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Understanding multiple timescales in quantum dissipative dynamics:
Insights from quantum trajectories
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Open quantum systems with nearly degenerate energy levels have been shown to exhibit long-lived metastable
states in the approach to equilibrium, even when modelled with certain Lindblad-form quantum master equations.
This is a result of dramatic separation of timescales due to differences between Liouvillian eigenvalues. These
metastable states often have nonzero coherences that die off only in the long-time limit once the system reaches
thermal equilibrium. We examine two distinct situations that give rise to this effect: one in which dissipative
dynamics couple together states only within a nearly degenerate subspace, and one in which they give rise to
jumps over finite-energy splittings, between separate nearly degenerate subspaces. We find, in each case, that
a change of basis can often lead to a representation that more naturally captures the impact of the system-
bath interaction than does the energy eigenbasis, revealing that separate timescales are associated with separate
processes (e.g., decoherence into a nonenergy eigenbasis, decay of population correlations to the initial state).
This approach is paired with the inspection of quantum trajectories, which further provide intuition as to how
open system evolution is characterized when coherent oscillations, thermal relaxation, and decoherence all occur
simultaneously.
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I. INTRODUCTION

Open quantum systems have been observed to exhibit, in
some cases, a dramatic separation of timescales while relaxing
towards equilibrium. Formally, this is attributed to signifi-
cant differences in the magnitudes of different Liouvillian
eigenvalues [1,2]. The phenomenon has received much atten-
tion in the context of anomalous relaxation, or the “quantum
Mpemba effect”, which aims to speed up the approach to
equilibrium by reducing or eliminating the slowest timescales
from the evolution [3–6]. In other studies, it has been consid-
ered whether intermediate metastable states that arise due to
this timescale separation can offer advantages in applications
such as quantum thermometry [7]. Generically, the long-lived
metastable state that is reached in the relaxation towards
equilibrium exhibits coherences between energy eigenstates,
which die off only over the longest timescale of the dynamics
as the system reaches its thermal state [8–10].

The question of how coherence may be maintained over
long time periods in open quantum systems has garnered
much interest in recent years, particularly as many hope for
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advances in the field of quantum information processing,
where it will be crucial to be able to do so [11]. The signif-
icance of coherences has also been investigated in the context
of quantum transport and quantum thermodynamics, where
it has been questioned whether they can lead to improved
performance of thermal machines [12–15], or play a role
in the violation of cost-precision tradeoff relations [16–18].
Other studies have considered the role of coherence in bio-
logical processes, including photosynthesis [19,20] and vision
[21,22].

Quantum master equations (QMEs) may be used to de-
scribe the behavior of open quantum systems in an attempt
to capture the effects of coherence. Such equations, when
derived from microscopic principles (e.g., the Redfield equa-
tion), do not, in general, preserve positivity of the reduced
density operator [23,24] or satisfy fluctuation symmetry
[25,26]. The remedy for this is to obtain equations of Gorini-
Kossakowski-Lindblad-Sudarshan form [27–30]. This is often
achieved by making the secular approximation and eliminat-
ing oscillating terms in the Redfield equation. However, this
approach neglects any complicated interdependence between
eigenstate populations and coherences that may arise for sys-
tems with eigenstates close in energy [31].

GKLS-form master equations that are obtained without
making the full secular approximation have been derived
to describe dynamics more accurately in the presence of
nearly degenerate levels [31–35]. The so-called “unified”
quantum master equation (UQME), which shall be our focus,
is obtained from the Redfield equation by removing rapidly
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oscillating terms but keeping slowly oscillating terms—that is,
those terms oscillating at frequencies set by the energy differ-
ences between pairs of nearly degenerate states. GKLS form
is achieved by neglecting these small energy splittings in the
calculation of bath-induced transition rates [31], resulting in
a positivity-preserving, thermodynamically consistent [26,36]
description that approximates the Redfield equation well in
the presence of near degeneracies.

