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Quantum phase transition between spin liquid and spin nematics in spin-1 Kitaev honeycomb model
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Besides the exactly solvable spin-1/2 Kitaev model, higher spin-S ones, not exactly solvable, are promising
playgrounds for researches on the quantum spin liquid as well. One of the main interests in higher spin-S cases is
the interplay between the Kitaev spin liquid (KSL) and spin nematics. We probe this interplay in a spin-1 model
on the honeycomb lattice with competing bilinear-biquadratic and Kitaev interactions. Utilizing the 2D infinite
projected entangled-pair state (iPEPS), we map out the phase diagram for the ferro-biquadratic interaction. In the
phase diagram, we discover the direct phase transitions between the KSL phases and ferro-quadrupolar ordered
spin nematic phase, which we call the FQ phase. It has been revealed that the ferro KSL exhibits robustness
against perturbations from ferro-quadrupolar interactions. Also, the FQ phase is extended to the parameter region
near the antiferro-Kitaev limit.
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I. INTRODUCTION

The exactly solvable spin-1/2 Kitaev honeycomb model
(KHM) exhibits [1] quantum spin liquids as the ground state,
called the Kitaev spin liquid (KSL), ascribed for the bond-
dependent spin-spin interactions giving rise to the frustration.
This KHM possesses the Z2 gauge structure of the Majorana
fermions, i.e., the conservation of the flux, on each local
hexagonal plaquette. The Kitaev interactions can be realized
in materials with strong spin-orbit couplings (SOCs) [2].
There appeared a number of successive experiments with
candidate Kitaev materials {e.g., α-RuCl3 [3–9], A2IrO3 (A =
Na, Li) [10–18] and H3LiIr2O6 [19]}, which then motivated
researchers for more theoretical investigations [20–27].

Besides the spin-1/2 KHM, higher spin-S ones have also
attracted attentions, despite the difficulties because of the ab-
sence of exact solutions. Analytical studies of arbitrary spin-S
Kitaev models have confirmed [28] the conservation of Z2

gauge flux, similar to the case of spin-1/2, and the disap-
pearance of spin-spin correlations beyond nearest neighbors.
Several numerical studies supported the existence of quantum
spin liquids in spin-1 KHMs [29–34]. Candidate materials
were also proposed in spin-1 [35] and spin-3/2 [36,37] cases.

Higher internal degrees of freedom than spin-1/2 cause
unique spin-quadrupolar (or multipolar) states. One of the
most representative ones is the spin nematic state character-
ized by the spin-quadrupolar order. The interplay between
the quantum spin liquid and spin nematic state has been
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regarded as a significant topic, which cannot be observed in
the classical system but in the quantum system. One may
discover novel quantum properties of matters by investigating
this interplay on the KHM whose ground state is verified to
be the quantum spin liquid. However, this is far from under-
stood since it is hard to investigate their “hidden” magnetism.
Namely, both states do not exhibit the long-range spin-dipolar
order, although they are different in that the spin nematic
state breaks spin rotational symmetry owing to the order of
the spin-quadrupolar moments [38–42] while quantum spin
liquids including the KSL do not spontaneously break any
symmetries [43].

Recently, Pohle et al. addressed [44,45] this challenging
problem by investigating a spin-1 honeycomb model with
competing bilinear-biquadratic (BBQ) and Kitaev interac-
tions, which we call the BBQ-K model defined as

ĤBBQ−K ≡
∑

γ=x,y,z

∑
〈i, j〉γ

Ĥ
〈i, j〉γ
BBQ−K, (1)

Ĥ
〈i, j〉γ
BBQ−K ≡ J1Ŝi · Ŝ j + J2

(
Ŝi · Ŝ j

)2 + KŜγ
i Ŝγ

j . (2)

Here, 〈i, j〉γ denotes the nearest-neighbor pair on a γ bond. J1,
J2, and K are coupling coefficients of Heisenberg (bilinear),
biquadratic, and Kitaev terms respectively. They discovered
a variety of quantum properties caused by the competition
between these interactions. However, several properties in-
cluding phases and phase transitions are still unclear when the
Kitaev interaction prevail over the BBQ ones. This is because
it is in principle impossible for semiclassical variational cal-
culations adopted in Refs. [44,45] to illustrate quantum spin
liquid.

