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Enhancing quantum utility: Simulating large-scale quantum spin chains on superconducting
quantum computers
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We present the quantum simulation of the frustrated quantum spin- 1
2 antiferromagnetic Heisenberg spin

chain with competing nearest-neighbor (J1) and next-nearest-neighbor (J2) exchange interactions in the real
superconducting quantum computer with qubits ranging up to 100. In particular, we implement the Hamiltonian
with the next-nearest neighbor exchange interaction in conjunction with the nearest-neighbor interaction on
IBM’s superconducting quantum computer and carry out the time evolution of the spin chain by employing the
first-order Trotterization. Furthermore, our implementation of the second-order Trotterization for the isotropic
Heisenberg spin chain, involving only nearest-neighbor exchange interaction, enables precise measurement of
the expectation values of staggered magnetization observable across a range of up to 100 qubits. Notably, in both
cases, our approach results in a constant circuit depth in each Trotter step, independent of the number of qubits.
Our demonstration of the accurate measurement of expectation values for the large-scale quantum system using
superconducting quantum computers designates the quantum utility of these devices for investigating various
properties of many-body quantum systems. This will be a stepping stone to achieving the quantum advantage
over classical ones in simulating quantum systems before the fault tolerance quantum era.

DOI: 10.1103/PhysRevResearch.6.033107

I. INTRODUCTION

The landscape of quantum computing has experienced sig-
nificant evolution, especially with the emergence of noisy
intermediate-scale quantum (NISQ) computers [1,2] and be-
yond at scale such as IBM Quantum processors. Despite their
inherent noise and limitations, these platforms have opened up
new avenues for delving into fundamental physics. Quantum
simulation [3–5] of seemingly complex many-body quantum
systems using near-term, noisy quantum computers presents
an intriguing possibility. While the algorithm for quantum
simulation using quantum computers was initially outlined
for many-body Hamiltonians in Ref. [6] and subsequently
refined in works such as [7–14], its actual implementation on a
quantum computer necessitates comprehensive quantum error
correction.

Using near-term, noisy quantum computers to simu-
late fundamental physics presents significant challenges
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including error rates that affect computation accuracy, con-
straints on qubit numbers limiting the complexity of simulated
systems, and difficulty in maintaining qubit stability over
extended periods. Nevertheless, ongoing advancements in
error-mitigation techniques and algorithms [15–22] for noisy
quantum devices are enhancing their capability to perform
detailed and accurate simulations of fundamental physics.
These successes showed the utility of noisy quantum com-
puters before the advent of fault-tolerance [22]. Despite these
advancements, an important question remains: are currently
available quantum computers capable of simulating large
quantum systems and extracting precise values for observ-
ables on more realistic problems? This question warrants
further investigation to assess the practical limitations and
potential of current quantum technology in the realm of
large-scale quantum simulations. Recently, Kim et al . [22]
successfully performed time evolution simulation of the Ising
model on IBM quantum computers at a scale beyond ex-
act classical methods with accuracy competitive with tensor
network methods. However, it remains an open problem to
achieve such quantum utility for a broader range of practical
problems.

In this study, we expand the utility of noisy quantum
computers to more general and complicated cases of time
evolution driven by Hamiltonians at large-scale noisy super-
conducting quantum computers. We focus on the simulation
for the time evolution of quantum spin- 1

2 antiferromagnetic
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Heisenberg model with frustration and assess their abil-
ity to accurately capture the intricate spin dynamics of the
model. The frustrated spin- 1

2 antiferromagnetic model serves
as a paradigmatic representation of a quantum many-body
system characterized by competing interactions among its
constituents. In a magnetically frustrated system, the ground
state becomes degenerate due to the inherent ambiguity of
the spin configurations not being able to satisfy all of the
antiferromagnetic interactions simultaneously. Consequently,
the ground state of the frustrated systems becomes highly
entangled, leading to exotic phases of quantum matters such
as quantum spin liquids (QSLs) [23–25].

In particular, we consider the spin- 1
2 antiferromagnetic

spin chain with competing nearest-neighbor (J1) and next-
nearest-neighbor (J2) exchange interactions [26,27] in the
real superconducting quantum computer with qubits rang-
ing up to 100. The antiferromagnetic quantum spin chain
has a rich ground-state quantum phase diagram [28–32].
Apart from its rich quantum phase structure, interestingly,
the antiferromagnetic spin chain model can be related to the
Schwinger model [33–36], a toy model in (1 + 1) dimensions
[(1 + 1)D] that captures the features of a strongly coupled
sector of quantum chromodynamics (QCD). To simulate
the time evolution of the quantum spin- 1

2 antiferromag-
netic Heisenberg spin chain with competing nearest-neighbor
and next-nearest-neighbor exchange interactions on noisy
superconducting quantum computers, we developed a new
Trotterization [37–39] circuit design. The main challenge of
the circuit design is originated by the limited connectivity of
superconducting quantum computers. Since the model has the
interaction between the next-nearest-neighbor in addition to
the nearest neighbor, the limited connectivity of the system
is a huge barrier for efficient Trotterization while the nearest-
neighbor interaction can be efficiently implemented on linear
qubit connectivity. Our new circuit design for the model is
suitable for linear qubit connectivity (circular connectivity
for a periodic boundary condition). Also, the design has a
constant circuit depth with respect to the system size (the
number of qubits) so that this implementation is scalable. This
circuit design is described in detail in Sec. III B.

Moreover, a special case (J2 = 0) of the model is the
Heisenberg isotropic spin chain model. In this case, we pro-
pose a new second-order Trotterization implementation. In
general, a second-order Trotterization has twice the longer
circuit depth than the corresponding first-order Trotterization.
However, we achieve the second-order Trotterization by only
an additional constant circuit depth than the circuit depth
of the first-order Trotterization. Since we have a trade-off
between numerical noise and quantum device noise when
we increase the order of Trotterization, implementing the
second-order Trotterization with only constant circuit depth
increase from the first-order Trotterization is a great benefit.
The implementation detail is described in Sec. III A.

Subsequently, we validate our new circuit designs with 20,
96, and 100 qubit systems on the IBM quantum processors
of 127 qubits and 133 qubits. To cope with the quantum
errors and noises, we apply several quantum error mitigation
methods to our new circuit designs (Refer to Sec. IV B).
We successfully simulate the time evolution with 3888 and
3978 CX gates using open and periodic boundary conditions,

FIG. 1. (a) In the absence of frustration, the nearest-neighbor
interaction prefers the antiferromagnetic or the Néel ordering. (b) In
contrast, the onset of next-nearest-neighbor interaction J2 makes the
system frustrated as it favors the antiparallel alignment of the next-
nearest-neighboring spins, leading to a parallel combination between
neighboring spin pairs.

respectively, that are presented in Sec. V. Finally, we conclude
in Sec. VI.

II. FRUSTRATED SPIN- 1
2 ANTIFERROMAGNETIC SPIN

CHAIN MODEL

The frustrated spin- 1
2 antiferromagnetic Heisenberg spin

chain is described by the following Hamiltonian:

H = J1

N∑
i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

)

+ J2

N∑
i=1

(
Sx

i Sx
i+2 + Sy

i Sy
i+2 + Sz

i Sz
i+2

)
, (1)

where the antiferromagnetic nearest-neighbor (NN) coupling
J1 > 0, next-nearest-neighbor (NNN) coupling J2 � 0 and the
exchange-anisotropy parameter � � 0 control the parameter
space of the Hamiltonian. Besides, the spin operators, Si =
1
2σ i obey the SU(2) algebra,[

Sα
i , Sβ

j

] = iδi jε
αβγ Sγ

i , (2)

where α, β, γ = x, y, z and i, j = 1, . . . , N . Our analy-
sis considers open boundary conditions (OBC) and periodic
boundary conditions (PBC). The PBC is imposed by setting
Sα

i+N = Sα
i . Besides, we take the total number of spin sites on

the chain as even N = 4n, where n takes on positive integers.
Additionally, this Hamiltonian is referred to spin- 1

2 J1 − J2

XXZ Hamiltonian in many instances. From Fig. 1, we can
see that when the next-nearest-neighbor interaction J2 is set
to zero, the spin alignment, for example along the z axis,
follows the antiferromagnetic ordering but the onset of J2

introduces a competing interaction which would disrupt the
initial antiferromagnetic ordering for large enough J2 value.
Hence, the spin chain becomes frustrated.

The couplings (J1, J2, �) of the Hamiltonian would result
in a rich ground-state phase diagram of the frustrated quan-
tum spin- 1

2 antiferromagnetic spin chain. In the subsequent
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analysis, we focus on two important Hamiltonians for partic-
ular parameter values, as detailed below.