For open quantum systems with sets of nearly degenerate
levels—those for which long-lived coherences tend to arise
during the relaxation to equilibrium—there are, broadly, two
situations of interest. Each can arise in isolation or both
simultaneously, as determined by the form of the system-
bath interaction. In the first, the dissipative dynamics couple
together states within a nearly degenerate subspace. Such
dynamics cause no change to the expectation value of the
system Hamiltonian larger than the order of the small energy
splitting. A simple example of such a situation would be a
nearly degenerate two-level system coupled to a thermal bath
in a manner that leads to transitions that build coherence
between the levels.

In the second situation, dissipative dynamics lead the
system to jump between distinct nearly degenerate sub-
spaces, such that the jumps themselves are associated with
a finite-energy splitting and the timescales for relaxation
generally have explicit temperature dependence. This latter
case is exemplified by the “V” model, which has a pair
of nearly degenerate excited states separated by a finite-
energy gap to a ground state. This model has been used as
a paradigm for certain atomic systems in quantum optical
studies [37,38], as well as nitrogen vacancy centres [39].
When studied using the Redfield equation, it has been found
to exhibit dramatically distinct timescales during relaxation
towards equilibrium, including long-lived coherences in the
metastable state [8,10,40]. It has also shown coherences at
steady state in nonequilibrium situations [41,42].

The dramatic separation of timescales, and associated
long-lived coherences, in this model’s relaxation to equilib-
rium is captured by the UQME, both in numerical simulations
and approximate methods for obtaining analytic solutions
to the master equation [2,26,42]. Mathematically, this ef-
fect may be attributed to the fact that the eigenvalues of
the Liouvillian describing the system’s time evolution span
multiple orders of magnitude [2]; however, this explanation
falls short in delivering intuition for the physical processes
underlying the phenomenon at hand. Past studies have sim-
ilarly understood interesting features of dynamics by means
of the spectrum of the Liouvillian, for instance, in inves-
tigating the phenomenon of Liouvillian exceptional points
[43,44]. Long-lived coherences like those that we focus on
here have also been understood in the context of Fano coher-
ences, which arise due to interference associated with distinct
transitions from a single initial state [40,45], and for which
intuition has been found through an effective decoherence rate
model [46,47].

We will work to gain intuition in this context by studying
systems with nearly degenerate states through quantum tra-
jectories. Quantum trajectories, a concept with a longstanding
history in quantum optics, were formally developed to de-
pict quantum systems undergoing continuous measurements

[48–51]. In this scenario, the measurement process results
in the stochastic evolution of a given trajectory. Averaging
over many such trajectories recovers the ensemble average,
described by a GKLS-form master equation.

To be more precise, a quantum trajectory is obtained by
“unraveling” the master equation: examining a specific ex-
emplary sequence of “jumps” and describing the evolution
of the reduced density operator conditioned on the sequence
ρc. This evolution occurs discontinuously at random instants
when jumps happen. If the interaction with the environment
involves continuous measurement (e.g., a detector in the envi-
ronment clicks each time a jump occurs), ρc can be understood
as the system’s state conditioned upon a particular sequence
of clicks. Taking the ensemble average of conditional density
operators over the possible sequences then recovers the sys-
tem’s reduced density operator ρ. Unraveling frameworks of
the quantum master equations that behave as expected under
ensemble averaging are nonunique; different approaches have
been applied, e.g., in Refs. [52,53]. The methodology we em-
ploy here offers physical insight into the dramatic separation
of timescales seen in the relaxation towards equilibrium.