In this paper, we investigate the BBQ-K model to explore
quantum phases and phase transitions, extended to the param-
eter regions where the Kitaev interaction is dominant. We here
adopted the tensor network method, that is the 2D infinite
projected entangled-pair state (iPEPS) [46–48], to accurately
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FIG. 1. (a) Phase diagram of the BBQ-K model in the region of 0.0 � θ/π � 1.0 and −1.0 � φ/π � 0.0. (b) Configurations of
antiferromagnetic (AFM), ferromagnetic (FM), stripy, zigzag, and ferro-quadrupolar ordered spin nematic (FQ) phases. The arrows and rods
denote spin dipolar and quadrupolar moments, respectively. (c) Hexagonal plaquette with sites {i1, i2, · · · , i6}. The blue, red, and green lines
denote bonds of local tensors along x, y, and z directions of the Kitaev term respectively.

capture the quantum entanglements among spins, which was
neglected in Refs. [44,45].

As a result, we obtain the phase diagram Fig. 1(a).
Following the notation in Refs. [44,45], we normal-
ize the coefficients in Eq. (2) with two parameters θ

and φ as (J1, J2, K ) ≡ (sin θ cos φ, sin θ sin φ, cos θ ). Similar
to Refs. [44,45], Fig. 1(a) depicts four spin-dipolar or-
dered phases: antiferromagnetic (AFM), ferromagnetic (FM),
zigzag, stripy phases, and the ferro-quadrupolar ordered
spin nematic phase, which we call the FQ phase later [see
Fig. 1(b)]. However, unlike Refs. [44,45], strong competition
between the Kitaev and ferro-biquadratic (ferro-quadrupolar)
terms causes unconventional quantum properties: (1) two ex-
tended KSL phases and (2) the direct KSL–FQ transitions. We
describe details of these results in Sec. IV. We focus on only
the parameter region of the negative quadrupolar interaction
J2 < 0 (−π � φ � 0). This is because, in the other region
J2 > 0 (0 � φ � π ), there are several disagreements between
previous researches [44,45,49] as for the ground-state phases,
and there are a number of candidate phases in close energy
scales. Therefore, distinguishing a phase from the other can-
didates requires more computational costs and larger-scale
calculations.

This paper is organized as follows. In Sec. II, we describe
the BBQ-K model. Then, we show the details of the tensor
network method in Sec. III. We present our numerical results:
detailed phase diagrams and how to detect phases and bound-
aries, in Sec. IV. Then we discuss the nature of BBQ-K model
in Sec. V, including implications for experiments to capture
the phase diagram.

II. BBQ-K MODEL

In this section, we describe the BBQ-K model Eqs. (1)
and (2) in more detail. At the limit of θ = 0 (π ) [J1 = J2 = 0
and K = 1 (−1)], Eq. (1) is nothing but the spin-1 Kitaev
model whose ground state is antiferro- (ferro-) KSL, which
we call the AKSL (FKSL). These Hamiltonians commute [28]
with the Z2 gauge flux operator Ŵp on a hexagonal plaquette
with sites {i1, i2, · · · , i6} shown in Fig. 1(c), defined as

Ŵp ≡ Û z
i1
Û y

i2
Û x

i3Û
z
i4
Û y

i5
Û x

i6 , (3)

where Û γ
i ≡ exp(iπ Ŝγ

i ) and γ = x, y, z. These spin-1 KSL
states are characterized by the vortex freeness, i.e., 〈Ŵp〉 =
+1, according to a study of the spin-wave theory [28] and
numerical studies [30,31].

The limit of θ = π/2 (K = 0) is the BBQ model. The
biquadratic term (Ŝi · Ŝ j )2 can be decomposed with the spin-
quadrupolar operator Q̂i at site i, as

(Ŝi · Ŝ j )
2 = 1

2 (Q̂i · Q̂ j − Ŝi · Ŝ j ) + 4
3 , (4)

where the term Q̂i · Q̂ j stabilizes the spin nematic ground

state. Q̂i has five components: (Ŝx
i )2 − (Ŝy

i )2,
√

3[(Ŝz
i )2 −

(2/3)], Ŝx
i Ŝy

i + Ŝy
i Ŝx

i , Ŝy
i Ŝz

i + Ŝz
i Ŝy

i , and Ŝz
i Ŝx

i + Ŝx
i Ŝz

i . If J2 <

0, the FQ phase is stabilized [49]. If J2 > 0, the antiferro-
quadrupolar (AFQ) ordered phase appears in the classical
case [50,51], whereas this quadrupolar order is melted [49,52]
by quantum fluctuations.

III. TENSOR NETWORK METHOD

In our numerical calculations, we implemented variational
calculations by the iPEPS [46–48]. Here, we provide an
overview of the algorithms.

