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Growing Schrödinger’s cat states by local unitary time evolution of product states
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We envisage many-body systems described by quantum spin-chain Hamiltonians featuring a trivial separable
eigenstate. For generic Hamiltonians, such a state represents a quantum scar. We show that, typically, a
macroscopically entangled state naturally grows after a single projective measurement of just one spin in the
quantum scar. Moreover, we identify a condition under which what is growing is a “Schrödinger’s cat state.” Our
analysis does not reveal any particular requirement for the entangled state to develop, provided that the quantum
scar does not minimize/maximize a local conservation law. We study two explicit examples: systems described
by generic Hamiltonians where spins interact in pairs, and models that exhibit a U(1) hidden symmetry. The
latter can be reinterpreted as a two-leg ladder in which the interactions along the legs are controlled by the local
state on the other leg through transistorlike building blocks.
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Quantum superpositions of two macroscopically distinct
states, known as “Schrödinger’s cat states,” from the famous
Gedankenexperiment proposed by Schrödinger in 1935 [1,2],
or also as “(generalized) GHZ states,” from the observation
by Greenberger, Horne, and Zeilinger [3] on quantum spin
models escaping the original Bell’s inequalities [4], are highly
valuable due to their broad applications, e.g., in quantum
metrology and quantum computation. They are, however, rare
and generally short-lived because of their fragility under real
experimental conditions, which include decoherence, noise,
and particle loss. Several protocols have been proposed to
overcome the latter problems [5–13], and some of them have
been experimentally realized [14–17]. While such an instabil-
ity undermines applications, it is, in fact, the defining feature
of cat states, or, more generally, of states with extensive
multipartite entanglement [18]. These are somehow unnatu-
ral states of matter in which fundamental physical properties
such as cluster decomposition are lost. Engineering a cat state
requires, therefore, a lot of control of the system, which, in
turn, results in fine-tuned protocols designed with the clear
goal of generating such exceptional states.

We propose a theoretical protocol to generate a cat state
that stands out for its naturalness, in the sense that the growth
of macroscopic entanglement is a manifestation of an intrigu-
ing physical phenomenon rather than of clever manipulations
of a system. The most general system that we consider is
described by a quantum spin- 1

2 chain Hamiltonian H with
local interactions and a trivial separable eigenstate. Without
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loss of generality, the latter can be set equal to

|�(0)〉 = |⇑〉 ≡ |↑ · · · ↑〉 , (1)

where |↑〉 denotes the eigenvector of the Pauli matrix σ z

with eigenvalue 1, and ⇑ will represent in this paper a
generic number of adjacent ↑. Often the presence of such
a trivial eigenstate is a consequence of a U(1) symmetry,
e.g., the conservation of Sz = 1

2

∑
� σz

�, where σα
� are lo-

cal operators acting like the Pauli matrices σα on site �

and like the identity elsewhere. As we will soon see, the
most interesting cases are, however, those in which Sz is
not conserved. If there are no additional relevant conserved
operators, either |⇑〉 is the ground state or it is an exact
quantum scar [19–21]: its properties contrast with those of
the eigenstates with similar energy. Quantum scars have re-
cently attracted a lot of attention [21–23], also in connection
with their unusual entanglement properties, displaying low
bipartite entanglement, still potentially featuring extensive
multipartite entanglement [24]. In our case the quantum scar
is exceptional, as it is fully separable.

The basic idea is that the quantum scar is essentially
metastable and could be transmuted into a state with extensive
multipartite entanglement just by a local perturbation. Specif-
ically, we consider the effect of a quantum measurement of a
spin in a tilted direction with respect to z of an angle θ , so that
the state is projected into

|�θ (0+)〉 = e−iθσ
y
0 |⇑〉 = cos θ |⇑〉 + sin θ |⇑↓⇑〉 (2)

with probability cos2 θ . Time evolution affects only the sec-
ond term on the right-hand side of Eq. (2), hence

|�θ (t )〉 = cos θ |⇑〉 + sin θe−iHt |⇑↓⇑〉, t > 0. (3)

The Lieb-Robinson bounds [25] ensure that the perturbation
is irrelevant outside a light cone emerging from the space-
time point of the measurement. Since the state before the
measurement is an eigenstate, the measurement triggers a
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FIG. 1. Illustration of the protocol. The state with a single spin
down time-evolves into a state that is macroscopically different from
the premeasurement state. The scissors represent the fact that we
ignore the region outside �ε (t ).

nontrivial time evolution only within a region whose length
grows linearly with time. Hence, neglecting the part of the
system outside that region does not significantly affect the
purity of the state. We call �ε (t ) the smallest subsystem that
contains the spin that is measured and that, as clarified later,
can be considered pure at time t with accuracy 1 − ε. In
the following, the use of terms such as “macroscopic” and
“extensive” will refer to the subsystem �ε (t ). This allows
us to treat on the same footing infinite systems, which are
arguably more interesting from a theoretical point of view, and
finite ones [provided that the actual system size is larger than
�ε (t )], which are instead more relevant for the experiments.
The situation is pictorially described in Fig. 1: after the spin
flip at the origin, the component |⇑↓⇑〉 of the state evolves
in time, while the component |⇑〉 stays constant; the effective
size of the system is given by the spins that are inside the light
cone originating from the local perturbation, while the rest of
the spins are neglected.

First we show that, quite generally, in the settings consid-
ered the perturbation has everlasting effects on the expectation
values of local observables arbitrarily far from the position
of the measurement. That is to say, e−iHt |⇑↓⇑〉 ≡ |�π/2(t )〉
is macroscopically different from |⇑〉, in that there exists an
observable A = ∑

� a�, with a� operators with a finite support
around site �, such that 〈⇑|A|⇑〉 − 〈�π/2(t )|A|�π/2(t )〉 is
extensive, i.e., it scales linearly with the (effective) system
size |�ε (t )| [26]. Such an effect is already remarkable, as,
generally, local perturbations in quantum many-body systems
either fade away or remain localized.

We then delve into extensive entanglement, noting that
a pure state is said to possess extensive multipartite entan-
glement if and only if the variance scales as the square of
the system size for at least one extensive operator [27–29].
Because |�π/2(t )〉 is macroscopically different from |⇑〉, the
reader is already in the position to infer that the projective
measurement on the quantum scar |⇑〉 will likely generate a
state with extensive multipartite entanglement. This inference

is supported by the fact that, if the extensive operator A can
take values in |�θ (t )〉 separated by O(|�ε (t )|) with signifi-
cant probability, its variance in the state will be O(|�ε (t )|2),
directly implying macroscopic entanglement. But the situa-
tion is even more interesting. We provide evidence and then
conjecture that, if the model has a hidden U(1) symmetry (see
below for the definition), |�π/2(t )〉 is not macroscopically en-
tangled; under those conditions, the projective measurement
generates a genuine Schrödinger’s cat state consisting of an
(ideally) arbitrarily large number of sites.

I. SYSTEMS UNDER CONSIDERATION

We are going to investigate a variety of Hamiltonians with
local densities. Our requirement of |⇑〉 being an eigenstate
of the Hamiltonian allows for any kinds of interactions that
commute with the total spin in the z direction, Sz = 1

2

∑
� σz

�

(such as the hopping term σx
�σ

x
�+n + σ

y
�σ

y
�+n or the longi-

tudinal Dzyaloshinskii-Moriya interaction σx
�σ

y
�+n − σ

y
�σ

x
�+n),

but not only that. The constraint is much weaker than U(1)
symmetry, and the Hamiltonian density can feature any term
of the form 1−σz

�

2 O�
1−σz

�

2 , where O� is a local operator with
support in a region around �.

We start by discussing the general form of the Hamiltoni-
ans under consideration, categorizing them into two groups
based on the presence or absence of a hidden U(1) symmetry.