In this study, we consider minimal models that exhibit
dramatically different timescales and long-lived coherences
during their relaxation towards equilibrium. Our objective is
to root these phenomena in underlying physical processes. Us-
ing the UQME—a natural choice of GKLS master equation,
which captures the timescale effects—we investigate the dy-
namics of these systems as they thermalize. We build insight
by carrying out the analysis not only in the energy eigenbases
of the systems considered, but also in alternate bases that more
naturally reflect the way the system-bath interaction mani-
fests in the evolution of the state. This approach also lends
itself elegantly to the unraveling of the master equation to
observe quantum trajectories, which, in turn, help to further
paint the picture of why separate timescales emerge in the
overall dynamics. We do note, however, that the measurement
operators do not constitute a clearly defined measurement
process, but rather that the unravelled dynamics can shed
light onto the separation of timescales. Similar strategies link-
ing quantum trajectories with master equations have been
applied in characterizing metastability in quantum systems
[54–57], and studying open quantum systems subject to reset
processes [58].

In Sec. II, we consider the case where dissipative dy-
namics act within a nearly degenerate subspace and work to
build intuition for the physical processes underlying dramatic
timescale separation during the relaxation to equilibrium. In
Sec. III we turn our attention to the case in which dissipative
dynamics act between distinct nearly degenerate subspaces,
and identify and explain analogous timescale separation. In
Sec. IV we summarize our findings and discuss how they are
situated amongst a broader set of questions.

II. DISSIPATIVE DYNAMICS WITHIN A NEARLY
DEGENERATE SUBSPACE

A. Setup

In order to probe the case in which dramatically different
relaxation timescales occur as a result of dissipative dynamics
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FIG. 1. Level diagram for the two-level system with splitting �,
coupled to a bosonic bath at temperature T via the system-bath part
HSB of the Hamiltonian.

acting within a nearly degenerate subspace, we consider a
basic model consisting of a spin (two-level system) coupled
weakly to a reservoir. The full system plus environment is
described by the Hamiltonian,

H = HS + HB + HSB. (1)

The system Hamiltonian is

HS = �

2
(|1〉〈1| − |0〉〈0|). (2)

The level diagram for this model, along with the bath, is
depicted in Fig. 1.

HSB describes the coupling between the system and bath,
and is of the simple form

HSB = S ⊗ B (3)

where S is an operator acting solely on the system Hilbert
space, and B, on the bath.

Crucially, the “system part” of the interaction Hamiltonian
is given by

S = 1√
2

(|0〉〈0| − |1〉〈1| + |0〉〈1| + |1〉〈0|). (4)

In the energy eigenbasis, this is represented by a matrix
S = (σx + σz )/

√
2. This model, with levels that are not nearly

degenerate relative to temperature, was considered in several
studies with a focus on the survival of coherences in the steady
state [59]. In Ref. [60] the model captured the steady state of
a double quantum dot charge qubit. In nonequilibrium setups,
the model exemplified novel heat transport effects beyond
weak coupling [61].

We wish to derive the UQME for this system, which con-
sists of transition rates whose specific values depend on the
properties of the bath. These are obtained by evaluating the
rates of the Redfield equation, which are, in general, functions
of two distinct frequencies, at only the average of the two
arguments. This captures the assumption of near degeneracy
by effectively neglecting the difference between the two en-
ergy splittings and reduces the rate to a function of a single
frequency [31], i.e.,

γ (ω1, ω2) → γ (ω) ≡ γ (ω,ω), (5)

where ω ≡ (ω1 + ω2)/2. Such rates can be determined for
bosonic or fermionic baths, and for any form of the spec-
tral density. To probe the phenomenon of dramatic timescale

separation for this two-level system, we require only one
additional assumption: that we work in the limit of � � T .
That is, the two levels are nearly degenerate relative to the
energy scale associated with the temperature, justifying the
approximation described by Eq. (5).