Isotropic Heisenberg Hamiltonian. The isotropic Heisen-
berg Hamiltonian, also known Hiso, is characterized by the
parameters, J1 > 0, J2 = 0, and � = 1. Unlike the general
case of � �= 1, it has a full global SU(2) symmetry.

Dimer Hamiltonian. The dimer Hamiltonian correspond-
ing to the Majumdar-Ghosh (MG) point, denoted here as
Hdimer, is characterized by J1 > 0, J2 = J1

2 , � = 1 [40,41]. It
also enjoys the full SU(2) symmetry. The crucial feature of
this Hamiltonian is that its ground state manifests as a doubly
degenerate valence bond solid (VBS) phase where the pairs of
neighboring spins on the chain form spin-singlets, referred to
as dimer states.

A. Time evolution of the quantum system

In this work, we focus on the time evolution of the spin
chain under the Hamiltonians, Hiso and Hdimer. As our focus
is to study the accuracy of the measurement of observables
associated with the spin chain at the superconducting quantum
computers, we focus on the temporal variation of the expecta-
tion value of the staggered magnetization that characterizes
the antiferromagnetic ordering in the spin chain. The stag-
gered magnetization observable ÔMst is defined as follows:

ÔMst = 1

N

N∑
i=1

(−1)iSz
i . (3)

One can choose a specific spin configuration of the quan-
tum spin chain and calculate the expectation value of the
staggered magnetization observable to characterize the spin
states’ antiferromagnetic ordering. There exist myriad options
for selecting such spin states. However, for simplicity and
clarity, we opt for the Néel state that encapsulates some of
the fundamental features of the antiferromagnetic spin chain.
It is defined as

|ψNeel〉 = |↑↓↑↓ · · · · · · ↑↓↑↓〉, (4)

where each |↑〉 or |↓〉 represent the spin projection of
spin-1/2 particle at the ith site along the z axis in spin
space.

Consequently, we determine the time evolution of the ex-
pectation value of staggered magnetization observable for
the Néel state under the Hamiltonian Hiso and Hdimer in
IBM’s superconducting quantum computers and corrobo-
rated the results with state-of-the-art classical numerical
tools.

III. IMPLEMENTATION OF TIME EVOLUTION UNDER
THE SPIN CHAIN HAMILTONIAN

Starting from this section, we use 0 as the first index
instead of 1 to keep consistency with IBM Qiskit’s qubit
index convention. Hence, the index varies from 0 to N − 1
instead of from 1 to N . Also, we assume N is even. Equa-
tion (1) is reformulated by the Pauli operators, σ x

j , σ
y
j , σ

z
j as

FIG. 2. The first-order Trotterization of the Hamiltonian Hiso

with open boundary condition. The layers surrounded by the straight
lines are the even layers and the layers surrounded by the dotted lines
are the odd layers. For a periodic boundary condition, the odd layers
have the two-qubit gates, U (�θ ), between qn−1 and q0. One Trotter
step is composed of the even layer and the odd layer.

follows:

H =
N−1∑
j=0

(
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
j σ

z
j+1

)

+ J2

4

N−1∑
j=0

(
σ x

j σ
x
j+2 + σ

y
j σ

y
j+2 + σ z

j σ
z
j+2

)
, (5)

where Jz = �J1/4 and Jx = Jy = J1/4.

A. The second-order Trotterization for isotropic Heisenberg
Hamiltonian

In this section, we address a specific case of the Hamil-
tonian [Eq. (5)], which has J2 = 0. We have a basic building
block for the time evolution as follows:

Uj (�θ ) = exp

[
−i

(
θx

2
σ x

j σ
x
j+1 + θy

2
σ

y
j σ

y
j+1 + θz

2
σ z

j σ
z
j+1

)]
,

(6)

where �θ = (θx, θy, θz ) = (2Jx�t, 2Jy�t, 2Jz�t ) with the
Trotter step size �t . By the Trotter approximation, we can
arrange the Ui(�θ ) operators in staggered placement [42,43]
as shown in Fig. 2. Hence, one Trotter step is formulated as
follows:

U (�θ ) =
⎛
⎝N/2−1∏

j=0

U2 j (�θ )

⎞
⎠

⎛
⎝N/2−1∏

j=0

U2 j+1(�θ )

⎞
⎠.

We define the even layer Ue(�θ ) and the odd layer Uo(�θ ) as
follows:

Ue(�θ ) =
⎛
⎝N/2−1∏

j=0

U2 j (�θ )

⎞
⎠, Uo(�θ ) =

⎛
⎝N/2−1∏

j=0

U2 j+1(�θ )

⎞
⎠,

respectively. The even layers and the odd layers are high-
lighted in straight lines and dotted lines, respectively, in Fig. 2.
The first-order Trotterization (Fig. 2) needs 2M layers when
we have M Trotter steps.
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FIG. 3. The second-order Trotterization of the Hamiltonian Hiso with open boundary condition with two Trotter steps. The dotted parts are
one Trotter step of the second-order. The one step of the second-order Trotterization is composed of an even layer, an odd layer, an odd layer,

and an even layer in order. For a periodic boundary condition, the odd layers have the two-qubit gates, U (�θ2 ), between qn−1 and q0.

The second-order Trotterization is described in Fig. 3.
Even though the accuracy of the second-order Trotteriza-
tion increases, the circuit depth increases double in general.
However, we can compress the circuits of the second-order
Trotterization for the Heisenberg XXX spin chain Hamilto-
nian. It is trivial since we have the following equality:

Ue( �θ1)Ue( �θ2) = Ue( �θ1 + �θ2) and Uo( �θ1)Uo( �θ2) = Uo( �θ1 + �θ2).

Hence, we can merge the adjacent odd layers, and the last
even layer can be merged with the first even layer of the
next Trotter step. Figure 4 shows the merged circuit dia-
gram of the second-order Trotterization in Fig. 3. The merged
second-order Trotterization depicted in Fig. 4 shows that the
implementation needs only 2M + 1 layers when we have
M Trotter steps. Note that the first-order Trotterization (cf.
Fig. 2) has 2M layers with M Trotter steps. We achieve
the second-order Trotterization by adding one even layer at
the end of the first-order Trotterization and adjusting the
angle parameters (�θ). Considering the trade-off between the
Trotterization error and the quantum noise when we use a
higher-order Trotterization, it is a great benefit to achieve the
second-order Trotterization with only constant circuit depth.

B. The first-order Trotterization for the dimer Hamiltonian

The dimer Hamiltonian Hdimer has additional terms in ad-
dition to the Heisenberg XXX spin chain Hamiltonian Hiso

as shown in Eq. (1). The additional terms have coefficient J2.
The J2 terms have interaction with the next nearest-neighbor
sites. Hence, the dimer Hamiltonian has the interaction with
the nearest neighbor and the next-nearest-neighbor sites. This
is the main challenge to make a quantum circuit for the time
evolution of the Hamiltonian on quantum computers having
limited connectivity between qubits such as in superconduct-
ing quantum computers.

In this section, we describe our new quantum circuit design
for the dimer Hamiltonian on the quantum devices having
only connection between nearest-neighbor qubits. That is,
all qubits have two connections except the first and the last
qubits (a path graph) on open boundary conditions. In pe-
riodic boundary conditions, the first and the last qubits are
connected (a circle graph). Figure 5 shows one Trotter step of
the first-order Trotterization for the dimer Hamiltonian. In the
figure, the box surrounded by the straight line is the isotropic
Heisenberg Hamiltonian part (cf. Fig. 2). The dotted box part
in Fig. 5 represents our new circuit design for the J2 terms.

FIG. 4. The optimized second-order Trotterization of the Hamiltonian Hiso with open boundary condition with two Trotter steps. For a
periodic boundary condition, the odd layers have the two-qubit gates, U (�θ ), between qn−1 and q0. The circuit diagram in Fig. 3 is optimized
by merging adjacent even layers and odd layers, respectively.
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FIG. 5. One Trotter step implementation for the Hamiltonian
Hdimer. Here, θ = 2J1δt and θ ′ = 2J2δt = J1δt (as for dimer case,
J2 = J1/2). For a periodic boundary condition, the odd layers in the
straight line box have the two-qubit gates, U (�θ ), between qn−1 and
q0 and the SWAP gate between qn−1 and q0 in the second and the third
SWAP gate layers in the dotted line box.