A. Systems with hidden U(1) symmetry

The first class of Hamiltonians we consider has recently
sparked some attention because it describes systems that are
macroscopically sensitive to local perturbations [30,31]. Such
a sensitivity is triggered by so-called “semilocal conservation
laws,” whose densities act as local observables only in a re-
stricted space characterized by a particular symmetry. This
unusual property could seem innocuous at first glance, but
it allows the state to retain a memory of so-called “string
order” [32–34], thus enabling symmetry-protected topological
order to survive the limit of infinite time [31]. An example
of an operator with a semilocal density in a system that is
symmetric under the spin flip σ

x,y
� → −σ

x,y
� is

S̃
z = 1

2

∑
�

�z(�), (4)

where �z(�) can be thought of as a semi-infinite string
of σz

� and is such that [�z(�)]2 = I, [�z(�), σz
j] = 0, and

�z(�)σx,y
j = sgn(� − j − 1

2 )σx,y
j �z(�). In spin-flip invariant

settings, the density �z(�) of S̃
z

is a local observable, and,
if S̃

z
commutes with the Hamiltonian, it has important conse-

quences on the evolution of the system, similarly to any other
local conservation law—we refer the reader to Ref. [31] for
additional details.

The behavior of fluctuations in these systems has not yet
been investigated, but the sensitivity of local observables to
a single spin flip is a strong indication that the quantum
measurement of a local observable such as σx

j could result in
macroscopically entangled states. As a specific example, we
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FIG. 2. Pictorial representation of the quantum transistor chain,

constructed as a sequence of building blocks Tαβ

� = σα
�−1

I−σz
�

2 σ
β

�+1.

consider the following Hamiltonian:

H1 =
∑

�

1 − σz
�

8

[
J 	σ�−1

S· 	σ�+1 + 	D · (	σ�−1 × 	σ�+1)
]

− 	h
2

· 	σ�, (5)

where 	a S· 	b ≡ 	a · (S	b). This Hamiltonian commutes with the
semilocal charge S̃

z
—Eq. (4)—provided that

S =
⎡
⎣ 1+γ

2 w 0
w

1−γ

2 0
0 0 �

⎤
⎦, 	D =

⎡
⎣ 0

0
Dz

⎤
⎦, 	h =

⎡
⎣ 0

0
hz

⎤
⎦. (6)

It describes a system that can be interpreted as
a quantum transistor chain, in which the build-
ing blocks Tαβ

� = σα
�−1

I−σz
�

2 σ
β

�+1, with (α, β ) ∈
{(x, x), (x, y), (y, x), (y, y), (z, z), (0, 0)} (σ0

� ≡ 1), commute
with S̃

z
—see Fig. 2. This transistorlike configuration offers

an insightful interpretation of time evolution, as elaborated on
in Sec. III B.

It is known that H1 has infinitely many conserved operators
with quasilocal [35] or semilocal [31] densities in the follow-
ing regions of the parameter space:

(i) If the only nonzero coupling constants are J , γ , and hz,
and γ = ±1, the model is dual to the (integrable) Heisenberg
XXZ one [30,36].

(ii) If the only nonzero coupling constants are J , �, and
hz, the model belongs to the family of hard-rod deformations
of XXZ studied in Ref. [37]. In particular, for � = 0 it is
a special case of the Bariev model [38] and was recently
dubbed dual folded XXZ [36]. These are special integrable
models exhibiting Hilbert-space fragmentation and quantum
jamming [36,39–41].

In all the other instances that we have considered, to rule
integrability out, we have verified that the statistics of the en-
ergy levels is in agreement with a Wigner-Dyson distribution
(see Appendix A).

For the first family of integrable models, Ref. [30] has
already shown that |�π/2(t )〉 and |⇑〉 become macroscopi-
cally different in time. An analogous conclusion was drawn
in Refs. [40,41] for the second family of integrable mod-
els, though starting from slightly different product states [in
those systems, |⇑↓⇑〉 is an eigenstate as well, leading to
|ψθ (t )〉 = |ψθ (0)〉 ,∀θ ]. Reference [40] also observed that a
similar behavior could be seen even in generic systems with a
jamming sector. We announce that a part of the phenomenol-
ogy common to all these settings is much more general than
the specific models studied so far.

B. Generic systems

We establish contact with the systems currently studied in
quantum simulators, for example with trapped ions [42], by
considering the following Hamiltonian:

H2 = 1

4

∑
�

[ ∑
r=1

Jr 	σ�

Sr· 	σ�+r + 	Dr · (	σ� × 	σ�+r )

]
− 	h

2
· 	σ�.

(7)
This is the most general Hamiltonian where spins interact in
pairs: there is a Heisenberg exchange term, a Dzyaloshinskii-
Moriya interaction, and a coupling with an external field. The
trivial quantum scar |⇑〉 appears when

Sr =

⎡
⎢⎣

1 0 1
2γ x

r

0 1 1
2γ

y
r

1
2γ x

r
1
2γ

y
r 1 + γ z

r

⎤
⎥⎦, 	h =

⎡
⎢⎣

1
2

∑
r=1 Jrγ

x
r

1
2

∑
r=1 Jrγ

y
r

hz

⎤
⎥⎦. (8)

The parameter 	γ incorporates both an anisotropy in the
Heisenberg interaction and a rotation of the axes (which is
relevant because we have fixed the orientation of the spins
of the separable eigenstate). As will be clarified soon, the
effect we exploit to generate macroscopically entangled states
requires a U(1)-breaking interaction, therefore we will only
consider systems in which some coupling constants among
Dx

r , Dy
r , γ x

r , γ
y
r are nonzero.

In such a generic setting, there is no a priori reason to
expect the localized perturbation to produce macroscopic ef-
fects; for example, the system does not exhibit semilocal
charges or special constraining interactions. Is the presence of
a simple quantum scar sufficient to trigger the phenomenon?

Before reporting the results of our investigation, we remind
the reader of some special regions of the parameter space:

(i) If the only nonzero coupling constants are J1, γ z
1 , and hz,

the system is integrable and known as the XXZ model, which is
arguably the most important paradigm of quantum magnetism
in 1D [43].1

(ii) More generally, if 	Dr = 0 and 	γr = 	γ1, the system
describes an XY Z Heisenberg model with a tilted orientation,
the integrable case corresponding to 	h = 0 and Jr = δr,1J1.
See also Ref. [44] for a special region of the parameter space
in which |⇑〉 becomes the symmetry-breaking ground state.

(iii) If the only nonzero coupling constants are J1, γ x
1 ,

Dy
1, and hz, in the limit J1 → 0 at fixed γ x

1 J1 = −2Dy
1 the

system approaches the so-called quantum East model [45],
which has recently attracted a lot of attention for its unusual
properties [46].

II. FRAMEWORK AND ESSENTIAL DEFINITIONS

In this section we elaborate on some key concepts brought
up in the Introduction, including the notion of effective sub-
system �ε (t ), as well as macroscopic entanglement and cat
states.

1Sometimes, especially in experimental works, the name XXZ
model is used to refer to a broader range of models, including those
with nonzero Jr and γr for any r, provided that γ z

r = γ z
1 .
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A. The effective system �(t )

We have introduced �ε (t ) as the smallest subsystem con-
taining the measured spin that can be considered pure at time
t with accuracy 1 − ε. We clarify this point here. First of all, it
can be readily proven that the initial perturbation is irrelevant
outside a light cone emerging from the space-time point of the
measurement using a corollary of the Lieb-Robinson bounds
derived in Ref. [47]. Indeed, the Heisenberg representation of
a local operator is exponentially close to an operator with sup-
port in a finite region including the support of the operator, the
argument of the exponential being proportional to d − vLR|t |,
where d is the smallest distance between the observable and
the boundary of the region, and vLR is the Lieb-Robinson
velocity. In our specific case, this means that the following
decomposition holds: exp[iθσ

y
0(−t )] = U� + ��, where U�

is a unitary operator with support in a region � centered at the
measurement position and ‖��‖ � exp[−(|�|/2 − vt )/ξ ],
with ξ a nonuniversal constant. This gives

‖ |�(t )〉 〈�(t )| − U� |⇑〉 〈⇑| U†
�‖

= ‖U� |⇑〉 〈⇑| �†
� + �� |⇑〉 〈⇑| U� + �� |⇑〉 〈⇑| �†

�‖
� 2‖��‖ + ‖��‖2 � e−(|�|/2−vt ), (9)

that is to say, up to exponentially small corrections the reduced
density matrix of � is pure.