In this case, the only transition rate describing the dissipa-
tive dynamics under the UQME is the one where the argument
goes to zero,

γ ≡ lim
ω→0

γ (ω). (6)

The lack of any large energy splittings in the system means
that no terms in the Redfield equation are discarded to obtain
the unified QME. The UQME is obtained from Redfield sim-
ply by taking all transition rates to the approximate value γ .
In the Schrödinger picture, the UQME is given by

dρ

dt
= Lρ = −i[HS, ρ] + D[L]ρ, (7)

where ρ ≡ TrB[ρtot] is the system reduced density operator,
and

D[L]ρ = LρL† − 1
2 {L†L, ρ}. (8)

There is only one dissipator corresponding to a single col-
lapse, or “Lindblad”, operator, which is directly proportional
to the system part of the interaction Hamiltonian,

L = √
γ S. (9)

While it is clear that Eq. (7) is of Lindblad form, since
the single positive value γ clearly amounts to a positive
semidefinite “matrix”, this is in contrast to typical uses of fully
secular quantum master equations, where there are often many
collapse operators, and they tend of be of the form of projec-
tors onto, or jumps between, energy eigenstates. Nonetheless,
Eq. (7) describes evolution of the density operator for an
ensemble.

The evolution at the trajectory level, however, is described
by a stochastic jump equation [49],

dρc = −H
[
iHS + 1

2 L†L
]
ρcdt + dN (t )G[L]ρc, (10)

where dN (t ) is a stochastic Poisson increment satisfying
dN (t )2 = dN (t ) and ρc is the conditioned density matrix. The
two superoperators are defined by

G[X ]ρ = XρX †

Tr[XρX †]
− ρ,

H[X ]ρ = Xρ + ρX † − Tr[Xρ + ρX †]. (11)

Each detection event corresponds to a quantum jump given
by the superoperator G[L]. The average jump rate is
given by E[dN (t )] = Tr[LρL†]dt , where E[X ] denotes a
classical average over stochastic trajectories. Thus, when
dN (t ) = 0, the evolution of the system will be governed by
the “null-measurement” term—corresponding to the first term
in Eq. (10). However, when a jump occurs the state is instantly
updated according to the projection onto L as determined by
the second term. Given the form of the interaction, in contrast
to the case of coupling described by σz or σx only, we note that
the state immediately after a jump exhibits coherence in the
energy eigenbasis. Furthermore, since for our choice of inter-
action L†L = γ I , we have that Tr[LρL†] = γ , simplifying the
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normalization that must be carried out following a quantum
jump, as described by Eq. (10).

While this assumption is by no means necessary, we con-
sider, for the purpose of calculations, a bosonic bath, with

HB =
∑

k

ωkb†
kbk, (12)

where bk is the annihilation operator for a mode k with
energy ωk . The bath is taken to be at thermal equilibrium
with temperature T , so the number operators satisfy 〈b†

kbk〉 =
n(ωk ), with n(ω) = (eβω − 1)−1, the Bose-Einstein distribu-
tion at inverse temperature β ≡ 1/T (we take the Boltzmann
constant, kB = 1). The bath operator that couples to the sys-
tem is chosen to represent displacements of the bath modes,
B = ∑

k gk (b†
k + bk ) with gk as the microscopic coupling en-

ergies. From that, the transition rate appearing in the UQME is
given by

γ = lim
ω→0

n(ω)J (ω) (13)

where J (ω) = 2π
∑

k g2
kδ(ω − ωk ) is the spectral density

of the bath. One possible choice would be an Ohmic bath,
for which J (ω) = aω, and we have γ = aT . However, any
choice of spectral density for which γ takes on a finite value
is sufficient to observe the phenomena we investigate here.
We emphasize again that the bath may be made of other
constituents, such as fermions, with the bath operator B rep-
resenting electron-hole pair excitations. The resulting rate
would be modified from Eq. (13) [62], but the dynamics (for
the same value of the rate constant) would be the same. The
only requirement from the bath here is that it can exchange
energy with the system.