In the case of the finite-size system, the ground state |�〉
of a spin-1 system with N sites can be expressed by direct
products of local spin-1 states as

|�〉 ≡
∑

{si=0,±1}
�s0···sN−1 |s0〉 ⊗ · · · ⊗ |sN−1〉, (5)

where si = 0,±1 denotes the quantum number of Ŝz
i . We

approximate the ground-state wave function �s0···sN−1 as a
project entangled-pair state (PEPS) [53,54] with N local ten-
sors ψ

si
limini

as

�s0···sN−1 ≈ Tr

(
N−1∏
i=0

ψ
si
limini

)
, (6)

where Tr stands for the contraction of all virtual indices
{limini}, which correspond to edges of the honeycomb lattice.
We define the bond dimension of virtual indices as D. We
consider the iPEPS by enforcing translational symmetry in the
PEPS to calculate physical quantities in the thermodynamic
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FIG. 2. Eight sublattices in a unit cell with periodic boundary
conditions. The blue, red, and green lines denote bonds of local
tensors along x, y, and z directions of the Kitaev term, respectively.

limit. We assume N-sublattice structure in a unit cell. The
iPEPS can express a larger space of quantum states for larger
D (arbitrary quantum states in the case of D → ∞). Since we
here consider only short-range interactions, we can assume
that the entanglement entropy obeys the area law [55–57],
which allows us to efficiently approximate the ground state
even with the finite bond dimension D [58].

Next, we search for the objective ground state |�〉 mak-
ing use of the imaginary-time evolution (ITE) as |�〉 

e−T Ĥ |�0〉, where T is a sufficiently long imaginary time and
|�0〉 is an initial state. By the first-order Trotter-Suzuki de-
composition [59–61], the ITE is split into a product of local
two-body Hamiltonians Ĥi j (Ĥ = ∑

〈i, j〉 Ĥi j) with nearest-
neighbor interactions

e−T Ĥ |�0〉 =

⎡
⎢⎣

⎛
⎝∏

〈i, j〉
e−τ Ĥi j

⎞
⎠

Nτ

+ O(τ )

⎤
⎥⎦|�0〉, (7)

where Nτ = T/τ is the number of ITE steps. We neglect
O(τ ) by setting τ as a sufficiently small value, and iterate
the ITE steps until it converges. In practice, after multiplying
e−τ Ĥi j , we truncate the bond dimension by the simple update
method [62,63], so that this remains D throughout the ITE
steps. Note that we should start the ITE steps from a variety
of possible initial conditions so as to reduce the influence of
being trapped in a local minimum.

We then derive the expectation value of a physical quantity
Ô defined as 〈Ô〉 ≡ 〈�|Ô|�〉/〈�|�〉. By contracting indices
si in Eq. (6), 〈�|Ô|�〉 and 〈�|�〉 can also be expressed as
an infinite tensor network with the bond dimension D2. We
accurately approximated this as a finite one with the help of
the corner transfer matrix renormalization group (CTMRG)
method [64–69] for an arbitrary unit-cell structure [70]. The
accuracy of the CTMRG is determined by the bond dimension
χ of the corner matrices and the edge tensors. We choose χ as
χ ∝ D2.

In the present iPEPS simulations, we adopt the tensor net-
work library TeNeS [71,72]. We define the iPEPS in a unit
cell with eight sublattices (see Fig. 2). Each circle denotes a
local tensor ψ

si
limini

in Eq. (6). As for the ITE, we set τ = 10−2

and Nτ = 104 so that the ITE well converges. Based on the
results in Refs. [44,45], we prepare seven initial conditions for

FIG. 3. Phase diagram of the BBQ-K model. (a) The vicinity
of the ferro-Kitaev limit (θ = π ) with the inset closing up the
black squared region, and (b) the vicinity of the antiferro-Kitaev
limit (θ = 0).

the ITE: AFM, FM, stripy, zigzag, and FQ states in addition
to antiferro- and ferro-loop gas states (LGSs) [25,31], which
qualitatively capture the nature of AKSL and FKSL states
respectively. At a single parameter point (θ, φ), we perform
the ITE under these seven initial conditions. We then employ
a state where the energy becomes the lowest. Considering the
convergence of energy at Kitaev limits in Ref. [31], we set the
bond dimensions as (D, χ ) = (8, 64) or (8, 128), described in
the next section in more detail.

IV. RESULTS

In this section, we give numerical results. Figure 3 shows
the close-up of the phase diagram Fig. 1(a) in the vicinity
of the Kitaev limits (θ = 0 and π ). We explain these phase
diagrams in Sec. IV A. In Secs. IV B and IV C, we describe
how to detect different phases and in the vicinity of ferro- and
antiferro-Kitaev limits, respectively.