We call �ε (t ) the smallest spin block for which

‖tr�ε (t )[e
−iHt |⇑↓⇑〉〈⇑↓⇑|eiHt ] − (|⇑〉 〈⇑|)�ε (t )‖ � ε, (10)

where (|⇑〉 〈⇑|)�ε (t ) is the state |⇑〉 restricted to the comple-
ment of �ε (t ). Note that �ε (0) contains only the spin at the
origin for any choice of ε.

B. Macroscopic entanglement and cat states

We measure macroscopic entanglement with the so called
quantumness, which characterizes the asymptotic behavior
of the maximum quantum Fisher information among all ex-
tensive observables. A quantumness that grows linearly with
system size defines a macroscopically entangled state [29]. In
fact, as is typically done [26], we only compute a lower bound
of it, N (1)

eff , resulting from reducing the space of observables.
We refer the reader to Sec. V C for a more extended discussion
about the quantumness.

A cat state is a special state with macroscopic entangle-
ment. What characterizes it is that it can be expressed as the
linear superposition of two states, each of which does not
possess macroscopic entanglement. The archetypal example
of a cat state is the GHZ state (|⇑〉 + |⇓〉)/

√
2.

III. RESULTS

In this section, we explore macroscopic entanglement and
cat state formation within the framework of our proposed
protocol. First, we discuss how U(1) symmetry would inhibit
the growth of macroscopic entanglement. Next, we show the
main results for systems without U(1) symmetry. Finally, we
provide a study of the robustness of the protocol, showing
that macroscopic entanglement survives small modifications
of the initial state. However, perturbations that break spin-flip
symmetry hinder the formation of a cat state.

A. U(1) hinders macroscopic entanglement

If the total magnetization Sz is conserved, the states |⇑〉 and
|�π/2(t )〉 cannot be macroscopically different for any time
t , and therefore their linear combination is not macroscop-
ically entangled. Specifically, Appendix D provides a proof
that the quantity 〈�|O|�〉 − 〈⇑ |O| ⇑〉 is subextensive for
any operator O = ∑

� O�, where O� are local operators with
support in a finite subsystem around site �. This is equivalent
to saying that a state |�〉 obtained by time evolution under a
U(1)-symmetric Hamiltonian after a local perturbation to |⇑〉
is macroscopically equivalent to |⇑〉. Appendix D also proves
that the variance of any of such operators O with respect
to the state |�〉 grows at most linearly with the (effective)
system size |�ε (t )|, ruling out the possibility to obtain a
macroscopically entangled state from the time evolution of
a locally perturbed |⇑〉. And this holds true for any local
perturbation. Physically, we can understand this result from
the fact that, first, a local operator can only flip a finite number
of spins, and second, the initial state, |⇑〉, has maximal Sz. As
a result, the Hilbert space accessible to time evolution is too
small for macroscopic entanglement to develop. This is the
first clue supporting the expectation that, in order to build up
macroscopic entanglement, |⇑〉 cannot be the ground state of
a local conservation law. In generic systems, we can read this
as a statement that |⇑〉 should be a quantum scar.

B. Hidden U(1) leads to a cat state

We start with H1—Eq. (5)—in the integrability region in
which, as discussed in Sec. I A, we can take for granted
that |�π/2(t )〉 becomes macroscopically different from |⇑〉.
In particular, we can assume

|〈⇑↓⇑|eiH1t Sze−iH1t |⇑↓⇑〉 − 〈⇑|Sz|⇑〉| ∼ t, (11)

as long as the initial state |⇑〉 is in the middle of the spectrum
of H1. The importance of the latter condition is discussed in
Sec. IV B. Figure 3(a) shows how the difference of magneti-
zation between flipping or not flipping the spin is proportional
to |�ε (t )| ∼ t , meaning that the two states |⇑〉 and |�π/2(t )〉
are macroscopically different. Note also that from the pro-
file of the local magnetization [inset of Fig. 3(a)] we get a
visual definition of �ε (t ): it essentially coincides with the
region with 〈σz

�(t )〉 �≈ 1 and, because the profile is constant
in the ballistic scale, we see that |�ε (t )| grows linearly in
system size.

In the integrability region of H1 there is just one piece of
information that we cannot retrieve from the scientific litera-
ture: the behavior of fluctuations of extensive observables in
the state |�〉 resulting from time evolution. We address this
gap by studying the quantumness of |�θ (t )〉. An example of
the results that we get is reported in Fig. 3(b), where we plot
the quantumness N (1)

eff as a function of the effective system size
|�ε (t )|.2 To study the asymptotic behavior of N (1)

eff , we fit the

2The quantumness is reported as a function of |�ε (t )| (and not t)
because one looks at the scaling of the quantumness with respect
to system size to characterize macroscopic entanglement [29]. Note,
however, that, since |�ε (t )| grows linearly in time (cf. Appendix B),
the plot would be qualitatively the same if we replace |�ε (t )| with t .
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FIG. 3. Time evolution of |�θ (t )〉 under Hamiltonian H =
J

∑
�

1−σz
�

2 σx
�−1σ

x
�+1, with J = 2.8, which is an integrable point of

the Hamiltonian H1 with hidden U (1) symmetry. (a) Difference
between the total magnetization in |⇑〉 and |�π/2(t )〉, i.e. �Sz(θ ) =
〈⇑ |Sz| ⇑〉 − 〈�θ (t )|Sz|�θ (t )〉; inset: local magnetization profile for
the last four times of the main plot. (b) Macroscopic quantumness
as a function of the effective system size |�ε (t )|, with ε = 0.001.
(c) and (d) Probability distribution Pθ (m) for θ = π

2 and θ = π

4 ,
respectively.

data with a curve parametrized as β0 + β1|�ε (t )| + β2
1

|�ε (t )| ,
where the term 1

|�ε (t )| stands for a potential subleading term.
The estimated leading order is consistent with a constant
(β1 ≈ 0) in the case θ = π/2 and with a linear growth (β1 �=
0) in the generic case.

To gain another perspective on the entanglement properties
of the state, we also look at the probability distribution Pθ (m)
to get m from a measurement of Sz given that the system is
in the state |�θ (t )〉. Note that, by its definition, a cat state is
characterized by a bimodal distribution with well-separated
peaks; consider, e.g., the GHZ state (|⇑〉 + |⇓〉)/

√
2, where

the probability distribution exhibits two Kronecker δ’s at the
maximum and minimum magnetizations. For the state θ =
π
2 , the probability distribution shows standard fluctuations
[Fig. 3(c)], with a variance scaling as the effective system size.
In contrast, for θ /∈ {0, π

2 }, we get the bimodal distribution that
is characteristic of a cat state [Fig. 3(d)]. Comparing the latter
with the GHZ case, we see that one δ is replaced by a Gaussian
centered at a different magnetization, but it is still well sepa-
rated from the other peak. Note that in the figure, we have
shifted m by the expectation value of Sz(t ) to exhibit plots
independent of the system size. Incidentally, this also allows
us to consider either the full chain or �ε (t ) equivalently.

As we move away from the integrability region of H1,
we have verified that, provided the initial state resides within
the bulk of the spectrum, the qualitative behavior remains
consistent even beyond that region. An example is reported
in Fig. 4. Remarkably, even in this nonintegrable case, the
profiles of local magnetization (the insets in the plots of the
total magnetization) computed at different times collapse to
the same curve in the ray coordinate �/t , which manifests the
ballistic change in the total magnetization.