B. Energy eigenbasis

We can write the equations of motion for the distinct
elements of ρ in the energy eigenbasis as given by the uni-
fied quantum master equation. It is convenient to define the
“polarization”, P = (ρ11 − ρ00)/2. We use the superscripts
R and I to denote the real and imaginary parts of complex-
valued matrix elements. Utilizing the condition of normaliza-
tion to reduce the system down to three equations, we have

Ṗ = −γ
(
P + ρR

10

)
,

ρ̇R
10 = −γ

(
P + ρR

10

) + �ρI
10,

ρ̇I
10 = −�ρR

10 − 2γ ρI
10. (14)

These are the equations of motion consistent with using
the UQME, and give results that show good agreement with
full Redfield in the case where nearly degenerate levels are
present [26]. However, other choices of how to truncate the
Redfield equation have been employed in studies of similar
models that emphasize other phenomena, such as coherences
that may arise at steady state [59,60]. Critically, any choice
that eliminates the coupling of populations to coherences in
the energy eigenbasis, as is seen here, will not give rise to
sets of dramatically different timescales in the approach to
equilibrium. Note that Eq. (14) does not include the effect of
the Lamb shift Hamiltonian. Including the Lamb shift does
not impact the phenomena of dramatic timescale separation,

though it does have some qualitative effects on the results, as
we discuss in the Appendix.

Given a choice of initial state, we can obtain analytic ex-
pressions for elements of ρ as a function of time by solving
for the eigenvalues of the Liouvillian up to leading order in �.
Following the approach of Ref. [2], we treat the �-dependent
part of L as a perturbation, first solving for the eigenvalues of
the “unperturbed” Liouvillian and then obtaining the order-�
correction only for the eigenvalue that vanishes in the � → 0
limit. Supposing the system is initially in its ground state,
ρ(0) = |0〉〈0|, we obtain the following expressions for the
population of the excited state, ρ11 = P + 1/2, and the real
part of the coherence, ρR

10, as functions of time:

ρ11(t ) = 1
2 − 1

4 (e− �2

4γ
t + e−2γ t ),

ρR
10(t ) = 1

4 (e− �2

4γ
t − e−2γ t ). (15)

Note that our analytic approach is not sufficient to solve for
ρI

10(t ) with this particular choice of initial state, since it is
initially zero and thus, by Eq. (14), the leading order contri-
bution to its evolution is of order �. It is not valid to treat
contributions of this order as perturbations.

Present in both expressions of Eq. (15) are two distinct
timescales, τ1 = 4γ /�2 and τ2 = 1/(2γ ), corresponding to
the reciprocals of the nonzero eigenvalues of the Liouvillian
for this system, up to leading order in �. This describes
evolution in the relatively short term to a metastable state,
which exhibits nonzero coherence, before evolving to the true
steady state of the system, which is the maximally mixed
state ρ∞ = I2/2, where I2 is the identity operator on a two-
dimensional space. This is also the expected thermal state
for this system, once again neglecting order-� contributions.
This behavior is demonstrated in Fig. 2. Furthermore, while
different choices of the initial state lead to different functional
forms for the elements of ρ, the same timescales τ1 and τ2

arise independently of this choice, with the exception of trivial
cases such as evolution beginning in the steady state.

C. Alternate basis

We take the fact that both timescales, τ1 and τ2, show up in
the expressions for both the populations and coherence in the
energy eigenbasis as motivation to transform to a new basis
in hopes of gaining some insight into the physical origin of
separate timescales. Namely, we identify the unitary matrix
V, which diagonalizes the Lindblad operator, i.e.,

L = VL̃V−1
, (16)

where bold-faced, sans-serif symbols denote basis-dependent
matrix representations of their associated operators. As such,
L and L̃ are the matrices representing L in the energy eigen-
basis and new basis, respectively, with the latter diagonal. We
find V to be given by

V = i√
2

(
−(1 − 1/

√
2)1/2 (1 + 1/

√
2)1/2

[2(1 − 1/
√

2)]−1/2 [2(1 + 1/
√

2)]−1/2

)
, (17)

and the collapse operator is simply represented as L̃ =
−√

γ σz. We denote the new basis states {|ψ+〉, |ψ−〉}; they
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FIG. 2. (a) The excited state population and (b) the real part
of the eigenstate coherence as a function of time, for a two-level
system initially in the ground state, Eqs. (14) and (15). Analytical
results from the perturbative method (dashed) are plotted along with
numerical values obtained using the full unified QME (solid), show-
ing good agreement. The two characteristic timescales, τ1 and τ2,
describing the stages of relaxation towards equilibrium are shown as
vertical-dashed lines. Calculations are carried out with � = 0.001,
T = 1, and a = 0.02, with a the dimensionless coupling coefficient
as defined below Eq. (13).