In this circuit design, we assume that the n is a multiple of
four. In the numbering notation, the upper bar of a number
represents a modulo number of four. For example, k̄ means
k mod four. In addition, SWAP(i, j) represents the SWAP gate
between qi and q j . The first step is placing SWAP(1̄, 2̄). This
is depicted in the first SWAP layer in the dotted box in Fig. 5.
The second is placing the even layer on the whole qubits. The
first SWAP gate layer and the following even layers process
the J2 terms between 0̄ and 2̄, and 1̄ and 3̄, respectively. The
third is placing SWAP(1̄, 2̄), and SWAP(3̄, 0̄) of the neighbor.
If it is under PBC, SWAP(n − 1, 0) is added. SWAP(1̄, 2̄) is
reversing the first step, SWAP(1̄, 2̄). The fourth is placing the
even layer on the whole qubits. SWAP(3̄, 0̄) of the neighbor and
the following even layers process the J2 terms between 2̄ and
0̄, and 3̄ and 1̄, respectively. Finally, SWAP(3̄, 0̄) of neighbor
are placed. If it is under PBC, SWAP(n − 1, 0) is added. The
final process is reversing the SWAP(3̄, 0̄) of the neighbor in the
third process. The whole process of the circuit construction is
summarized in Table I.

Finally, we remark on the second-order Trotterization
of the dimer Hamiltonian. In contrast with the isotropic
Heisenberg Hamiltonian in Sec. III A, the second-order Trot-
terization of the dimer Hamiltonian does not have a significant
benefit. The first-order Trotterization of the dimer Hamilto-
nian has seven layers including the three SWAP gate layers for
one Trotter step as shown in Fig. 5 while the second-order
Trotterization needs twelve layers. Even though the Trotter-
ization error (numerical error) will decrease when we adopt
the second-order Trotterization instead of the first-order Trot-
terization, the quantum device error by the longer circuit depth
will increase and we anticipate the device error would be more

TABLE I. Summary of the circuit construction for the J2 terms
in Fig. 5.

Notation
n is the number of qubits and a multiple of 4.
The numbers represent qubit index from 0 to n − 1.
k̄ represent k modulo 4.

1: Place SWAP gates between 1̄ and 2̄ .
2: Place the even layer of �θ ′ on the whole qubits.
3: Place SWAP gates between 1̄ and 2̄, and between 3̄ and 0̄.

if PBC, place SWAP gate between n − 1 and 0.
4: Place the even layer of �θ ′ on the whole qubits.
5: Place SWAP gates between 3̄ and 0̄.

if PBC, place SWAP gate between n − 1 and 0.

dominant than the gain of the decrease of the numerical error.
Hence, we do not adopt the second-order Trotterization in our
experiments for the dimer Hamiltonian.

IV. IMPLEMENTATION FOR EXPERIMENTS

As we discussed in the previous section, the basic build-
ing block for the quantum circuit implementation is Ui(�θ ) in
Eq. (6) for both the isotropic Heisenberg Hamiltonian Hiso and
the dimer Hamiltonian Hdimer. Hence, the key to a successful
simulation on noisy quantum computers lies in the implemen-
tation of an efficient quantum circuit, as contemporary noisy
quantum computers are susceptible to various quantum noise
sources, including quantum gate errors. In this section, we de-
scribe our specific circuit implementation of Eq. (6) to execute
the time evolution on the IBM quantum computers. Sec-
tion IV A summarizes the quantum circuit implementation. As
described in Sec. III, we need only an efficient implementation
of Eq. (6) for the time evolution of the isotropic Heisen-
berg Hamiltonian (Hiso) and the dimer Hamiltonian (Hdimer)
as well as SWAP gates between the nearest-neighbor qubits.
Since our new circuit implementations for Hiso and Hdimer

only use quantum gates working on the nearest-neighbor
qubits, these implementations circumvent the limited qubit
connection issue of IBM quantum computers. Based on the
quantum circuit implementation, various quantum error miti-
gation methods are applied and the methods are described in
Sec. IV B.

A. Quantum circuit implementation

To implement Eq. (6), we start from the Ising coupling gate
RZiZ j (θ ) as follows:

RZiZ j (θ ) = exp

(
−i

θ

2
σ z

i σ z
j

)
=

⎛
⎜⎜⎜⎝

e−i θ
2 0 0 0

0 ei θ
2 0 0

0 0 ei θ
2 0

0 0 0 e−i θ
2

⎞
⎟⎟⎟⎠,
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which is implemented as RZZGate in IBM Qiskit. Since we have Clifford gate identities, we have the induced RXiXj (θ ) and
RYiYj (θ ) gates as follows:

H • • H

RXX(θ) =

H Rz(θ) H ,

√
σx • • √

σx†

RY Y (θ) = √
σx Rz(θ)

√
σx† ,

• •
RZZ(θ) =

Rz(θ)

where H is the Hadamard gate,

(σ x )1/2 = 1

2

(
1 + i 1 − i
1 − i 1 + i

)
,

and

Rz(θ ) =
(

e−i θ
2 0

0 ei θ
2

)
.

Hence, Ui(�θ ) in Eq. (5) is implemented as follows:

H • • H
√

σx • • √
σx† • •

H Rz(θ) H
√

σx Rz(θ)
√

σx† Rz(θ)

(7)

and this implementation has six CX gates and thirteen circuit depths. This circuit is compressed and optimized by circuit identities
as follows:

Rz(θz) Rz(−θy)
√

σx

• H Rz(θx + π
2 ) • H • √

σx†
(8)

This circuit has three CX gates and seven depths. The induction
of the circuit identity is described in detail in Appendix A in
Ref. [44]. Since quantum gates have gate errors and two-qubit
gates such as CX are noisier than single-qubit gates, reducing
the number of CX gates as well as the circuit depths is essential
to reduce the overall noise on the quantum computers. Hence,
we adopt the quantum circuit described in Eq. (8) for the
implementation of Eq. (6).

B. Quantum error mitigations

The troublesome challenge of running quantum algorithms
on contemporary quantum devices, including IBM Quantum
processors, is the errors and noise on the quantum devices
To cope with the errors and noises, quantum error correction

(QEC) was suggested [45,46]. However, QEC has a qubit
overhead that is daunting to implement on a large problem
on the contemporary quantum processors even though they
are optimized [47,48]. On the other hand, quantum error
mitigation (QEM) accepts the imperfection of contemporary
quantum devices and adopts methods of mitigating or sup-
pressing quantum errors and noises. QEM has a low or no
qubit overhead. In recent years, various QEM methods have
been developed, and their practicality has been proven in
practical problems [20–22,49]. Hence, we apply four QEM
methods, zero-noise extrapolation (ZNE), Pauli twirling (PT),
dynamical decoupling (DD), and matrix-free measurement
mitigation (M3) to cope with the quantum device errors and
noises in our experiments. A quantum circuit for one Hamil-
tonian simulation at a time is extended to three variational
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FIG. 6. A circuit diagram for Pauli twirling for CX, CZ, or ECR
gates. At positions 1, 2, 3, and 4, Pauli gates, {I, σ x, σ y, σ z} are
placed.

circuits including itself for the ZNE method and each vari-
ational circuit is duplicated to ten copies to apply the PT.
Hence, we have 30 circuits for one Hamiltonian simulation at
a time. We explain the QEM methods in detail in the following
subsections.

1. Zero-noise extrapolation

Zero-noise extrapolation (ZNE) is a quantum error miti-
gation method that estimates an ideal expectation value (no
noise expectation value) from other expectation values at dif-
ferent noise levels by extrapolation methods [16,17,50]. In our
experiments, we adopted local unitary gate folding [50] with
scaling factors 1, 3, and 5 only on two-qubit gates such as
CX (or CZ. Refer to Sec. IV C) gates rather than applying the
folding to all gates since the two-qubit gate is more than ten
times noisier than single qubit gates.

2. Pauli twirling

Pauli twirling is a method averaging out the off-
diagonal coherent errors of the circuits in the Pauli basis,
{I, σ x, σ y, σ z} [51–53]. In Pauli twirling, a Clifford gate is
surrounded by the Pauli gates back and forth which is math-
ematically identical to the Clifford gate. The efficiency is
empirically proved in previous studies [21,22]. Figure 6 shows
the Pauli twirling method we applied to this study. First, we
searched all the combinations of Pauli gates that are mathe-
matically identical up the global phase with only the Clifford
gate (CX or CZ gate depending on the target quantum device in
our experiments). This is our Pauli twirling gates set. Since the
Pauli gate set has four elements and we have four positions,
the search domain is 256(= 44) cases. The trivial case is
placing the identity gate in the position 1, 2, 3, and 4 in Fig. 6.
One nontrivial case is putting σ z, σ x, σ z, and σ x at 1, 2, 3, and
4, respectively. We duplicated 10 copies of the base quantum
circuit. After that, we randomly chose a Pauli twirling gate
combination out of the prepared Pauli twirling gates set and
applied them to the Clifford gate as described in Fig. 6.