As for the bond dimensions of iPEPS, we adopt (D, χ ) =
(8, 128) in the black-squared region of Fig. 3(a) and when
determining the AKSL–FQ boundaries in Fig. 3(b), so that
the CTMRG well converges. In the other parameter regions,
we adopt (D, χ ) = (8, 64). Also, the results when we change
the bond dimension D are described in Appendix, where we
confirm that D = 8 are sufficient to draw proper conclusions.

A. Ground-state phase diagram

In Fig. 3, there are phase transitions between the KSL
and the four spin-dipolar ordered phases. Considering the
Kitaev–Heisenberg model (φ/π = −1.0 or 0.0), our results of
boundaries between these phases are consistent with the den-
sity matrix renormalization group (DMRG) calculation [32].
More interestingly, we discover the direct KSL–FQ transitions
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appear in the vicinity of both Kitaev limits. This result is
significant since these transitions are in principle impossible
to detect until one accurately capture quantum fluctuations
and entanglements by iPEPS.

In the vicinity of the ferro-Kitaev limit (θ = π ), we con-
firm that the FKSL phase drastically gets extended around the
region of −0.65 � φ/π � −0.6 [see Fig. 3(a)]. In this region,
the ferro-quadrupolar term of the BBQ model is dominant
compared to the Heisenberg one. Especially at φ = arctan (2)
(≈ −0.648π ), the BBQ-K model Eq. (2) can be rewritten
without the the Heisenberg term as

Ĥ
〈i, j〉γ
BBQ−K = − sin θ√

5

(
Q̂i · Q̂ j + 8

3

)
+ cos θ Ŝγ

i Ŝγ
j . (8)

We thus interpret it as meaning that the FKSL phase is
robust against perturbations from ferro-quadrupolar interac-
tions. Moreover, there is not the direct FM–stripy transition
unlike Refs. [44,45] since KSL or FQ phase exists between
FM and stripy phases. We find that this intermediate FQ phase
appears since it is more robust against the Heisenberg interac-
tion than one in Refs. [44,45], as iPEPS accurately capture
quantum entanglements.

In the vicinity of the antiferro-Kitaev limit (θ = 0) shown
in Fig. 3(b), we also discover that the FQ phase is also more
robust against the antiferro-Kitaev interaction than one in
Refs. [44,45], while the AKSL phase is vulnerable to both
Heisenberg and ferro-quadrupolar interactions. Note that the
FQ phase gets extended when the antiferro-Kitaev interaction
becomes dominant, which shrinks in Refs. [44,45]. Also, there
is not the direct zigzag–AFM transition since the FQ phase
gets between these two phases. We reveal quantum properties
caused by the competition between antiferro-Kitaev and ferro-
quadrupolar interactions by iPEPS.

B. Vicinity of the ferro-Kitaev limit

In this subsection, we explain how to calculate order pa-
rameters for determining phases and boundaries with the
emphasis on the vicinity of ferro-Kitaev limit (θ = π ). In later
subsubsections, we show our numerical results in the cases of
the FQ–FKSL and FM–FQ–stripy transitions.

1. FQ–FKSL transition

In this subsubsection, we show our numerical results il-
lustrating the FQ–FKSL transition. We derive some order
parameters to determine phases and the boundary when tuning
the parameter θ and fixing φ at φ = −0.63π .

Here, we calculate the norm of the spin dipolar moment to
investigate magnetic orders [see Fig. 4(a)], defined as

|〈Ŝ〉| ≡ 1

8

∑
i∈{0,··· ,7}

√
〈Ŝx

i 〉2 + 〈Ŝy
i 〉2 + 〈Ŝz

i 〉2. (9)

In Eq. (9), i ∈ {0, · · · , 7} means the eight sublattices in the
unit cell shown in Fig. 2. |〈Ŝ〉| takes a finite value if the
system has any magnetic orders, and 0 otherwise. As shown
in Fig. 4(a), |〈Ŝ〉| stays 0 in the whole range of 0.90 � θ/π �
1.0, which corresponds to characteristics of FQ and FKSL
phases without spin-dipolar order.

FIG. 4. Numerical results as a function of θ when fixing φ at
φ = −0.63π . (a) Norm of spin |〈Ŝ〉|, (b) ferro-quadrupolar order pa-
rameter |〈Q̂〉|FQ, (c) flux 〈Ŵp〉. The dashed line is the phase boundary
between FQ phase and FKSL phase, θ/π ≈ 0.9285. Here, we set
(D, χ ) = (8, 128).