are related to the energy eigenstates via

|ψ±〉 = i√
2

⎛
⎜⎝±

√
1 ± 1√

2
|0〉 + 1√

2

1√
1 ± 1√

2

|1〉

⎞
⎟⎠. (18)

The system Hamiltonian is clearly not diagonal in this basis.
It is expressed in terms of the new basis states as

HS = 1√
2

�

2
(|ψ−〉〈ψ−| − |ψ+〉〈ψ+|

+ |ψ+〉〈ψ−| + |ψ−〉〈ψ+|). (19)

The benefit of working in this new basis is that it offers a
straightforward physical interpretation of the effect of the dis-
sipative part of the dynamics at the trajectory level. At random
instances in time, characterized by the rate γ , a “jump” occurs,
taking the system to a new state. This transition amounts to

flipping the signs of the off-diagonal elements of ρc in the
new basis, with no change to the diagonal elements. That is,
the system-bath interaction can be understood as giving rise to
pure decoherence. However, this decoherence is into a basis
other than the energy eigenbasis, and is therefore paired with
Rabi oscillations between basis states.

The fact that the system-bath Hamiltonian couples to-
gether states only within a nearly degenerate subspace is a
requirement for the interaction to be interpreted in this way.
A finite-energy splitting would require distinct upward and
downward transition rates, leading to different Lindblad oper-
ators, which would not be simultaneously diagonalizable. In
other words, there would be finite-energy changes associated
with the dissipative dynamics, amounting to a relaxation pro-
cess, rather than the pure dephasing we encounter here, which
conserves the energy of the system up to leading order in �.
The presence of just a single Lindblad operator proportional
to the interaction Hamiltonian guarantees its diagonalizability,
i.e., the existence of a basis in which it can be interpreted
as describing pure decoherence [29]. This implies that, while
we have focused for our examples on a specific form for the
system part S of HSB, the relevant basis could be identified
given any choice of Hermitian operator S, provided all else is
held equal.

To determine how the state of our exemplary system
evolves as a function of time under the same conditions as
in Sec. II B, we obtain the initial state (ground state of HS) in
this new basis. As a matrix,

ρ̃(0) = V−1ρ(0)V = 1

2

(
I − 1√

2
(σx + σz )

)
. (20)

We obtain an expression for the top-left matrix element of
ρ̃, which, due to the change of basis, represents the popu-
lation not of the ground state, but rather, of the state |ψ−〉.
We denote this ρ−− and the population of state |ψ+〉, ρ++.
We also solve for the real and imaginary parts of the coher-
ence between the new basis states, ρ+− ≡ 〈ψ+|ρ|ψ−〉. This
amounts to solving the UQME, which takes the form of
the following set of equations, where we define the variable
P̃ ≡ (ρ−− − ρ++)/2,

˙̃P = �√
2
ρI

+−,

ρ̇R
+− = −2γ ρR

+− − �√
2
ρI

+−,

ρ̇I
+− = − �√

2
(P̃ − ρR

+−) − 2γ ρI
+−. (21)

Again, the effect of the Lamb shift is not captured in these
equations, but discussed in the Appendix.