We mention that the tidy structure of the transistor Hamil-
tonian H1 allows for an insightful interpretation of the
protocol. The state before the measurement has all transistor
switches open, and time evolution is blocked. The mea-
surement has the effect of turning a switch in a quantum
superposition of open and closed (the switch is exactly closed
only for θ = π

2 ). Closing a switch enables Heisenberg and
Dzyaloshinskii-Moriya interactions between the neighboring
spins of the opposite leg of the chain, which, in turn, partially
close other switches, and so on and so forth, leading to a
complete reconfiguration of the state that affects a region
whose size grows linearly in time.

C. General growth of macroscopic entanglement

We have considered several models without a hidden U(1)
symmetry in which |⇑〉 is still a quantum scar. We see quite
generally that, also in those cases, the spin flip has everlasting
effects arbitrarily far from the origin. In Fig. 5 we report
an example using the Hamiltonian H2—Eq. (7). The plot of
the magnetization shows that the states |⇑〉 and |�π/2(t )〉 are
macroscopically different: the difference of the magnetization
in the two states grows linearly with the effective system
size. Concerning the quantumness, we have fitted the data
for the lower bound N (1)

eff with the same ansatz as before,
β0 + β1|�ε (t )| + β2

1
|�ε (t )| ; the analysis points to an asymp-

totic linear growth for any θ �= 0, including this time also
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FIG. 4. The same as in the top plots of Fig. 3 for Hamiltonian

H = ∑
�

1−σz
�

8 ( 3
2 σx

�−1σ
x
�+1 + 1

2 σ
y
�−1σ

y
�+1 + Jxyσ

x
�−1σ

y
�+1 +

Jyxσ
y
�−1σ

x
�+1), Jxy = 1.3, Jyx = 0.1, which is a nonintegrable

point of the Hamiltonian H1 with hidden U(1) symmetry.

θ = π
2 . Therefore, |�θ (t )〉 still exhibits macroscopic entangle-

ment for generic θ , but, in contrast to the quantum transistor
chain, also |�π/2(t )〉 is macroscopically entangled, undermin-
ing in turn the formation of a cat state.

D. Imperfections in the preparation of the state

We investigate the effect of perturbing the state |⇑〉 be-
fore performing the local measurement. For simplicity, we
restrict to perturbations that consist in time evolving |⇑〉 un-
der a homogeneous Hamiltonian H0 for a fixed time t0, in
such a way that the state before the local measurement is
|�0(0−)〉 = e−iH0t0 |⇑〉. We then study the time evolution of
|�θ (0+)〉 = eiθσ

y
0 |�0(0−)〉, which is the analog of Eq. (2).

We warn the reader of a complication: the initial evolution
affects the whole chain, so, strictly speaking, there is no
approximately pure subsystem �ε (t ). If we insist on consid-
ering the subsystem associated with the spreading of the local
perturbation (corresponding to the sharp change of behavior
in the profile of the magnetization), we should analyze the
quantum Fisher information of a mixed state, which is a harder
quantity to compute. In this preliminary study of the stability
of our protocol, we limit ourselves to checking the qualitative
behavior of the probability distribution of the magnetization.

We distinguish two classes of perturbations: in the first
class, the perturbation is spin-flip symmetric [thus the hidden
U(1) symmetry is preserved], e.g., H0 could be the integrable

FIG. 5. The same as in the top plots of Fig. 3 for Hamiltonian
H = 1

4

∑
�[σ

x
�σ

x
�+1 + σ

y
�σ

y
�+1 + σx

�σ
x
�+2 + σ

y
�σ

y
�+2 + �(σz

�σ
z
�+1 +

σx
�σ

x
�+2) + D(σx

�σ
z
�+1 − σz

�σ
x
�+1)], � = 0.4, D = 0.9, which is

a nonintegrable point of Hamiltonian H2 without hidden U(1)
symmetry. The widest profile in the inset corresponds to the largest
time.

Ising Hamiltonian

H0,1 = −1

4

∑
�

(
σx

�σ
x
�+1 + hz

0σ
z
�

)
; (12)

in the second class, the premeasurement Hamiltonian breaks
the spin-flip invariance behind the hidden U(1) symmetry,
e.g.,

H0,2 = −1

4

∑
�

(
σx

�σ
x
�+1 + hz

0σ
z
� + hx

0σ
x
�

)
, (13)

which is a nonintegrable version of the Ising model. Note that,
in both cases, the larger hz

0 is, the smaller is the expected
effect, therefore hz

0 can be used as a control parameter.
The first class of perturbations is not expected to desta-

bilize the growth of a cat state: On the one hand, Ref. [30]
showed that the perturbation has everlasting macroscopic ef-
fects even after so-called “global quenches” from a spin-flip
invariant initial state. On the other hand, Ref. [48] indi-
rectly confirms clustering in |�π/2(t )〉 at long times with
noninteracting transistor Hamiltonians by showing that the
mutual information approaches zero at large distances. Our
numerical analysis is consistent with these expectations. In-
deed, we still see the formation of a bimodal probability
distribution (with two well-separated peaks).
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FIG. 6. Time evolution under H1 after perturbing the state |⇑〉
with H0,2 for a time t0 = 0.4. The parameters are set to J = 2.8,
γ = 1, w = � = Dz = hz = 0 for H1; and hz

0 = 0.7 and hx
0 = 0.5

for H0,2. Top: the difference in magnetization with or without the
spin flip grows linearly in time, at least for the times reached by our
simulation; inset: local magnetization profile for the last four times
of the main plot. Bottom: more than two peaks appear and they are
not well-separated.

On the contrary, for the second class of perturbations, the
probability distribution does not present two well-separated
peaks, as shown, e.g., in the bottom row of Fig. 6. This rules
out the formation of a cat state, but the basic features pointing
to macroscopic entanglement (such as the linear growth in
time of the difference of magnetization between flipping or
not flipping the spin) are still present for times longer than our
maximum simulation times.

IV. DISCUSSION

In this section, we contextualize our findings within the
broader framework of quantum quenches, emphasizing the
exceptional nature of the phenomenon we discussed.

A. Local perturbations with macroscopic effects

In ordinary 1D systems, a spin flip does not change the
macroscopic properties of a state regardless of how long the
time is. The naive expectation is that its effect spreads out
across the chain as tα but fades away as t−α , with α = 1 in
integrable models and α = 1

2 in most of the generic systems.
Recently, three situations have been pointed out in which this
picture can break down:

(i) Ground states in symmetry-broken phases [49,50].
(ii) Quantum jammed states in systems with Hilbert space

fragmentation [40].
(iii) Systems with semilocal conservation laws [30].
To these three known cases, we have added models with

a fully separable quantum scar. This novel scenario has two
advantages: first, a product state can be easily prepared exper-
imentally, and second, its stationarity ensures that the (virtual)
experiment can stop at any time without compromising the
outcome.

Remarkably, the norm is that the perturbation generates
macroscopic entanglement. Moreover, in the special case in
which there is hidden U(1) symmetry, our analysis of the
fluctuations reveals that the entangled part of the system is
in a Schrödinger’s cat state.

B. On the spreading

The existence of the semilocal charge
∑

� �z(�) ensures
that the effect of the spin flip does not fade away over long
timescales [30,31]. However, it alone is insufficient to prevent
the effect from remaining localized around the measurement
position (see Appendix C). An illustrative example of this
behavior is provided by the Hamiltonian H1—Eq. (5)—in
the parameter regime dubbed dual XXZ model. Here, for |hz|
large enough, |⇑〉 becomes the ground state (or the maximum
energy state). By applying the Kramers-Wannier duality map-
ping proposed in Ref. [30], the system is mapped into the
time evolution of a domain wall in the XXZ model, where
the magnetic field hz plays the role of the anisotropy. As
proven in Ref. [51], the domain wall does not spread when the
anisotropy is larger than a critical value, which is equivalent
to saying that the perturbation remains localized when |hz|
is large enough to move |⇑〉 at the boundaries of the energy
spectrum.