Next, we investigate the ferro-order of the quadrupolar
moment |〈Q̂〉|FQ, defined as

|〈Q̂〉|FQ ≡

√√√√√ 5∑
γ ′=1

⎛
⎝1

8

∑
i∈{0,··· ,7}

〈Q̂γ ′
i 〉

⎞
⎠

2

. (10)

|〈Q̂〉|FQ takes finite values in the case of ferro-quadrupolar
ordered state, and 0 in the other cases. We confirm a sharp
jump of |〈Q̂〉|FQ [see Fig. 4(b)] at θ/π ≈ 0.9285, and the
left-hand side area 0.9 � θ/π � 0.9285 is the FQ phase.
|〈Q̂〉|FQ becomes small but finite in the right-hand side area
near the boundary θ/π ≈ 0.9285. However, we expect that
this approaches to 0 if we increase the bond dimension D.

We examine the vortex freeness in this parameter region
by calculating the expectation value of the flux Ŵp in Eq. (3),
defined as 〈Ŵp〉 ≡ 1

4

∑4
j=1〈Ŵpj 〉. Ŵpj means the flux on the

plaquette p j in the Fig. 2, defined as

Ŵp1 ≡ Û z
0Û y

1 Û x
5 Û z

4Û y
7 Û x

3 , Ŵp2 ≡ Û z
2Û y

3 Û x
7 Û z

6Û y
5 Û x

1 ,

Ŵp3 ≡ Û z
5Û y

6 Û x
0 Û z

3Û y
2 Û x

4 , Ŵp4 ≡ Û z
7Û y

4 Û x
2 Û z

1Û y
0 Û x

6 .

Figure. 4(c) shows a small jump of 〈Ŵp〉 at the boundary
θ/π = 0.9285. In the right-hand side area 0.9285 � θ/π �
1.0, the FKSL phase is extended without any other in-
termediate phases since |〈Ŝ〉| = |〈Q̂〉|FQ ≈ 0 and 〈Ŵp〉 ≈ 1.
Interestingly, 〈Ŵp〉 takes the value near to 1 even in the FQ
phase, which means that the FQ phase shows the vortex free-
ness strongly influenced by the FKSL phase.

033110-4



QUANTUM PHASE TRANSITION BETWEEN SPIN LIQUID … PHYSICAL REVIEW RESEARCH 6, 033110 (2024)

FIG. 5. Numerical results as a function of φ when fixing θ at
θ = 0.9π . (a) Norm of spin |〈Ŝ〉|, (b) ferro-quadrupolar order param-
eter |〈Q̂〉|FQ, (c) order parameters of FM and stripy states, |〈Ŝ〉|FM

and |〈Ŝ〉|stripy, respectively. Two dashed lines are the phase bound-
aries of the three phases: φ/π ≈ −0.645 and −0.625. Here, we set
(D, χ ) = (8, 64).

2. FM–FQ–stripy transition

In this subsubsection, we illustrate results of the FM–FQ–
stripy transition by calculating some order parameters when
tuning the parameter φ and fixing θ at θ = 0.9π . We calculate
the norms of the spin dipolar and quadrupolar moments, |〈Ŝ〉|
and |〈Q̂〉|FQ respectively, to see magnetic orders [see Figs. 5(a)
and 5(b)]. As shown in Fig. 5(a), |〈Ŝ〉| remains finite except
for a narrow middle region where it suddenly drops to 0.
Also, we confirm an increase of |〈Q̂〉|FQ in this narrow region
[see Fig. 5(b)]. According to these results, we determine that
this middle region is the FQ phase whose boundaries are
φ/π ≈ −0.645 and −0.625.

Next, we define two order parameters to determine mag-
netic orders. We define an FM order parameter as

|〈Ŝ〉|FM ≡
√ ∑

γ=x,y,z

〈Ŝγ 〉2
FM, (11)

〈Ŝγ 〉FM ≡ 1

8

∑
i∈{0,··· ,7}

〈
Ŝγ

i

〉
. (12)

Similarly, we write a stripy order parameter as |〈Ŝ〉|stripy ≡
max{|〈Ŝ〉|stripy1, |〈Ŝ〉|stripy2, |〈Ŝ〉|stripy3} and

|〈Ŝ〉|stripya ≡
√ ∑

γ=x,y,z

〈Ŝγ 〉2
stripya, (13)