Using the same perturbative method with which we solved
for the matrix elements in the eigenbasis, we obtain expres-
sions for ρ−− and ρR

+− as functions of time, transforming back
to the density matrix elements from the solution for P̃,

ρ−−(t ) = 1

2
− 1

2
√

2
e− �2

4γ
t
,

ρR
+−(t ) = − 1

2
√

2
e−2γ t . (22)
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FIG. 3. (a) The level population and (b) real part of the coherence
in the alternate basis [Eqs. (21) and (22)] as a function of time,
starting from the ground state of the system Hamiltonian. The solid
curves represent the results of solving the master equation numer-
ically, while the dashed-black curves are the approximate analytic
expressions. The two timescales are shown as vertical-dashed lines.
Parameter values are the same as in Fig. 2.

Once again, variations in ρI
+− are of order � and smaller and

thus are not captured by the analytic methods, so we focus
on ρ−− and ρR

+− for the timescale analysis. In addition, as
before, the maximally mixed state is approached in the long-
time limit, as expected due to its basis independence.

As in Eq. (15), we note the two distinct timescales, τ1 and
τ2. However, rather than both appearing in both expressions,
τ1 can be interpreted strictly as a timescale for the decay of
populations in this basis towards their steady state values,
while τ2 is strictly a timescale for the decay of coherences
to zero. This is demonstrated in Fig. 3, wherein the evolution
of each element of ρ appears as simple exponential decay. It
is still the case that the system first evolves to a quasi-steady
state, where it remains while τ2 < t < τ1. In this basis, this
state is characterized simply by the coherence having decayed
but the populations remaining close to their initial values. The
values plotted in Fig. 3 may be transformed back to the energy
eigenbasis via the matrix V, to give results very similar to
those obtained when solving the UQME directly in the energy
eigenbasis.

D. Trajectory analysis

To gain some insight as to why the unified QME in this
alternate basis gives rise to the behavior expressed by Eq. (22)
and shown in Fig. 3, we can look at an example trajectory in
this basis for the system under the evolution described. This is
generated using the QuTip python library [63,64], and shown
in Fig. 4. Averaging over such trajectories recovers the time
evolution of the density operator plotted in Fig. 3 in the limit
of an infinite sample size.

Since the system Hamiltonian is not diagonal in this ba-
sis, the unitary contribution to evolution under the UQME is
characterized by Rabi oscillations with angular frequency �.
In the absence of any interaction with the bath, this leads to
oscillations of the off-diagonal elements along the envelope in
Fig. 4(b), exactly out of phase with corresponding population
oscillations. The interaction with the bath, however, causes
the sign of the off-diagonal elements to flip at randomly timed
jumps with rate γ . At the level of an ensemble, these sign-
flipping events lead coherences to die off on the timescale
τ2, as while the initial state dictates that all trajectories begin
with ρR

c,+−(0) = −1/(2
√

2), positive and negative values that
arise after varying sequences of jumps lead to a result of
zero when averaging over many trajectories. Conversely, these
jumps help the populations remain closer to their initial values
for longer than they would under isolated Rabi oscillations.

To understand this, we consider the evolution of ρc

on the Bloch sphere, where the state is represented by a
vector 
s with components sx = 2ρR

c,+−, sy = 2ρI
c,+−, and

sz = ρc,−− − ρc,++. The coherent part of its time evolution,
amounting to Rabi oscillations, is given by


̇s = 
� × 
s, (23)

where × represents the cross product in three dimensions and

� = (�/

√
2, 0,�/

√
2)T is the so-called “drive vector”. This

is equivalent to the equations of motion, Eq. (21), but without
the effects of dissipation. At the trajectory level, these effects
are instead reflected in the random jumps that occur, over and
above the evolution described by Eq. (23).