In the generic case, however, the perturbation spreads out.
Using the underlying integrable structure, Ref. [30] showed
that the spreading is ballistic for γ = 1, w = � = Dz =
0, and |hz| < 1

4 . And for slightly different initial product
states, ballistic behavior was observed [40,41] also for γ =
w = � = Dz = hz = 0, for which the model is integrable as
well. A priori one would not expect ballistic spreading in
generic models, but rather diffusive spreading. In Ref. [40],
in particular, a preliminary analysis of the effect of some
integrability-breaking perturbations pointed to a nonballistic
spreading. In contrast, we find numerical evidence that bal-
listic behavior extends to a wide range of parameters, at least
within the time window investigated.

V. MATERIALS AND METHODS

A. Simulations of the dynamics

Numerical simulations are performed with the Julia ITen-
sor library [52]. We use a time-evolving block decimation
(TEBD) algorithm, and, in all data reported, time evolution is
discretized in time steps δt = 0.01 with second-order Trotter-
Suzuki gates [53], using an MPS representation of the state
with bond dimension up to 300 (see, e.g., [54]). We use finite-
size chains with open boundary conditions. We always stop
time evolution before the effects of the boundaries become

033108-7



SAVERIO BOCINI AND MAURIZIO FAGOTTI PHYSICAL REVIEW RESEARCH 6, 033108 (2024)

relevant (such a time always exists because of Lieb-Robinson
bounds). Being a product state, the initial state is conveniently
represented also for very long chains, so the limitation to
our simulations comes from time evolution: the growth of
entanglement limits the size of �ε (t ) that can be simulated.
The largest �ε (t ) that we have reached depends on the model
considered and ranges from about 50 in the case of Fig. 4 to
130 in the case of Fig. 3.

B. Full counting statistics

The full probability distribution of a given observable en-
codes all the information about its moments. Let L be the
chain length. We define Pθ (m) as the probability to get m
from a measurement of Sz given that the system is in the
state |�θ (t )〉. Note that m ∈ {− L

2 ,− L
2 + 1, . . . , L

2 }. To set a
convention, we assume L to be divisible by 4, so that the
maximum possible value m of the magnetization is even.
The generating function of the moments of the probability
distribution is defined as

Gθ (k) = 〈�θ (t )|ei 2πk
L+1 Sz |�θ (t )〉 . (14)

The probability Pθ (m) is then the Fourier transform of the
generating function:

Pθ (m) = 1

L + 1

L/2∑
k=−L/2

e−i 2πk
L+1 mGθ (k). (15)

We compute the generating function numerically using the
Julia ITensor library [52].

We point out that, if the model is invariant under spin
flip σx,y → −σx,y, the state |�π/2(t )〉 belongs to the sector
in which the parity operator �z = ∏

� σz
� has eigenvalue −1,

which means Pπ/2(m) = 0 for any even m. This implies that,
in the generic case of |�θ (t )〉 with θ �= π

2 , Pθ (m) = 0 for
any even m except for Pθ (L/2) = cos2 θ . For that reason, the
plots of the probability distribution in models with spin-flip
invariance show only m = L/2 and odd values of m.

C. Quantumness and quantum Fisher information

Reference [55] proposed to use the quantum Fisher in-
formation as a measure of the “macroscopicity” of quantum
effects in lattice systems. The quantity of interest is, how-
ever, rather complicated to compute both analytically and
numerically. Thus, for the sake of simplicity, we follow the
approach of Refs. [27,28,56] and restrict ourselves to ex-
amining a sufficient condition. Specifically, we investigate
the quantum Fisher information F (O) of extensive operators
whose densities have support on a single site, i.e., O[{	n}] =∑

j∈�ε (t ) 	n j · 	σ j , where 	σ j ≡ {σx
j, σ

y
j, σ

z
j} and the coefficients

are normalized as |	n j |2 = 1. In pure states, which is the case
we consider, F (O) equals four times the variance of O. Using
the notation of [29], we introduce the quantumness Neff of a
state as its maximal quantum Fisher information with respect
to all extensive observables:

Neff = 1

4|�ε (t )| max
O

F (O). (16)

We denote by N (1)
eff the maximization restricted to the observ-

ables with single-site density, as introduced above. Neff was
interpreted as an effective size of the macroscopic quantum
state, thus N (1)

eff is a lower bound for the effective size.
In practice, we introduce the covariance matrix

[K(t )]n,α;m,β = 1
2 〈�π/2(t )|{σα

n , σβ
m

}|�π/2(t )〉
− 〈�π/2(t )|σα

n |�π/2(t )〉 〈�π/2(t )|σβ
m|�π/2(t )〉 ,

(17)

where {σα
n , σβ

m} = σα
n σβ

m + σβ
mσα

n . In pure states, N (1)
eff satisfies

N (1)
eff = tr[D(t )]

|�ε (t )| with K(t )	v(t ) = [D(t ) ⊗ I3]	v(t ), (18)

where n, m ∈ �ε (t ) [the vector space is 3|�ε (t )|-dimensional]
and D(t ) must be diagonal ([	v]n are normalized). We solve
Eq. (18) using a Lanczos algorithm with three basic iterative
steps:

(i) 	w(n) = K	v(n).
(ii) [D(n)] j = ‖	w(n)

j ‖−1.
(iii) 	v(n+1) = (D(n) ⊗ I3) 	w(n).
In all cases considered, this procedure worked well without

the need for specific stabilizers.

VI. CONCLUSION

We have shown that macroscopic entanglement emerges
from a localized perturbation in a low-entangled excited state
in the middle of the spectrum, provided that such a stationary
state does not maximize a local conservation law. In generic
systems with local interactions, in particular, we observe the
phenomenon in quantum scars with anomalously low bipar-
tite entanglement. We further assert that in cases in which
the excited state optimizes a semilocal conservation law, the
macroscopic quantum state takes the simple form of a cat
state. This, in turn, offers a novel approach to generating cat
states within a subset of quantum many-body systems with
local interactions.

This work leaves several open questions. First, a rigorous
proof of the generation of cat states is missing. Second, the
observation of ballistic behavior in generic systems could be
questioned as a finite-time effect, so additional investigations
are imperative. Third, we have only provided a preliminary
and incomplete check of the stability of our protocol, but
this is clearly an important issue and requires additional
investigations.
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APPENDIX A: ENERGY LEVEL STATISTICS

As a test of integrability or otherwise, we investigate
the energy level statistics of the Hamiltonian of the spin- 1

2
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nearest-neighbor transistor chain,

H =
∑

�

1 − σz
�

8

[
J 	σ�−1

S· 	σ�+1 + 	D · (	σ�−1 × 	σ�+1)
]

− 	h
2

· 	σ�, (A1)

where 	a S· 	b = 	a · (S	b) and

S =

⎡
⎢⎣

1+γ

2 w 0

w
1−γ

2 0
0 0 �

⎤
⎥⎦, 	D =

⎡
⎣ 0

0
Dz

⎤
⎦, 	h =

⎡
⎣ 0

0
hz

⎤
⎦.

(A2)
We enforce periodic boundary conditions and restrict our-
selves to the sector characterized by zero momentum, zero
semilocal charge S̃

z
(the largest eigenspace), and

∏
j σ

z
j =∏

j σ
z
2 j = 1.

Such a sector is equivalent to the sector with zero mo-
mentum, zero magnetization, and

∏
j τ

x
j = ∏

j τ
z
j = 1, of the

Hamiltonian

Hτ =
∑

�

J
(1 + γ )I + (1 − γ )τz

�−1τ
z
�+2

4

τx
�τ

x
�+1 + τ

y
�τ

y
�+1

4

+ (Dz + Jw)τz
�+2 + (Dz − Jw)τz

�−1

2

τx
�τ

y
�+1 − τ

y
�τ

x
�+1

4

− hz

2
τz

�τ
z
�+1 (A3)

with periodic boundary conditions. Indeed, Hτ is related to
H by a Kramers-Wannier duality mapping, which transforms
semilocal operators into odd local ones [30],

σx
j = �x

τ,−( j),

σ
y
j =

⎧⎪⎨
⎪⎩

τx
1τ

z
2, j = 1,

�x
τ,−( j − 1)τy

jτ
z
j+1, 1 < j < L

−τz
L, j = L,

,

σz
j =

{
τz

jτ
z
j+1, 1 � j < L,

�x
ττ

z
1τ

z
L, j = L,

(A4)

FIG. 7. Cumulative distribution of the unfolded energy level
spacing in a sector of H with J = 1, γ = 0.5, w = 0.7, � = 0, Dz =
0.6, hz = 0 in a chain with 20 spins. The data are shown as a solid
curve; the dotted and dashed curves are the (normalized) Poisson
and Wigner-Dyson predictions expected in integrable and generic
models, respectively.