3. Dynamical decoupling

Dynamical decoupling (DD) is a quantum error mitigation
method that reduces errors caused by spectator qubits. DD is
implemented by periodic sequences of instantaneous control
pulses that average out the coupling with the system environ-
ment to approximately zero [54]. In particular, a set of single
qubit operators are interleaved using basis transformation on
idle qubits so that environmental contamination from other
qubits is decoupled. Consequently, the coherence time of the
circuit becomes longer. The efficiency of DD is empirically
tested in various environments [21,22,49,55,56]. In this study,
we added (t/4, σ x, t/2, σ x, t/4) sequence in every idling

period through Qiskit PassManager, where t is the idling
time except for the two XGate pulse durations.

4. Measurement error mitigation

The canonical measurement error mitigation meth-
ods [57–59] correct the measurement error over N qubits
by computing the measurement error probability matrix as
follows:

�snoisy = M�sideal,

where �snoisy and �sideal are a state vector of noisy probabilities
returned by the quantum system, and a state vector of the
probabilities in the absence of measurement errors, respec-
tively. Since �snoisy and �sideal are state vectors of N qubits,
the matrix M has 2N × 2N dimension with entry Ai, j is the
probability of bit string j being converted to bit string i
by the measurement-error process. Although errors across
multiple qubits can be accurately approximated by employ-
ing no more than O(N ) calibration circuits, the method has
to compute the inverse of M in order to estimate the ideal
measurement after getting noisy measurement results. This
makes the method impractical at large qubit numbers. Instead
of the canonical measurement error mitigation methods, a
matrix-free measurement mitigation (M3) method has been
invented [60]. The method M3 works in a reduced subspace
determined by the noisy input bit strings requiring correction.
This space often contains significantly fewer unique bit strings
compared with the expansive multiqubit Hilbert space, mak-
ing the resulting set of linear equations notably simpler to
resolve. This method is implemented in Python [61]. Since
we conducted the experiments with 20, 96, and 100 qubits,
it was not possible to use the canonical measurement error
mitigation methods. So, We adopted M3 for our measurement
error mitigation by using the implementation [61].

C. Circuit implementation for experiments and post processing

In this study, we used two 127-qubit IBM quantum proces-
sors, ibm_sherbrooke, ibm_brisbane, and one 133-qubit
IBM quantum processor, ibm_torino. The 127-qubit pro-
cessors are IBM Eagle r3 quantum processors and they have
a basis gate set, {ECR, I, RZ, SX, X} where I, RZ, SX, and
ECR are the identity, Rz, (σ x )1/2, and 1√

2
(IX − XY ), respec-

tively [62–64]. On the other hand, the 133-qubit processors
adopt the IBM Heron r1 processor type. This type has the ba-
sis gate set {CZ, I, RZ, SX, X}, where CZ is a controlled-Z gate,
I ⊗ |0〉 〈0| + Z ⊗ |0〉 〈0| or Z ⊗ |0〉 〈0| + I ⊗ |0〉 〈0| (refer to
Sec. IV A for the quantum gate definitions). In the basis sets,
ECR and CZ are two-qubit gates and other gates are one-qubit
gates. These two-qubit gates are primitives for constructing CX
gate. In our circuit construction, we used CX gates regardless
of the target devices. The Qiskit transpiler converts all other
gates into the gates in the basis gate set depending on the target
devices.

To construct the quantum circuit with the error mitigation
methods described in Sec. IV B, we first transpiled the quan-
tum circuits of each Trotter step. The circuit implementation
of the Trotter steps is described in Secs. III and IV A. For the
transpiling, we used the qubit mapping visualized in Fig. 11.
During the transpiling process, the logical qubits are mapped

033107-7



CHOWDHURY, YU, SHAMIM, KABIR, AND SUFIAN PHYSICAL REVIEW RESEARCH 6, 033107 (2024)

FIG. 7. Time evolution of the expectation value of staggered magnetization for the Néel state under the Hamiltonian Hiso for N = 20 qubits
with OBC (left) and PBC (right), respectively.

to physical qubits as described in Fig. 11, and the logical
quantum gates are converted into sets in the basis gate set with
circuit optimizations. We applied the highest optimization
level during the transpiling.

After that, we duplicated each circuit two times (three
circuits including the base circuit) and applied a local unitary
gate folding with scaling factors 1, 3, and 5 to the three
circuits, respectively. In the next place, we applied the Pauli
twirling. We duplicated each circuit 10 times including the
base circuit and surrounded the Clifford gate with a randomly
chosen Pauli twirling combination out of the prepared Pauli
twirling gates set as described in Fig. 6. Finally, we applied
the dynamical decoupling method to all those circuits. Up to
now, we have thirty circuits for a Trotter step.

To execute each circuit, we used 10 000 shots (repeated
circuit execution for the measurement sampling) in all cases.
At the end of the circuit executions, we applied the measure-
ment error mitigation method. We used a Python library [61]
to calibrate the library from the system error information and
to correct the measurement errors. After gathering all the
measurement results of ten circuit duplications for the Pauli
twirling, the expectation values are computed for each ZNE
folding copy (1, 3, and 5 scaling factors). Finally, the ZNE is
estimated by a quadratic polynomial fitting curve.

TABLE II. Averaged staggered magnetization with time for Hiso

and N = 20 from five experiments on ibm_sherbrooke. The ±
terms represent the standard deviation of the data.

Staggered magnetization

Time, t OBC PBC

0.5 −0.3752 ± 0.0011 −0.3680 ± 0.0012
1.0 −0.1555 ± 0.0004 −0.1448 ± 0.0007
1.5 0.03741 ± 0.00032 0.591 ± 0.0007
2.0 0.0811 ± 0.0017 0.0836 ± 0.0009
2.5 0.0417 ± 0.0008 0.0413 ± 0.0008
3.0 −0.0099 ± 0.0005 −0.0156 ± 0.0010
3.5 −0.0333 ± 0.0006 −0.0303 ± 0.0007
4.0 −0.0201 ± 0.0008 −0.0137 ± 0.0010

V. RESULTS AND DISCUSSION

To ensure the accuracy of the results obtained from quan-
tum computers, it is crucial to cross-check those results with
classical numerical methods used to study the many-body sys-
tem. Nevertheless, the classical approach becomes inefficient
with the number of qubits, given the exponential growth in
the dimensionality of the Hilbert space and therefore impor-
tance of quantum computing becomes crucial for large-scale
calculations. In the following, we briefly present our two
adopted classical methods for checking the measured values
from IBM’s quantum devices.

In the experiments, we limit the initial state to the Néel
state in order to focus on the time evolution of the Hamil-
tonians. Because of the complexity of the implementation of
the Hamiltonians and the decoherence limit of the quantum
devices, the maximum circuit depth is limited. Therefore, we
adopt the Néel state as the initial state (one depth in the
implementation regardless of the system size) to minimize the
circuit depth for the initial-state preparation.

Direct method. One straightforward approach, denoted the
direct method in this work, is to calculate the time-evolved
expectation value of the staggered magnetization ÔMst for N
qubits with respect to the Néel state, 〈ψNeel(t )|ÔMst |ψNeel(t )〉
where |ψNeel(t )〉 = e−i H t |ψNeel〉. The Hamiltonian H is either
the isotropic Hamiltonian Hiso or the dimer Hamiltonian Hdimer

of our study. Here, H is a 2N × 2N Hermitian matrix that acts
on the Hilbert space of dimension 2N . We have implemented
this approach using our own Python implementation and have
checked the results with QuSpin [65]. This method is the sim-
plest and most accurate. However, it becomes an inefficient
computational mode for calculating the time evolution of state
vectors with N >∼ 20 qubits, as the Hilbert space’s dimension-
ality increases exponentially with the number of qubits. For
example, the number of qubits N = 50 requires 16 petabytes
of memory allocation in double precision for expressing just a
state vector, which is possible only for present supercomput-
ers. Therefore, we turn to the classical approximation method
based on matrix product states to calculate the time evolution
of state vectors with N > 20 qubits.