〈Ŝγ 〉stripya ≡ 1

8

⎛
⎝∑

i∈Aa

−
∑
i∈Ba

⎞
⎠〈

Ŝγ
i

〉
, (14)

where Aa and Ba (a = 1, 2, 3) are sets of sites in the unit
cell Fig. 2, defined as A1 = {0, 2, 4, 6}, B1 = {1, 3, 5, 7},
A2 = {0, 1, 4, 7}, B2 = {2, 3, 5, 6}, A3 = {0, 3, 4, 5}, B3 =
{1, 2, 6, 7}. Namely, |〈Ŝ〉|stripy becomes a finite value if spins
take any stripy ordered configurations shown in Fig. 1(b), and
0 otherwise. From Fig. 5(c), we find that the left-hand side
magnetic region is the FM phase, while the right-hand side
one is the stripy phase. Note that the direct FM–stripy does not
appear unlike Refs. [44,45] since the FQ phase get between
them, which can only be detected by appropriately illustrating
quantum entanglements ascribed for the ferro-Kitaev interac-
tion utilizing the iPEPS.

C. Vicinity of the antiferro-Kitaev limit

In this subsection, we explain how to detect phases by
calculating order parameters with the emphasis on the vicinity
of antiferro-Kitaev limit (θ = 0). In later subsubsections, we
show our numerical results in the cases of the AKSL–FQ and
zigzag–FQ–AFM transitions.

1. AKSL–FQ transition

In this subsection, we show our numerical results il-
lustrating the AKSL–FQ transition, in the vicinity of the
antiferro-Kitaev limit (θ = 0). We show the physical quan-
tities by varying the parameter θ , while keeping φ fixed at
arctan(2).

To begin with, we investigate dipolar and quadrupolar or-
ders as shown in Figs. 6(a) and 6(b). Although |〈Ŝ〉| stays 0 in
the whole range of 0 � θ/π � 0.01, we confirm that |〈Q̂〉|FQ

shows a sharp jump at θ/π ≈ 0.00285. |〈Q̂〉|FQ becomes
small but finite in the right-hand side area near the boundary
θ/π ≈ 0.00285. However, we expect that this approaches to
0 if we increase the bond dimension D. We therefore deter-
mine the right-hand side region with the finite |〈Q̂〉|FQ is the
FQ phase. We then examine the flux 〈Ŵp〉 to see the vortex
freeness. Figure 6(c) also shows a small jump of 〈Ŵp〉 at
the boundary θ/π = 0.00285. From this result, we determine
the left-hand side area (0.0 � θ/π � 0.00285) is the AKSL
phase since |〈Ŝ〉| = |〈Q̂〉|FQ ≈ 0 and 〈Ŵp〉 ≈ 1. Interestingly,
similar to the case near the antiferro-Kitaev limit, 〈Ŵp〉 takes
the value near to 1 even in the FQ phase, showing the vortex
freeness of the FQ phase strongly influenced by the AKSL
phase.

2. Zigzag–FQ–AFM transition

In this subsection, we explain results of the zigzag–FQ–
AFM transition by calculating some order parameters when
tuning the parameter φ and fixing θ at θ = 0.01π . We calcu-
late |〈Ŝ〉| and |〈Q̂〉|FQ to see magnetic orders [see Figs. 7(a)
and 7(b)]. As shown in Fig. 7(a), |〈Ŝ〉| remains finite values
except for an intermediate extended region −0.745 � φ/π �
−0.595, where it suddenly drops to 0. We also confirm a
sharp jump of |〈Q̂〉|FQ in this region [see Fig. 7(b)]. We thus
determine that this intermediate region is the FQ phase.
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FIG. 6. Numerical results as a function of θ when fixing φ at φ =
arctan (2) ≈ −0.648π . (a) Norm of spin |〈Ŝ〉|, (b) ferro-quadrupolar
order parameter |〈Q̂〉|FQ, (c) flux 〈Ŵp〉. The dashed line is the phase
boundary between AKSL phase and FQ phase: θ/π ≈ 0.00285.
Here, we set (D, χ ) = (8, 128).