FIG. 8. Scaling in time of the effective system size for the models
introduced in the main text. The accuracy ε is set to 0.001 and the
parameters of H1 and H2 are those of Figs. 3 and 5, respectively.

where

�x
τ,−( j) = −τ

y
1

j∏
�=2

τx
�, �x

τ =
L∏

�=1

τx
�. (A5)

Figure 7 shows quite clearly that the Hamiltonian of Fig. 3 in
the main text is not integrable. Indeed, the cumulative distri-
bution of the energy level spacing is in excellent agreement
with the Wigner-Dyson distribution.

APPENDIX B: GROWTH OF THE EFFECTIVE
SYSTEM �ε(t )

The insets of Figs. 3–5 in the main text show that the
effective system size, corresponding to the largest subsystem
entangled with the rest, grows linearly in time. The depen-
dency of �ε (t ) on the time is explicitly shown in Fig. 8.

FIG. 9. Magnetization profile for the dual XXZ chain with J =
2.8, hz = 1. The magnetization does not change for any accessible
time. The fact that the magnetization is maximal except for a few
sites around the origin tells us that most of the system is in the |⇑〉
state.
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APPENDIX C: LOCALIZED EXCITATIONS

The main exception to the development of macroscopic
entanglement after a local projective measurement is when
the premeasurement state is the ground state in a disordered
phase. We consider, for example, the dual XXZ Hamilto-
nian H = J (

∑
� σx

�−1
1−σz

�

8 σx
�+1 − hz

2 σz
�). If the intensity of the

magnetic field |hz| is larger than 1
2 , the premeasurement state

becomes the ground state, and a spin flip excites only local
modes that do not spread with time—see Fig. 9.

APPENDIX D: ABSENCE OF MACROSCOPIC EFFECTS
IN MODELS WITH U(1) SYMMETRY

In this Appendix, we prove that a state |�〉 obtained by
time evolution under a U(1)-symmetric Hamiltonian after a
local perturbation to |⇑〉 is macroscopically equivalent to |⇑〉;

that is to say, the quantity 〈�|O|�〉 − 〈⇑ |O| ⇑〉 is subex-
tensive for any translational-invariant operator O = ∑

� OA�
,

with OA�
local operators. We also prove that the variance of

any of such operators O with respect to the state |�〉 grows at
most linearly with system |�ε (t )|, ruling out the possibility
to obtain a macroscopically entangled state from the time
evolution of a locally perturbed |⇑〉.

Let us denote by |�s〉 a state obtained by flipping s spins
in |⇑〉, or a linear combination of them. We start by observing
that, if Sz is conserved, the state time-evolves as

|�s(t )〉 =
∑

n1<n2<···<ns

w{n}(t )σ−
n1

σ−
n2

· · · σ−
ns

|⇑〉

for some coefficients such that
∑

n1<n2<···<ns
|w{n}|2 = 1. Let

OA�
be an operator with support in A, where A� is a set of

|A| adjacent sites starting with the �th spin: A = {�, . . . , � +
|A| − 1}. We have

〈�s(t )|OA�
|�s(t )〉 − 〈⇑|OA�

|⇑〉

=
s∑

i=1

∑
n1<···<ns

nk∈A�⇔k=i

⎛
⎜⎜⎜⎝

∑
n′

i
n′

k∈A�,∀k∈{i}

w∗
{n}(t )w{n},ni→n′

i
(t ) 〈⇑|σ+

n′
i
OA�

σ−
ni
|⇑〉 − |w{n}(t )|2 〈⇑|OA�

|⇑〉

⎞
⎟⎟⎟⎠

+
s−1∑
i=1

∑
n1<···<ns

nk∈A�⇔k∈{i,i+1}

⎛
⎜⎜⎜⎝

∑
n′

i<n′
i+1

n′
k∈A�,∀k∈{i,i+1}

w∗
{n}(t )w {n},ni→n′

i
ni+1→n′

i+1

(t ) 〈⇑|σ+
n′

i
σ+

n′
i+1

OA�
σ−

ni
σ−

ni+1
|⇑〉 − |w{n}(t )|2 〈⇑|OA�

|⇑〉

⎞
⎟⎟⎟⎠

+ · · · +
∑

n1<···<ns
nk∈A�,∀k∈{1,...,s}

⎛
⎜⎜⎜⎝

∑
n′

1<···<n′
s

n′
k∈A�,∀k∈{1,...,s}

w∗
{n}(t )w{n′}(t ) 〈⇑|σ+

n′
1
· · · σ+

n′
s
OA�

σ−
n1

· · · σ−
ns
|⇑〉 − |w{n}(t )|2 〈⇑|OA�

|⇑〉

⎞
⎟⎟⎟⎠. (D1)

An upper bound for the absolute value of the left-hand side of the equation is obtained using 〈v|O|v〉 � ‖O‖ 〈v|v〉, where ‖O‖
denotes the operator norm. Indeed, we have

|〈�s(t )|OA�
|�s(t )〉 − 〈⇑|OA�

|⇑〉|

� 2‖OA�
‖

⎛
⎜⎜⎝

s∑
i=1

∑
n1<···<ns

nk∈A�⇔k=i

|w{n}(t )|2 +
s−1∑
i=1

∑
n1<···<ns

nk∈A�⇔k∈{i,i+1}

|w{n}(t )|2 + · · · +
∑

n1<···<ns
nk∈A�,∀k∈{1,...,s}

|w{n}(t )|2

⎞
⎟⎟⎠

� 2‖OA�
‖

s∑
i=1

∑
n1<···<ns

ni∈A�

|w{n}(t )|2, (D2)

where the last step is not an equality because there are some coefficients w that are counted more than once in the last line
(e.g., if we take s = 2 and A� = {�, � + 1}, there is originally just one term |w�,�+1|2, coming from the sum

∑
n1<···<ns

nk∈A�,∀k∈{1,...,s}
,

but the sum
∑s

i=1

∑
n1<···<ns

ni∈A�

has two such terms, which we get for i = � and i = � + 1). Let us now consider the corresponding

translational-invariant extensive operator O = ∑
�∈�ε (t ) OA�

, where here �ε has a generalized definition with respect to the main
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text, since we want it to include all the light cones steaming from each spin flip. This gives

|〈�s(t )|O|�s(t )〉 − 〈⇑|O|⇑〉| �
∑

�∈�ε (t )

|〈�s(t )|OA�
|�s(t )〉 − 〈⇑|OA�

|⇑〉|

� 2‖OA1‖
∑

�∈�ε (t )

s∑
i=1

∑
n1<···<ns

ni∈A�

|w{n}(t )|2

� 2‖OA1‖|A|
s∑

i=1

∑
n1<···<ns

|w{n}(t )|2 = 2s‖OA1‖|A|, (D3)

where we used translational invariance and � rather than � because �ε (t ) is only approximately pure. This shows that |�s(t )〉
and |⇑〉 are macroscopically indistinguishable for any time t .

