζ Bζ where ζ ∈ {N+1

2 −
9l2,

N+1
2 − 9(l2 − 1), ..., N+1

2 + 9l2} and Cζ = S(ζ−1)(ζ+1).
Operators Aζ and Bζ are defined in Eqs. (G14) and (G15).
Backpropagating the Pauli strings L(2)

N+1
2 −9l2

and R(2)
N+1

2 +9l2

through the layer Q̃EC
X
1 and the disentangling unitary U †

N
gives rise to the products

L̄ = UN Q̃EC
X †
1 L(2)

N+1
2 −9l2

Q̃EC
X
1 U †

N

=
(d−7)/2∏

g=0

E N+1
2 −9l2−λg−81×32gE N+1

2 −9l2−λg
, (I16)

R̄ = UN Q̃EC
X †
1 R(2)

N+1
2 +9l2

Q̃EC
X
1 U †

N

=
(d−7)/2∏

g=0

E N+1
2 +9l2+λg

E N+1
2 +9l2+λg+81×32g. (I17)

By combining Eqs. (I15)–(I17) we obtain Eq. (G13).
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