Next, we derive two order parameters to determine what
phases the magnetic ordered regions are. We defined an AFM
order parameter as

|〈Ŝ〉|AFM ≡
√ ∑

γ=x,y,z

〈Ŝγ 〉2
AFM, (15)

〈Ŝγ 〉AFM ≡ 1

8

⎛
⎝ ∑

i∈{0,2,5,7}
−

∑
i∈{1,3,4,6}

⎞
⎠〈Ŝγ

i 〉. (16)

Also, we defined a zigzag order parameter as |〈Ŝ〉|zigzag ≡
max{|〈Ŝ〉|zigzag1, |〈Ŝ〉|zigzag2, |〈Ŝ〉|zigzag3} and

|〈Ŝ〉|zigzaga ≡
√ ∑

γ=x,y,z

〈Ŝγ 〉2
zigzaga, (17)

〈Ŝγ 〉zigzaga ≡ 1

8

⎛
⎝∑

i∈Ca

−
∑
i∈Da

⎞
⎠〈Ŝγ

i 〉, (18)

where Ca and Da (a = 1, 2, 3) are sets of sites in the unit
cell Fig. 2, defined as C1 = {0, 1, 2, 3}, D1 = {4, 5, 6, 7},
C2 = {0, 3, 6, 7}, D2 = {1, 2, 4, 5}, C3 = {0, 1, 5, 6}, D3 =
{2, 3, 4, 7}. Namely, |〈Ŝ〉|zigzag becomes a finite value if spins
take any zigzag ordered configurations shown in Fig. 1(b),
and 0 otherwise. From Fig. 7(c), we find that the left-hand
side magnetic region is the zigzag phase, while the right-hand
side one is the AFM phase. Unlike Refs. [44,45], according
to Figs. 3(c) and 7, the direct zigzag–AFM does not occur
since the FQ phase enters between them, which can only be

FIG. 7. Numerical results as a function of φ when fixing θ at θ =
0.01π . (a) Norm of spin |〈Ŝ〉|, (b) ferro-quadrupolar order parameter
|〈Q̂〉|FQ, (c) order parameters of zigzag and AFM states, |〈Ŝ〉|zigzag

and |〈Ŝ〉|AFM, respectively. Two dashed lines are the phase bound-
aries of the three phases: φ/π ≈ −0.745 and −0.595. Here, we set
(D, χ ) = (8, 64).

discovered by appropriately illustrating quantum entangle-
ment by iPEPS.

V. CONCLUSIONS AND DISCUSSION

In order to probe quantum phases and phase transitions
ascribed for the competition between the KSL and the spin-
nematic states, we numerically investigate the BBQ-K model
Eq. (1), which was originally proposed in Refs. [44,45].
Utilizing the 2D iPEPS, we take into account quantum en-
tanglements among spins ignored in Refs. [44,45]. Then,
we could represent quantum properties of the KSL more
precisely. As a result, we succeed in constructing the phase di-
agram [see Figs. 1(a) and 3], including extended KSL phases,
which could not, in principle, be captured by the semiclassical
variational calculations in Refs. [44,45]. More specifically,
we result in discovering several properties: (1) We detect the
direct KSL-FQ phase transitions (see Fig. 3). (2) The FKSL
phase is stabilized under the almost pure ferro-quadrupolar
perturbation [see Fig. 3(a)]. (3) The FQ phase is more ro-
bust against the Heisenberg interaction than one obtained
in Refs. [44,45], and it gets extended when the antiferro-
Kitaev interaction becomes dominant [see Fig. 3(b)]. Note
that, as far as we know, a direct phase transition between
a quantum spin liquid phase and the FQ phase is discov-
ered in higher spin-S systems, although similar results were
obtained [73] in the spin-1/2 system as for a bond-nematic
state.
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FIG. 8. Numerical results as a function of θ when fixing φ at φ =
−0.63π . (a) Energy E and (b) first derivative of the energy. Here, we
set (D, χ ) = (8, 128).

As an open problem, we could not determine whether the
phase transitions seen in this paper are the second-ordered or
first-ordered transition. As shown in Fig. 8, we calculate the
energy and its first derivative to determine the order of the
phase transitions. As for the first derivative, we consider
the numerical differentiation as

dE

dθ

∣∣∣∣
θ=θ ′− �θ

2

≈ E (θ ′) − E (θ ′ − �θ )

�θ
, (19)

based on the numerical data at θ ′ and θ ′ − �θ . We here
confirm that the first derivative shows a jump describing the
first-ordered transition in the case of φ = −0.63π near the
ferro-Kitaev limit [see Fig. 8(b)]. Similar results were ob-
tained in the other cases listed in Sec. IV. However, these
results seem to be not reliable. The ITE utilizing the simple
update could not appropriately capture the long-range corre-
lation, and thus, the ground states obtained by iPEPS strongly
depend on initial states. Therefore, we could not rule out the
possibility of the second-ordered transition.