We want now to extend the result to the square of the operator. We follow the same steps:

〈�s(t )|OA�
OA�′ |�s(t )〉 − 〈⇑|OA�

OA�′ |⇑〉

=
s∑

i=1

∑
n1<···<ns

nk∈A�∪A�′ ⇔k=i

⎛
⎜⎜⎜⎝

∑
n′

i
n′

k∈A�∪A�′ ,∀k∈{i}

w∗
{n}(t )w{n},ni→n′

i
(t )〈⇑|σ+

n′
i
OA�

OA�′ σ
−
ni
|⇑〉 − |w{n}(t )|2〈⇑|OA�

OA�′ |⇑〉

⎞
⎟⎟⎟⎠

+
s∑

i< j=1

∑
n1<···<ns

nk∈A�∪A�′ ⇔k∈{i, j}

⎛
⎜⎜⎜⎝

∑
n′

i<n′
j

n′
k∈A�∪A�′ ,∀k∈{i, j}

w∗
{n}(t )w{n},ni→n′

i
n j→n′

j

(t )〈⇑|σ+
n′

i
σ+

n′
j
OA�

OA�′ σ
−
ni
σ−

n j
|⇑〉 − |w{n}(t )|2〈⇑|OA�

OA�′ |⇑〉

⎞
⎟⎟⎟⎠

+ · · · +
∑

n1<···<ns
nk∈A�∪A�′ ,∀k∈{1,...,s}

⎛
⎜⎜⎜⎝

∑
n′

1<···<n′
s

n′
k∈A�∪A�′ ,∀k∈{1,...,s}

w∗
{n}(t )w{n′}(t )〈⇑|σ+

n′
1
· · · σ+

n′
s
OA�

OA�′ σ
−
n1

· · · σ−
ns
|⇑〉

− |w{n}(t )|2〈⇑|OA�
OA�′ |⇑〉

⎞
⎟⎟⎟⎠, (D4)

from which

|〈�s(t )|OA�
OA�′ |�s(t )〉 − 〈⇑|OA�

OA�′ |⇑〉| � 2‖OA�
‖2

s∑
i=1

∑
n1<···<ns

nk∈A�∪A�′ ⇔k=i

|w{n}(t )|2

+ 2‖OA�
‖2

s∑
i< j=1

∑
n1<···<ns

nk∈A�∪A�′ ⇔k∈{i, j}

|w{n}(t )|2 + · · · + 2‖OA�
‖2

∑
n1<···<ns

nk∈A�∪A�′ ,∀k∈{1,...,s}

|w{n}(t )|2

� 2‖OA�
‖2

s∑
i=1

∑
n1<···<ns
ni∈A�∪A�′

|w{n}(t )|2, (D5)

and finally

|〈�s(t )|O2|�s(t )〉 − 〈⇑|O2|⇑〉| �
∑

�,�′∈�ε (t )

|〈�s(t )|OA�
OA�′ |�s(t )〉 − 〈⇑|OA�

OA�′ |⇑〉|

� 2‖OA1‖2
∑

�,�′∈�ε (t )

s∑
i=1

∑
n1<···<ns
ni∈A�∪A�′

|w{n}(t )|2
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� 4‖OA1‖2
∑

�,�′∈�ε (t )

s∑
i=1

∑
n1<···<ns

ni∈A�

|w{n}(t )|2

� 4‖OA1‖2|A||�ε (t )|
s∑

i=1

∑
n1<···<ns

|w{n}(t )|2 = 4s‖OA1‖2|A||�ε (t )|. (D6)

This shows that the variance of any operator O on the state |�s(t )〉 coincides with the one on the state |⇑〉 modulo corrections of
order O(|�ε (t )|). Since |⇑〉 is a state for which clustering of correlations holds and its variance cannot be larger than the system
size, we obtain that the state |�s(t )〉 has the same properties, implying that it is not macroscopically entangled. Our proof can be
easily generalized to any power of the operator, but higher powers are not needed for our purposes.

We now extend the results above to more general states. We consider first the quantity 〈�s′ |O|�s〉, s �= s′, for two different
states |�s〉 and |�s′ 〉. Without loss of generality, we can assume s > s′. We start from

|〈�s′ |O|�s〉| �
∑

�∈�ε (t )

∑
n′

1<···<n′
s′

∑
n1<···<ns

|〈⇑|σ+
n′

1
· · · σ+

n′
s′
OA�

σ−
n1

· · · σ−
ns
|⇑〉||w′

{n′}(t )||w{n}(t )|, (D7)

and we rewrite the sums regrouping them, for fixed �, according to how many of the primed indices {n′} are outside the set A�.
This is a number p that goes from 0 to s′. To get a nonzero contribution, the number of indices {n} outside A� should also be
p. The number of indices {n′} ∈ A� is then s′ − p ∈ {0, . . . , s′}, while the number of indices {n} ∈ A� is s − p ∈ {s − s′, . . . , s};
note that there is no contribution from |A�| < s − p. For given p, there are p + 1 distinct subsets of consecutive n that can be in
A� (they are characterized by the position of the first element of the subset); to keep track of this fact, we introduce a sum over
an index j, such that the index n j is the smallest of the indices {n} ∈ A�. Such a decomposition leads to

|〈�s′ |O|�s〉| �
∑

�∈�ε (t )

s′∑
p=0

p+1∑
j=1

∑
n1<···<ns

nk∈A�⇔ j�k< j+s−p∑
n′

1<···<n′
s′−p

n′
k∈A�,∀k∈{1,...,s′−p}

∣
∣〈⇑|σ+

n′
1
· · · σ+

n′
s′−p

OA�
σ−

n j
· · · σ−

n j+s−p−1
|⇑〉||w′

{n}\{n j ,...,n j+s−p−1}∪{n′
1,...,n

′
s′−p

}(t )||w{n}(t )
∣
∣

�
∥∥OA�

∥∥ s′∑
p=0

p+1∑
j=1

∑
�∈�ε (t )

∑
n1<···<ns

nk∈A�⇔ j�k< j+s−p

∑
n′

1<···<n′
s′−p

n′
k∈A�,∀k∈{1,...,s′−p}

∣∣w′
{n}\{n j ,...,n j+s−p−1}∪{n′

1,...,n
′
s′−p

}(t )
∣∣∣∣w{n}(t )

∣∣. (D8)

It is now convenient to write the sum over the indices n, n′ in A� in another way. We introduce PK
k as the set of all the k-tuples of

increasing numbers in {0, . . . , K − 1}. Note that PK
k has

(K
k

)
elements. We then have

|〈�s′ |O|�s〉| � ‖OA�
‖

s′∑
p=0

p+1∑
j=1

∑
�∈�ε (t )

∑
(k1,...,ks−p)∈P|A|

s−p

∑
(k′

1,...,k
′
s′−p

)∈P|A|
s′−p∑

n1<···<n j−1<A�<n j+s−p<···<ns

∣∣w′
{n1,...,n j−1,�+k′

1,...,�+k′
s′−p

,n j+s−p,...,ns}(t )
∣∣∣∣w{n1,...,n j−1,�+k1,...,�+ks−p,n j+s−p,...,ns (t )

∣∣, (D9)

which we rewrite isolating the term with p = s′ (the case in which all the indices {n′} are outside A�), which is special:

|〈�s′ |O|�s〉| � ‖OA�
‖

s′−1∑
p=0

p+1∑
j=1

∑
(k1,...,ks−p)∈P|A|

s−p

∑
(k′

1,...,k
′
s′−p

)∈P|A|
s′−p

∑
�∈�ε (t )∑

n1<···<n j−1<A�<n j+s−p<···<ns

∣
∣w′

{n1,...,n j−1,�+k′
1,...,�+k′

s′−p
,n j+s−p,...,ns}(t )

∣∣∣∣w{n1,...,n j−1,�+k1,...,�+ks−p,n j+s−p,...,ns (t )
∣
∣

+ ‖OA�
‖

s′+1∑
j=1

∑
(k1,...,ks−s′ )∈P|A|

s−s′

∑
�∈�ε (t )∑

n1<···<n j−1<A�<n j+s−s′<···<ns

∣
∣w′

{n1,...,n j−1,n j+s−s′ ,...,ns}(t )
∣∣∣∣w{n1,...,n j−1,�+k1,...,�+ks−s′ ,n j+s−s′ ,...,ns (t )