MPS-TDVP method. Matrix product states (MPSs) is
a common method used to study the time evolution of
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FIG. 8. Time evolution of the expectation value of staggered magnetization with respect to the Néel state under the Hamiltonian Hdimer for
N = 20 qubits.

large quantum many-body systems [66,67]. MPS is a one-
dimensional array of tensors linked together, with each tensor
corresponding to a site or particle of the many-body system.
The indices connecting the tensors in the MPS are called
bond indices, which can take up to χ values (also known
as bond dimensions). Meanwhile, the open indices of each
tensor correspond to the physical degrees of freedom of the
local Hilbert space associated with a site or a particle of the
system, which can take up to d values (for our system of
spin-1/2 particles, d = 2). While the MPS can represent any
quantum state of the many-body system, the bond dimension
χ needs to be exponentially large in the system size to cover
all states in the Hilbert space. We determine the time evolution
of the expectation value of staggered magnetization for the
Néel state, which we denote here as the MPS-TDVP method,
using approximation method based on time-dependent vari-
ational principle (TDVP) [68,69], facilitated by the package
ITensor [70–72]. The time evolution of MPS using the TDVP-
based method is advantageous as it cannot only handle the
Hamiltonian with long-range interactions rather than only the
nearest-neighbor interaction but is also computationally less
demanding when the PBC is imposed on those Hamiltonians.

In the subsequent analysis, we consider the time parameter
t in an arbitrary unit where h̄ = 1 and J1 = 1. One can simply
restore t in seconds by mapping t → h̄t/J1. For a typical
value of exchange interaction, J1 ∼ O(eV) that is associated
with magnetic materials, t falls in O(10−15) s, the timescale
of atomic transitions. Besides, we choose δt = 0.1 as the

TABLE III. Averaged staggered magnetization with time for
Hdimer and N = 20 from five experiments on ibm_torino. The ±
terms represent the standard deviation of the data.

Staggered magnetization

Time, t OBC PBC

0.2 −0.4665 ± 0.0005 −0.470 ± 0.006
0.4 −0.4383 ± 0.0014 −0.427 ± 0.005
0.6 −0.3264 ± 0.0012 −0.320 ± 0.004
0.8 −0.2252 ± 0.0011 −0.2089 ± 0.0030
1.0 −0.1328 ± 0.0005 −0.1245 ± 0.0014

time-step size and maximum allowed error ε = 10−12 for each
sweep in the MPS-TDVP method, which leads to 10 and 40
sweeps when we evolve the system up to t = 1 and t = 4,
respectively.

A. N = 20 qubits

We present the time evolution of the expectation value
of the staggered magnetization observable for the Néel state
under the isotropic Heisenberg Hamiltonian Hiso using the
second-order Trotterization (Sec. III A) in Fig. 7 for N = 20
qubits with OBC and PBC cases, respectively. In the exper-
iments on ibm_sherbrooke, we applied the error mitigation
techniques which are already delineated in Sec. IV B, and
ran each circuit with 100 000 shots (trials). This process was
repeated five times. The Qiskit simulation is a Qiskit sampling
simulation (qasm_simulator) of the circuits with 100 000
shots. The Qiskit experiment is executed once.

From Fig. 7 (left), we can see an excellent agree-
ment among the classical computations (both direct and
MPS-TDVP methods), the Qiskit simulation, and the
ibm_sherbrooke experiments. The plot of ibm_sherbrooke
is the average of the five executions. We tabulate the average
values and the standard deviations in Table II and Appendix A.

TABLE IV. Circuit depth with respect to the Trotter steps for Hiso

with N = 20, 96, 100 qubits after transpiling with the optimization
level 3.

Circuit depth for Hiso

OBC PBC

Trotter step N = 20 N = 100 N = 20 N = 96

1 41 41 40 47
2 67 67 66 77
3 93 93 92 106
4 119 119 118 135
5 145 145 144 164
6 171 171 170 193
7 197 197 196 222
8 223 223 222 251
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TABLE V. Number of CX gates for Hiso after transpiling with the
optimization level 3.

No. of CX gates for Hiso

OBC PBC

Trotter step N = 20 N = 100 N = 20 N = 96

1 87 447 90 432
2 144 744 150 720
3 201 1041 210 1008
4 258 1338 270 1296
5 315 1635 330 1584
6 372 1932 390 1872
7 429 2229 450 2160
8 486 2526 510 2448

In contrast, in Fig. 7 (right), for PBC, although we also have an
excellent agreement among the direct, the Qiskit simulation,
and the ibm_sherbrooke experiments, there is a mismatch
between the results obtained from the direct and MPS-TDVP
methods. This mismatch between the two methods is inher-
ently related to the requirement of a larger bond dimension
due to the linking between the tensors at the first and last sites
of the many-body system and the resulting larger truncation
error compared with the OBC cases. We note that for Hiso

and N = 20 qubits with OBC, the maximum link dimension
results in χ = 102 after 40 sweeps as we evolve the system up
to t = 4. On the other hand, for the PBC case, after 40 sweeps,
we end up with χ = 991 while keeping the error within ε.

Figure 8 presents the experimental results of
〈ψNeel(t )|ÔMst |ψNeel(t )〉 for Hdimer with N = 20 qubits using
the first-order Trotterization (Sec. III B) and comparison with
classical computations. The Qiskit simulation is a Qiskit
sampling simulation (qasm_simulator) of the circuits with
100 000 shots. The experiments of ibm_sherbrooke and
ibm_torino uses 100 000 shots with the QEM (Sec. IV B).
The ibm_torino experiment was repeated five times while
the ibm_sherbrooke experiment was executed once. The
average values and the standard deviations of ibm_torino
are tabulated in Table III and Appendix A. The direct
computation and the Qiskit simulation show great agreement
in both boundary conditions. Again, like the case of Hiso,

we see a mismatch between the direct computation and the
MPS-TDVP for the Hdimer with PBC in Fig. 8 (right). In
the case of OBC, we get the maximum link dimension to
be χ = 28 after 10 sweeps to evolve up to t = 1, whereas,
for the PBC, it was χ = 251 after 10 sweeps while keeping
the error within ε. In addition, the ibm_sherbrooke results
show a larger discrepancy than the ibm_torino results.
We presume the accuracy difference is originated from the
hardware accuracy of ibm_torino and ibm_sherbrooke
which have 0.8% and 1.7% error per layered gate (EPLG),
respectively, in a chain of 100 qubits [73].

In the comparison between the Hiso and the Hdimer, the
ibm_sherbrooke results for Hiso in Fig. 7 show a good
agreement and the results for Hdimer in Fig. 8 have no-
table discrepancy in both boundary conditions. We conjecture
that the reason is that the circuit depth and the number
of CX gates are different in each Trotter step as shown in
Tables IV, V, VI, VII, and Appendix B. Since the Hdimer

Hamiltonian has the additional term [refer to Eq. (5)] and
the implementation for the additional term needs two layers
SWAP gates, the Hdimer Hamiltonian implementation needs
about 60% more circuit depth than the Hiso Hamiltonian
implementation.

B. N = 96 and N = 100 qubits

After cross-checking the measurements of staggered mag-
netization with the real quantum computers for N = 20 qubits
with classical (direct and MPS-TDVP) methods and Qiskit
simulations, we present here our main results of large-scale
quantum simulation of the Heisenberg spin chain. In this
extension, we used the same circuit implementation methods,
error mitigation methods, and the number of shots (100 000)
except for the number of qubits. We used 100 qubits for the
OBC. However, since the PBC needs a connection between
the first qubit and the last qubit, we adopted 96 qubits for the
PBC. The qubit mapping for these cases is depicted in Fig. 11.

In Fig. 9, we can see that the results of
〈ψNeel(t )|ÔMst |ψNeel(t )〉 for Hiso for N = 100 qubits (OBC)
with ibm_brisbane (left figure) and N = 96 qubits (PBC)
with ibm_sherbrooke (right figure), respectively, are in
excellent agreement with the results from the MPS-TDVP
method. Note that for such large-scale systems with N ≈ 100

TABLE VI. Circuit depth with respect to the Trotter steps for Hdimer with N = 20, 96, 100 qubits after transpiling with the optimization
level 3.

Circuit depth for Hdimer

OBC PBC

N = 20 N = 100 N = 20 N = 96

Trotter
step

ibm_
sherbrooke

ibm_
torino

ibm_
brisbane

ibm_
torino

ibm_
sherbrooke

ibm_
torino

ibm_
sherbrooke

ibm_
torino

1 66 64 71 70 68 64 80 69
2 141 132 155 144 144 132 163 146
3 215 200 239 218 218 200 246 223
4 298 268 293 292 292 268 329 300
5 363 336 407 366 366 336 412 377
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TABLE VII. Number of CX gates for Hdimer after transpiling with the optimization level 3.