Another open problem is the nature of the phase dia-
gram for the positive quadrupolar interaction J2 > 0 (0 �
φ � π ), where Refs. [44,45] proposed several exotic phases.
In this region, the AFQ order appeared in classical spin-
1 systems [50,51] is melted by strong quantum fluctuation
emerged from the competition between the Heisenberg and
the positive biquadratic (quadrupolar) terms. Instead, there
appears [49,52] plaquette valence-bond solid state character-
ized by the plaquette order breaking translational symmetry.
Investigating the interplay between the KSL and the positive
quadrupolar interaction seems to be an interesting near future
task, which may require more computational cost than the
case of this paper, namely D � 9, according to the numeri-
cal study with the SU(3) Heisenberg model [52]. Since the
positive quadrupolar interaction is expected in materials with
orbital degeneracy [74–76], investigating the models with
J2 > 0 might be relevant for understanding the nature of these
materials.

One of future tasks is an investigation of the low-energy
excitation, which offer clear guidelines for experiments with
inelastic neutron scattering. This excitation is expected to be

FIG. 9. Phase diagrams in the vicinity of ferro-Kitaev limit (θ = π ) with (a) D = 7 and (b) D = 8, and in the vicinity of antiferro-Kitaev
limit (θ = 0) with (c) D = 7 and (d) D = 8. We set the bond dimension χ = D2 or 2D2, where we adopt χ = 2D2 if the CTMRG does not
converge in the case of χ = D2.
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caused by waves of local order parameters in the BBQ-K
model. For describing this excitation, one should utilize the
SU(3) flavor-wave theory [41,77,78], since the conventional
SU(2) spin-wave theory fails to illustrate quadrupolar fluctua-
tions ascribed for the biquadratic term [79–83].

Finally, we discuss implications of our results for exper-
iments. According to our numerical results in Fig. 3(a), the
FKSL phase can realize even with a relatively weak ferro-
Kitaev interaction, if the pure ferro-quadrupolar interaction
exists. Therefore, our phase diagrams and results in Sec. IV B
offer clues for experiments searching for materials showing
FKSL state. On the other hand, the AKSL phase is vulnerable
to the ferro-quadrupolar interaction [see Fig. 3(b)], unlike the
FKSL phase. This result may offer clues for experiments with
candidate antiferro-Kitaev materials like A3Ni2XO6 (A =
Li, Na, X = Bi, Sb) [35] to detect the AKSL–FQ transition.
We desire that our results will stimulate further experimental
and theoretical studies on the interplay between the KSL and
the spin nematic states.
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APPENDIX: DEPENDENCY ON THE BOND
DIMENSION D

In this section, we describe the D dependency of the phase
boundaries. Figure 9 shows the phase diagrams in the vicinity
of two Kitaev limits with D = 7 and 8. Also, Fig. 10 denotes
the ferro-quadrupolar order parameter |〈Q̂〉|FQ with several
bond dimensions in the vicinity of the Kitaev limits to detect
phase boundaries. We set the bond dimension χ = D2 or 2D2,
where we adopt χ = 2D2 if the CTMRG does not converge in
the case of χ = D2.

As for the vicinity of the ferro-Kitaev limit (θ = π ), the
FKSL phase gets broader as the bond dimension D increases
[see Figs. 9(a) and 9(b), and Fig. 10(a)]. According to these
results, we could more efficiently capture the robustness of

FIG. 10. Ferro-quadrupolar order parameter |〈Q̂〉|FQ with several
bond dimension D in the vicinity of (a) ferro-Kitaev limit (θ = π )
and φ = −0.63π , and (b) antiferro-Kitaev limit (θ = 0) and φ =
arctan (2) ≈ −0.648π . The dashed lines in these figures are phase
boundaries in the case of D = 8 in Sec. IV.

the FKSL phase against the ferro-quadrupolar interaction,
as the bond dimension D increases. But we could not de-
termine the phase boundary with D = 9 since the CTMRG
does not converge in the vicinity of the boundary even with
χ = 2D2. There remains the possibility that the FKSL phase
gets more robust if D � 9, that is, determining the FKSL–
FQ phase boundary is open to discussion. Despite these
difficulties, we confirm that these results do not matter our
conclusions of “direct FQ–FKSL transition” and “robustness
of the FKSL phase”

On the other hand, regarding the vicinity of the antiferro-
Kitaev limit (θ = 0), the phase diagrams do not change
so much even when the bond dimension D increases [see
Figs. 9(c) and 9(d)]. As shown in Fig. 10(b), the FQ–AKSL
phase boundary is almost invariant if D � 7. Therefore, our
results with D = 8 in Sec. IV seem to converge sufficiently in
the vicinity of the antiferro-Kitaev limit, which supports our
conclusions of “direct AKSL–FQ transition” and “extension
of the FQ phase”.
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