∣
∣. (D10)
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Now, for fixed p, j, {k}, {k′}, we want to maximize the sums over �, {n} independently, which gives an upper bound to the full
quantity. To that aim, we introduce the following compact notation: for the terms with p < s′,∑

�∈�ε (t )

∑
n1<···<n j−1<A�<n j+s−p<···<ns

∣∣w′
{n1,...,n j−1,�+k′

1,...,�+k′
s′−p

,n j+s−p,...,ns}(t )
∣∣∣∣w{n1,...,n j−1,�+k1,...,�+ks−p,n j+s−p,...,ns (t )

∣∣ ≡
∑
b∈B

W ′
bWb, (D11)

and for the term p = s′,∑
�∈�ε (t )

∑
n1<···<n j−1<A�<n j+s−s′ <···<ns

∣
∣w′

{n1,...,n j−1,n j+s−s′ ,...,ns}(t )
∣∣∣∣w{n1,...,n j−1,�+k1,...,�+ks−s′ ,n j+s−s′ ,...,ns (t )

∣
∣ ≡

∑
�∈�ε (t )

∑
c∈C

W ′
cWc,�, (D12)

where b and c regroup all the indices that w and w′ have in common, and W,W ′ are a synthetic expression for the
coefficients that report only the indices we are interested in; note that in the first case, there are as many independent w as
w′, while for p = s′, w′ does not depend on � anymore. To maximize the expressions above, we should take into accounts
the constraints

∑
n′

1<···<n′
s′
|w′

{n′}|2 = 1 and
∑

n1<···<ns
|w{n}|2 = 1. In our search for the maximum, we can use the stronger

conditions
∑

b∈B W 2
b = 1 and

∑
b∈B(W ′

b )2 = 1 in the first case and
∑

c∈C (W ′
c )2 = 1 and

∑
c∈C,�∈�ε (t ) W 2

c,� = 1 in the second
case, which amount to requiring that the coefficients that are not involved in the sum are zero (given the original constraint,
this maximizes the sum because all the terms are positive). Using the method of Lagrange multipliers, one can show that, under
these constraints,

∑
b∈B W ′

bWb is maximized by Wb = W ′
b and equals 1, while

∑
�∈�ε (t )

∑
c∈C W ′

cWc,� has degenerate points of
maximum in Wc,� = |�ε (t )|−1/2W ′

c and gives |�ε (t )|1/2. In the end

|〈�s′ |O|�s〉| � ‖OA�
‖

s′+1∑
j=1

∑
(k1,...,ks−s′ )∈P|A|

s−s′

|�ε (t )|1/2 + O(|�ε (t )|0) = ‖OA�
‖(s′ + 1)

( |A|
s − s′

)
|�ε (t )|1/2 + O(|�ε (t )|0).

(D13)

This result will be used below.
We finally consider a finite sum of states obtained by flipping different numbers of spins: |� (S)〉 = ∑S

s=1 as |�s〉, where
aj ∈ R,∀ j (any potential phase can be absorbed in the states), and

∑S
s=1 a2

j = 1. From Eq. (D13) it readily follows that

|〈�S+1|O|� (S)〉| �
S∑

s=1

|〈�S+1|O|�s〉| � O(|�ε (t )|1/2). (D14)

Let us now consider the state |� (2)〉 = a1 |�1〉 + a2 |�2〉, with a1, a2 ∈ R and a2
1 + a2

2 = 1. First of all, note that such a state is
macroscopically equivalent to |⇑〉. Indeed, using 〈�2|O|�2〉 = 〈�1|O|�1〉 + O(|�ε (t )|0), which is a corollary of Eq. (D3), we
have

〈� (2)|O|� (2)〉 − 〈⇑|O|⇑〉 = a2
1 〈�1|O|�1〉 + a2

2 〈�2|O|�2〉 + 2a1a2Re(〈�1|O|�2〉) − 〈⇑|O|⇑〉
= 2a1a2Re(〈�1|O|�2〉) + O(|�ε (t )|0) � O(|�ε (t )|1/2), (D15)

which is subextensive. Similarly, we can conclude that 〈� (S)|O|� (S)〉 − 〈⇑|O|⇑〉 � O(|�ε (t )|1/2), meaning that |� (S)〉 is
macroscopically equivalent to |⇑〉 for any finite S. Let us now look at the variance of O in |� (2)〉:

〈� (2)(t )|O2|� (2)(t )〉 − 〈� (2)(t )|O|� (2)(t )〉2 = a2
1 〈�1|O2|�1〉 + a2

2 〈�2|O2|�2〉 + 2a1a2Re(〈�1|O2|�2〉)

− (
a2

1 〈�1|O|�1〉 + a2
2 〈�2(t )|O|�2(t )〉 + 2a1a2Re(〈�1|O|�2(t )〉)

)2

= 〈�1|O2|�1〉 + 2a1a2Re(〈�1|O2|�2(t )〉) + O(|�ε (t )|)
− (〈�1|O|�1〉 + 2a1a2Re(〈�1|O|�2(t )〉) + O(|�ε (t )|0))2, (D16)

where we used 〈�2|O|�2〉 = 〈�1|O|�1〉 + O(|�ε (t )|0) and 〈�2|O2|�2〉 = 〈�1|O2|�1〉 + O(|�ε (t )|) [corollaries of Eqs. (D3)
and (D6)]. Using that the variance of any state |�s〉 cannot grow faster than |�ε (t )|, we get

〈� (2)(t )|O2|� (2)(t )〉 − 〈� (2)(t )|O|� (2)(t )〉2 = 2a1a2
[
Re(〈�1|O2|�2(t )〉) − 〈�1|O|�1〉 Re(〈�1|O|�2(t )〉)

] + O(|�ε (t )|).
(D17)

If the leading contribution to the variance were larger than O(|�ε (t )|), by changing the sign of a1 we could make the variance
negative; since the variance is by definition positive, by contradiction, we have that the leading order cannot be larger than
O(|�ε (t )|). We can now assume that the variance in the state |� (S−1)〉 is of order O(|�ε (t )|) and show that this implies
that the variance in |� (S)〉 is as well. The proof is essentially the same as above with just a small modification, namely
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〈� (S−1)|O|� (S−1)〉 − 〈⇑|O|⇑〉 is O(|�ε (t )|1/2) rather than O(|�ε (t )|1/2). This gives an extra term in the potential leading order,
which, however, does not affect the final result: calling |� (S)〉 = a1 |�S〉 + a2 |� (S−1)〉, we have

〈� (S)(t )|O2|� (S)(t )〉 − 〈� (S)(t )|O|� (S)(t )〉2 = a2
1 〈�S|O2|�S〉 + a2

2 〈� (S−1)|O2|� (S−1)〉 + 2a1a2Re(〈�S|O2|� (S−1)〉)

− [
a2

1 〈�S|O|�S〉+ a2
2 〈� (S−1)(t )|O|� (S−1)(t )〉+ 2a1a2Re(〈�S|O|� (S−1)(t )〉)

]2

= 〈�S|O2|�S〉 + 2a1a2Re(〈�S|O2|� (S−1)(t )〉) + O(|�ε (t )|)
− [〈�S|O|�S〉 + 2a1a2Re(〈�S|O|� (S−1)(t )〉) + O(a0

1|�ε (t )|1/2)
]2

� 2a1a2
[
Re(〈�S|O2|� (S−1)(t )〉) − 〈�S|O|�S〉 Re

(〈�S|O|� (S−1)(t )〉
+ O(a0

1|�ε (t )|1/2)
)] + O(|�ε (t )|). (D18)

Since a1 appears linearly as in the case S = 2, we can use the same trick and we have by contradiction that the variance in |� (S)〉
cannot grow faster than the system size.

In conclusion, we have proved that the state obtained by any local perturbation of |⇑〉 is macroscopically equivalent to |⇑〉
and the variance of any operator in this state does not grow faster than the system size, where the system size is defined by �ε (t ).
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