No. of CX gates for Hdimer

OBC PBC

N = 20 N = 100 N = 20 N = 96

Trotter
step

ibm_
sherbrooke

ibm_
torino

ibm_
brisbane

ibm_
torino

ibm_
sherbrooke

ibm_
torino

ibm_
sherbrooke

ibm_
torino

1 138 138 738 738 150 150 720 720
2 288 288 1548 1548 315 315 1512 1512
3 438 438 2358 2358 480 480 2304 2304
4 588 588 3168 3168 645 645 3096 3096
5 738 738 3978 3978 810 810 3888 3888

qubits, the direct method and the Qiskit simulations are
unavailable.

Figure 10 shows the results of time-evolved staggered
magnetization for Hdimer with time up to t = 1 with N =
100 qubits (OBC) (left figure) and N = 96 qubits (PBC)
(right figure) using ibm_brisbane, ibm_sherbrooke, and
ibm_torino. Likewise the N = 20 cases, this case shows a
notable discrepancy between the results of the IBM quantum
devices and the MPS-TDVP results.

As discussed in Sec. V A, we presume that the discrepancy
is originated from longer circuit depth and more CX gates in
the implementation for the time evolution of Hdimer. Also,
the difference between ibm_torino and ibm_brisbane is
derived from the hardware accuracy of ibm_torino and
ibm_brisbane which have 0.8% and 1.9% EPLG, respec-
tively, in a chain of 100 qubits [73].

C. Discussion and future work

The staggered magnetization defined in Eq. (3) represents
the antiferromagnetic ordering of spin-1/2 particles on the
chain along the z axis, and its value is either 0.5 or −0.5,
depending on the chosen ordering. In our specific case, the
staggered magnetization of the initial Néel state, as given in
Eq. (4), is determined to be −0.5 at t = 0. Subsequently,
when the system undergoes time evolution driven by either the

Isotropic Heisenberg Hamiltonian Hiso or the dimer Hamil-
tonian Hdimer, the staggered magnetization of the initial Néel
state, which is not an eigenstate of either Hamiltonian, grad-
ually relaxes to zero as time progresses. This behavior is
depicted in Figs. 7–10, where the staggered magnetization
shifts from its initial value of −0.5 at t = 0 towards a value of
zero at t > 0 during the time evolution.

In Figs. 7 and 9, we tracked the time evolution of the
staggered magnetization under Hiso up to t = 4, demonstrat-
ing its relaxation towards zero over time. Conversely, due to
limitations posed by larger circuit depths and error rates in real
devices, we only determined the time evolution of the stag-
gered magnetization under Hdimer up to t = 1, as represented
by the raised plots in Figs. 8 and 10.

In our experiments, the Hdimer cases have larger error
rates while all the Hiso cases show great accuracy. As the
results from the Qiskit simulation also show better consis-
tency with the direct computation at N = 20 cases, as seen
in Fig. 8, we conclude that the discrepancy comes from
the quantum device errors and noises rather than numeri-
cal errors of the first-order Trotterization. This also explains
the disagreement between the values of quantum devices
and the MPS-TDVP method, presented in Fig. 10 for N =
96 and N = 100 with Hdimer. Besides, this conclusion is
also supported by the comparison of the results between
ibm_torino and ibm_sherbrooke in Fig. 8. The results

FIG. 9. Time evolution of the expectation value of staggered magnetization for the Néel state under the Hamiltonian Hiso for N = 100
qubits with OBC and N = 96 qubits with PBC.

033107-11



CHOWDHURY, YU, SHAMIM, KABIR, AND SUFIAN PHYSICAL REVIEW RESEARCH 6, 033107 (2024)

FIG. 10. Time evolution of the expectation value of staggered magnetization for the Néel state under the Hamiltonian Hdimer for N = 100
qubits with OBC and N = 96 qubits with PBC.

of ibm_torino show certainly better accuracy than the re-
sults from ibm_brisbane and ibm_sherbrooke because
ibm_torino, ibm_sherbrooke, and ibm_sherbrooke have
0.8%, 1.7%, and 1.9% EPLG, respectively, in a chain of 100
qubits [73]. The EPLG measures the average gate process
error in a layered chain of 100 qubits. It is derived from a
similar quantity known as layer fidelity (LF), and the LF is the
process fidelity of the layered chain of 100 qubits [74]. Since
the quantum circuit implementation for the Hdimer consists
of the two parts, J1 terms and J2 terms, we conjecture that
the main reason for the discrepancy of the Hdimer than Hiso

is a longer circuit depth by the J2 terms and, in particular,
CX gates implementing the SWAP gates of the J2 terms. The
relative errors of the Hdimer cases (Figs. 8 and 10) is sum-
marized in Table VIII. The relative errors of each case show
the tendency to increase as time evolves. Even though several
relative errors decrease as time steps increase, we conjecture
the main reason is that the error mitigation methods applied to
our experiments work nonlinearly with respect to the circuit
depth.

Even though our experiments adopt specific numbers for
the parameters, J1 and J2, in Eq. (1), the methods applied to
the experiments can be easily extended to any number of J1,
J2 because they change the angles of Rz gates in Eq. (8) and
does not change the structure of the quantum circuit such as
the circuit depth and the number of CX gates. When we have

� �= 1, the optimized circuit implementation of Eq. (8) is im-
possible. However, it can be implemented by using different
angles in Eq. (7) even though the circuit implementation is
noisier than Eq. (8) because of more CX gates. Hence, a more
efficient circuit implementation for the case of � �= 1 will be
our future work.

In our future work, we study how to fine-tune the param-
eters of the error mitigation methods discussed in Sec. IV B.
In particular, we assume that there will be a better extrapo-
lation fitting function for the Hdimer cases. Additionally, we
explore other quantum error mitigation methods and find ways
to combine them more efficiently. Furthermore, we plan to
extend our study to include valid state preparation before the
time evolution, allowing us to tackle more realistic quantum
simulation problems.

VI. CONCLUSION AND OUTLOOK

In conclusion, our study represents a significant step
forward in the realm of quantum simulation before the
fault tolerance quantum era, as we successfully implemented
the quantum simulation of a frustrated quantum spin- 1

2
antiferromagnetic Heisenberg spin chain on IBM’s super-
conducting quantum computer. The incorporation of both
nearest-neighbor J1 and next-nearest-neighbor J2 exchange
interactions, particularly utilizing first-order Trotterization

TABLE VIII. Relative error (%) in the measured value of the staggered magnetization with time for Hdimer with N = 20, 96, 100 qubits.

Relative error (%) in measured staggered magnetization

OBC PBC

N = 20 N = 100 N = 20 N = 96

Time
ibm_

sherbrooke

ibm_
torino(avg.)

ibm_
brisbane

ibm_
torino

ibm_
sherbrooke

ibm_
torino(avg.)

ibm_
sherbrooke

ibm_
torino

0.2 5.47% 3.05% 13.04% 14.51% 5.37% 2.12% 10.10% 10.66%
0.4 8.08% 2.56% 21.21% 8.17% 18% 0.88% 17% 8.54%
0.6 17.38% 5.57% 31.01% 13.75% 15.55% 5.42% 26.80% 9%
0.8 18.50% 8.80% 36.20% 13.41% 22.74% 11.30% 32.86% 11.85%
1.0 22.17% 7.87% 36.57% 10.10% 15.26% 3.90% 29% 6.57%
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FIG. 11. Circuit qubit mapping layout.

for the latter, demonstrates the versatility and capability of
quantum computing technologies. Notably, our application
of second-order Trotterization for the isotropic Heisenberg
spin chain, coupled with precise measurements of staggered
magnetization expectation values across a substantial range of
qubits (up to 100), establishes the potential of these quantum
devices for investigating properties of large-scale quantum
systems.

The constant circuit depth achieved in each Trotter step,
independent of the initial qubit number, adds a practical
dimension to our findings, addressing a critical aspect of
quantum simulation scalability. Moreover, our ability to ac-
curately measure expectation values for such a large-scale
quantum system using superconducting quantum computers
underscores their utility in probing the intricacies of many-
body quantum systems.

In this study, we broaden the applicability of noisy
quantum computers to encompass more intricate scenarios
involving the time dynamics of Hamiltonians on a larger
scale, specifically within the context of noisy superconduct-
ing quantum computers. In the future, our efforts pave the
way for forthcoming quantum computing calculations, show-
casing the quantum advantage over classical methods in

simulating intricate quantum systems more prominently. As
we continue to push the boundaries of quantum computing
capabilities, our findings contribute to the growing body of
evidence supporting the transformative potential of quan-
tum computers in advancing our understanding of quantum
phenomena.
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APPENDIX A: AVERAGED STAGGERED
MAGNETIZATION FOR N = 20

In this Appendix, we present the averaged value of the
staggered magnetization with respect to the Néel state for sim-
ulation time in the case of isotropic Heisenberg Hamiltonian
Hiso and the dimer Hamiltonian Hdimer presented in Figs. 7
and 8. For the case of Hiso with N = 20 qubits, we perform
five repeated experiments of the staggered magnetization on
ibm_sherbrooke for both OBC and PBC, and obtain the
corresponding averaged value in each Trotter time steps up
to t = 4. The following term of ± represents the standard
deviation of the data.

In addition, for Hdimer with N = 20 qubits, we use
ibm_torino to measure the staggered magnetization re-
peatedly five times at each Trotter time step up to t = 1,
and determine the average value. The standard deviations in
Tables II and III show that each experimental datum is dis-
tributed close to the average value.

APPENDIX B: CIRCUIT DEPTH AND CX GATE COUNTS

We present the circuit depth and CX gate counts for Trot-
ter steps associated with the Trotterization circuits for the
Hamiltonians Hiso and Hdimer, respectively. The circuit depth
is an important measure of how many operations one can
implement before the coherence breaks down in a quantum
computer. Therefore, the circuit depth associated with the
Trotterization circuits essentially captures how reliable the
time evolutions of spin-chain under the isotropic Heisenberg

and the dimer Hamiltonians are, and how the system size
scales with the initial number of qubits. In addition, CX is
the noisiest gate in the base gate set. Hence, measuring the
number of CX gates in a circuit can be used to estimate the
noise of the circuit. In the following tables, the circuit depths
and the number of CX gates are measured transpiling with the
optimization level 3 in Qiskit. Refer to Tables IV, V, VI, and
VII.

APPENDIX C: RELATIVE ERROR IN MEASURED
STAGGERED MAGNETIZATION FOR Hdimer

In this section, we tabulate the relative error in measured
value of the staggered magnetization with respect to its the-
oretical value for different simulation time when evolving
under the dimer Hamiltonian. The relative error in percentage
is given by

δx =
∣∣∣∣x0 − x

x

∣∣∣∣ × 100%, (C1)

where x and x0 are the theoretical and measured value of the
staggered magnetization, respectively. For N = 20 with both
OBC and PBC cases, we use theoretical values from direct
method as they are the most exact values. On the other hand,
for N = 96 (PBC) and N = 100 (OBC) cases, we only have
approximate theoretical values from MPS-TDVP method. Re-
fer to Table VIII,

APPENDIX D: CIRCUITE QUBIT MAPPING LAYOUT

Here, we present the qubit mappings of ibm_sherbrooke
and ibm_brisbane for N = 20, 96, and 100 qubits in Fig. 11
which are used in our experiments. Refer to Fig. 11.

[1] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[2] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik,
Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys.
94, 015004 (2022).

[3] J. I. Cirac and P. Zoller, Goals and opportunities in quantum
simulation, Nat. Phys. 8, 264 (2012).

[4] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[5] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M.
Troyer, and P. Zoller, Practical quantum advantage in quantum
simulation, Nature (London) 607, 667 (2022).

[6] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[7] D. S. Abrams and S. Lloyd, Simulation of many-body Fermi
systems on a universal quantum computer, Phys. Rev. Lett. 79,
2586 (1997).

[8] S. Somaroo, C. H. Tseng, T. F. Havel, R. Laflamme, and D. G.
Cory, Quantum simulations on a quantum computer, Phys. Rev.
Lett. 82, 5381 (1999).

[9] C. Zalka, Simulating quantum systems on a quantum computer,
Proc. R. Soc. London, Ser. A 454, 313 (1998).

[10] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum
computation by adiabatic evolution, arXiv:quant-ph/0001106.

[11] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Quantum
algorithms for fermionic simulations, Phys. Rev. A 64, 022319
(2001).

[12] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R.
Laflamme, Simulating physical phenomena by quantum net-
works, Phys. Rev. A 65, 042323 (2002).

[13] D. W. Berry, G. Ahokas, R. Cleve, and B. C.
Sanders, Efficient quantum algorithms for simulating
sparse Hamiltonians, Commun. Math. Phys. 270, 359
(2007).

[14] A. M. Childs and R. Kothari, Simulating sparse Hamiltonians
with star decompositions, Lecture Notes in Computer Science
(Springer, Berlin, Heidelberg, 2011), Vol. 6519, p. 94.

[15] S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error
mitigation for near-future applications, Phys. Rev. X 8, 031027
(2018).

[16] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation
for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509
(2017).

[17] Y. Li and S. C. Benjamin, Efficient variational quantum simu-
lator incorporating active error minimisation, Phys. Rev. X 7,
021050 (2017).

033107-14

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1038/nphys2275
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1038/s41586-022-04940-6
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1103/PhysRevLett.82.5381
https://doi.org/10.1098/rspa.1998.0162
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1103/PhysRevA.64.022319
https://doi.org/10.1103/PhysRevA.65.042323
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.7.021050


ENHANCING QUANTUM UTILITY: SIMULATING … PHYSICAL REVIEW RESEARCH 6, 033107 (2024)

[18] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M.
Chow, and J. M. Gambetta, Error mitigation extends the com-
putational reach of a noisy quantum processor, Nature (London)
567, 491 (2019).

[19] E. van den Berg, Z. K. Minev, A. Kandala, and K. Temme,
Probabilistic error cancellation with sparse Pauli-Lindblad
models on noisy quantum processors, Nat. Phys. 19, 1116
(2023).

[20] H. Yu, Y. Zhao, and T.-C. Wei, Simulating large-size quantum
spin chains on cloud-based superconducting quantum comput-
ers, Phys. Rev. Res. 5, 013183 (2023).

[21] Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta,
K. Temme, and A. Kandala, Scalable error mitigation for noisy
quantum circuits produces competitive expectation values, Nat.
Phys. 19, 752 (2023).

[22] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg, S.
Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, and A.
Kandala, Evidence for the utility of quantum computing before
fault tolerance, Nature (London) 618, 500 (2023).

[23] P. Fazekas and P. W. Anderson, On the ground state properties
of the anisotropic triangular antiferromagnet, Philos. Mag. 30,
423 (1974).

[24] B. Sriram Shastry and B. Sutherland, Exact ground state
of a quantum mechanical antiferromagnet, Physica B + C
(Amsterdam) 108, 1069 (1981).

[25] L. Balents, Spin liquids in frustrated magnets, Nature (London)
464, 199 (2010).

[26] F. D. M. Haldane, Spontaneous dimerization in the s = 1
2

Heisenberg antiferromagnetic chain with competing interac-
tions, Phys. Rev. B 25, 4925 (1982).

[27] F. D. M. Haldane, Erratum: Spontaneous dimerization in the
s = 1

2 Heisenberg antiferromagnetic chain with competing in-
teractions, Phys. Rev. B 26, 5257(E) (1982).

[28] K. Okamoto and K. Nomura, Fluid-dimer critical point in
s = 12 antiferromagnetic Heisenberg chain with next nearest
neighbor interactions, Phys. Lett. A 169, 433 (1992).

[29] K. Nomura and K. Okamoto, Critical properties of s = 1/2
antiferromagnetic XXZ chain with next-nearest-neighbour in-
teractions, J. Phys. A: Math. Gen. 27, 5773 (1994).

[30] S. R. White and I. Affleck, Dimerization and incommensurate
spiral spin correlations in the zigzag spin chain: Analogies to
the Kondo lattice, Phys. Rev. B 54, 9862 (1996).

[31] S. Eggert, Numerical evidence for multiplicative logarithmic
corrections from marginal operators, Phys. Rev. B 54, R9612
(1996).

[32] C. Mudry, A. Furusaki, T. Morimoto, and T. Hikihara, Quan-
tum phase transitions beyond Landau-Ginzburg theory in
one-dimensional space revisited, Phys. Rev. B 99, 205153
(2019).

[33] P. Wiegmann, Topological superconductivity, Prog. Theor.
Phys. Suppl. 107, 243 (1992).

[34] M. C. Diamantini, P. Sodano, E. Langmann, and G. W.
Semenoff, SU(N) antiferromagnets and the phase structure of
QED in the strong coupling limit, Nucl. Phys. B 406, 595
(1993).

[35] Y. Hosotani, Gauge theory model: Quark dynamics and antifer-
romagnets, arXiv:hep-th/9606167.

[36] Y. Hosotani, Gauge theory description of spin ladders, J. Phys.
A: Math. Gen. 30, L757 (1997); 31, 7415 (1998).

[37] H. F. Trotter, On the product of semi-groups of operators, Proc.
Am. Math. Soc. 10, 545 (1959).

[38] M. Suzuki, Generalized Trotter’s formula and systematic ap-
proximants of exponential operators and inner derivations with
applications to many-body problems, Commun. Math. Phys. 51,
183 (1976).

[39] M. Suzuki, On the convergence of exponential operators-the
Zassenhaus formula, BCH formula and systematic approxi-
mants, Commun. Math. Phys. 57, 193 (1977).

[40] C. K. Majumdar and D. K. Ghosh, On next-nearest-neighbor
interaction in linear chain. I, J. Math. Phys. 10, 1388 (1969).

[41] C. K. Majumdar, Antiferromagnetic model with known ground
state, J. Phys. C: Solid State Phys. 3, 911 (1970).

[42] M. Vanicat, L. Zadnik, and T. Prosen, Integrable Trotterization:
Local conservation laws and boundary driving, Phys. Rev. Lett.
121, 030606 (2018).

[43] A. Smith, M. S. Kim, F. Pollmann, and J. Knolle, Simulating
quantum many-body dynamics on a current digital quantum
computer, npj Quantum Inf. 5, 106 (2019).

[44] K. Zhang, K. Yu, K. Hao, and V. Korepin, Optimal realization
of Yang–Baxter gate on quantum computers, Adv. Quantum
Technol. 7, 2300345 (2024).

[45] P. W. Shor, Scheme for reducing decoherence in quantum com-
puter memory, Phys. Rev. A 52, R2493 (1995).

[46] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[47] I. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe, J. McClean,
W. Sun, Z. Jiang, N. Rubin, A. Fowler, A. Aspuru-Guzik,
H. Neven, and R. Babbush, Improved fault-tolerant quantum
simulation of condensed-phase correlated electrons via Trotter-
ization, Quantum 4, 296 (2020).

[48] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean,
N. Wiebe, and R. Babbush, Even more efficient quantum com-
putations of chemistry through tensor hypercontraction, PRX
Quantum 2, 030305 (2021).

[49] C. Charles, E. J. Gustafson, E. Hardt, F. Herren, N. Hogan, H.
Lamm, S. Starecheski, R. S. Van de Water, and M. L. Wagman,
Simulating Z2 lattice gauge theory on a quantum computer,
arXiv:2305.02361.

[50] T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, and W. J.
Zeng, Digital zero noise extrapolation for quantum error mit-
igation, 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE) (IEEE, Denver, CO, USA,
2020), pp. 306–316.

[51] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.
Smolin, and W. K. Wootters, Purification of noisy entanglement
and faithful teleportation via noisy channels, Phys. Rev. Lett.
76, 722 (1996).

[52] J. J. Wallman and J. Emerson, Noise tailoring for scalable
quantum computation via randomized compiling, Phys. Rev. A
94, 052325 (2016).

[53] Z. Cai and S. C. Benjamin, Constructing smaller Pauli
twirling sets for arbitrary error channels, Sci. Rep. 9, 11281
(2019).

[54] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open
quantum systems, Phys. Rev. Lett. 82, 2417 (1999).

[55] N. Ezzell, B. Pokharel, L. Tewala, G. Quiroz, and D. A. Lidar,
Dynamical decoupling for superconducting qubits: A perfor-
mance survey, Phys. Rev. Appl. 20, 064027 (2023).

033107-15

https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1038/s41567-023-02042-2
https://doi.org/10.1103/PhysRevResearch.5.013183
https://doi.org/10.1038/s41567-022-01914-3
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1080/14786439808206568
https://doi.org/10.1016/0378-4363(81)90838-X
https://doi.org/10.1038/nature08917
https://doi.org/10.1103/PhysRevB.25.4925
https://doi.org/10.1103/PhysRevB.26.5257
https://doi.org/10.1016/0375-9601(92)90823-5
https://doi.org/10.1088/0305-4470/27/17/012
https://doi.org/10.1103/PhysRevB.54.9862
https://doi.org/10.1103/PhysRevB.54.R9612
https://doi.org/10.1103/PhysRevB.99.205153
https://doi.org/10.1143/PTPS.107.243
https://doi.org/10.1016/0550-3213(93)90003-8
https://arxiv.org/abs/hep-th/9606167
https://doi.org/10.1088/0305-4470/30/22/003
https://doi.org/10.1088/0305-4470/31/36/012
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01614161
https://doi.org/10.1063/1.1664978
https://doi.org/10.1088/0022-3719/3/4/019
https://doi.org/10.1103/PhysRevLett.121.030606
https://doi.org/10.1038/s41534-019-0217-0
https://doi.org/10.1002/qute.202300345
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.1103/PRXQuantum.2.030305
https://arxiv.org/abs/2305.02361
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.1038/s41598-019-46722-7
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevApplied.20.064027


CHOWDHURY, YU, SHAMIM, KABIR, AND SUFIAN PHYSICAL REVIEW RESEARCH 6, 033107 (2024)

[56] S. Niu and A. Todri-Sanial, Effects of dynamical decoupling
and pulse-level optimizations on IBM quantum computers,
IEEE Trans. Quantum Eng. 3, 1 (2022).

[57] S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay, and J. M.
Gambetta, Mitigating measurement errors in multiqubit experi-
ments, Phys. Rev. A 103, 042605 (2021).

[58] M. R. Geller, Rigorous measurement error correction, Quantum
Sci. Technol. 5, 03LT01 (2020).

[59] K. E. Hamilton, T. Kharazi, T. Morris, A. J. McCaskey, R. S.
Bennink, and R. C. Pooser, Scalable quantum processor noise
characterization, arXiv:2006.01805.

[60] P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta,
Scalable mitigation of measurement errors on quantum com-
puters, PRX Quantum 2, 040326 (2021).

[61] M3 library, https://github.com/qiskit-extensions/mthree
(2023).

[62] J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti,
B. R. Johnson, J. A. Smolin, J. R. Rozen, G. A.
Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen,
Simple all-microwave entangling gate for fixed-frequency
superconducting qubits, Phys. Rev. Lett. 107, 080502
(2011).

[63] A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M.
Steffen, J. M. Gambetta, and J. M. Chow, Demonstration of
a quantum error detection code using a square lattice of four
superconducting qubits, Nat. Commun. 6, 6979 (2015).

[64] Ibmq ecr gate, https://docs.quantum.ibm.com/api/qiskit/qiskit.
circuit.library.ECRGate.

[65] P. Weinberg and M. Bukov, QuSpin: A Python package
for dynamics and exact diagonalisation of quantum many
body systems part I: Spin chains, SciPost Phys. 2, 003
(2017).

[66] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U.
Schollwöck, and C. Hubig, Time-evolution methods for matrix-
product states, Ann. Phys. (NY) 411, 167998 (2019).

[67] J. I. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete,
Matrix product states and projected entangled pair states: Con-
cepts, symmetries, theorems, Rev. Mod. Phys. 93, 045003
(2021).

[68] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde,
and F. Verstraete, Time-dependent variational principle for
quantum lattices, Phys. Rev. Lett. 107, 070601 (2011).

[69] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and
F. Verstraete, Unifying time evolution and optimization with
matrix product states, Phys. Rev. B 94, 165116 (2016).

[70] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor
software library for tensor network calculations, SciPost Phys.
Codebases 4 (2022).

[71] M. Fishman, S. R. White, and E. M. Stoudenmire, Codebase
release 0.3 for ITensor, SciPost Phys. Codebases, 4 (2022).

[72] https://github.com/ITensor/ITensorTDVP.jl.git.
[73] IBM Quantum system information, https://docs.quantum.ibm.

com/run/system-information (2023).
[74] D. C. McKay, I. Hincks, E. J. Pritchett, M. Carroll, L. C. G.

Govia, and S. T. Merkel, Benchmarking quantum processor
performance at scale, arXiv:2311.05933.

033107-16

https://doi.org/10.1109/TQE.2022.3203153
https://doi.org/10.1103/PhysRevA.103.042605
https://doi.org/10.1088/2058-9565/ab9591
https://arxiv.org/abs/2006.01805
https://doi.org/10.1103/PRXQuantum.2.040326
https://github.com/qiskit-extensions/mthree
https://doi.org/10.1103/PhysRevLett.107.080502
https://doi.org/10.1038/ncomms7979
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.ECRGate
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3
https://github.com/ITensor/ITensorTDVP.jl.git
https://docs.quantum.ibm.com/run/system-information
https://arxiv.org/abs/2311.05933