Our initial state corresponds to a vector in the lower-right
quadrant of the xz plane, strictly antiparallel to 
�, as shown
in Fig. 5(a). The state is stationary; it is, after all, the ground
state of the system Hamiltonian. However, before long, a jump
occurs, reflecting 
s across the z axis [Fig. 5(b)]. 
s is suddenly
perpendicular to 
�, around which it begins to precess with
angular frequency �, bringing it out of the xz plane into the
−y region. ṡz ∝ sy, so sz begins to decrease, but only until the
next jump takes the state into the +y region. After this point,
sz begins to increase again, reversing the previous decrease
[Fig. 5(c)]. Since γ � �, changes to sz (i.e., changes to the
state populations) rarely have the opportunity to accumulate
much before a jump occurs and they are undone. This is why,
at short times, ρc,−− undergoes the jagged evolution around
its initial value demonstrated in Fig. 4. Only on much longer
timescales, on the order of τ1, does the Bloch vector reach the
vicinity of the equator, as in Fig. 5(d). This signifies that the
correlations to the initial value of the populations have died
off and the system is truly in a thermal state.

One may expect the coherences to exhibit similar behavior,
since it is also the case that ṡx ∝ sy. The key difference is
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FIG. 4. A sample individual trajectory for (a) the population of |−〉 and (b) the real part of the coherence under the evolution described
in Sec. II in the alternate basis [Eqs. (16)–(22)]. τ2 is displayed in each panel as a vertical-dashed line, very close to the origin. Initial state
and parameter values are the same as in Fig. 2. [Inset in (a)] The population evolution is shown over a longer time interval for three sample
trajectories, demonstrating that all maintain similar values at short times. τ1 is shown as a vertical-dashed line in the inset, by which time,
correlations between the current and initial values are lost.

that while a jump does, therefore, lead ṡx to change sign, so
simultaneously does sx itself. This allows changes to |sx| to
accumulate seamlessly rather than being constantly undone,
in a manner that effectively characterizes uninterrupted Rabi
oscillations up to a frequently flipping sign (as in Fig. 4). It
should be noted that the amplitude of these oscillations does
change with the gradual changes to the populations.

Lasting changes to the populations do occur, however, as
a result of fluctuations in the wait times between jumps. The
population evolution is equivalent to simple harmonic motion
with angular frequency �, but with the additional feature that
the direction changes at random, as in a telegraph process.
In the regime where γ � �, this means the populations are

pinned close to their initial values for timescales much longer
than ∼1/�. However, since the wait times between jumps
can vary, correlations between the populations and their initial
values do eventually die off. It can be shown that this decay of
correlations occurs on a timescale proportional to γ /�2 ∝ τ1

[65], in agreement with the expression for ρ−−(t ) given
in Eq. (22). For times t � τ1, the populations are equally
likely to take on any value, as suggested by the inset of
Fig. 4. This effect can also be seen if the two-time corre-
lation function of the Pauli-Z operator is derived directly in
this basis for the two-level quantum system under consider-
ation. This correlation function can be calculated using the
quantum regression theorem [66], and it takes on the very

FIG. 5. Various snapshots of the evolution of one sample trajectory, depicted as a vector on the Bloch sphere (green), where the x, y,
and z axes represent the real and imaginary parts of the coherence in the alternate basis, and the population polarization between states |−〉
and |+〉, respectively. The initial state is shown throughout as a blue dot. The “drive” vector 
� about which the Bloch vector precesses in
Rabi oscillations, is also shown (black). Note that this quantity has units of frequency, thus only its direction is meaningful as shown in these
diagrams. (a) The initial state is the ground state, and is therefore stationary. (b) An instantaneous jump occurs after a time period of order τ2,
represented by a reflection of the Bloch vector across the z axis. There is now a finite angle between the Bloch vector and the drive vector, so
Rabi oscillations proceed. (c) After another jump, the Bloch vector is slightly offset from its initial position, so the precession continues, albeit
at a much slower rate. Jumps continue to occur at a rate set by the timescale τ2. (d) After a time period on the order of τ1, the Bloch vector is
in the vicinity of the equator, indicating that, at the ensemble level, the system has reached the maximally mixed state, which corresponds to
the true steady state for this system. Parameter values are the same as in Fig. 2.
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FIG. 6. (a) The V model represented in the energy eigenbasis, with states and energy splittings labeled. The bath excites transitions between
the ground state and both excited states (red-dotted arrows). (b) The V model level diagram in the alternate basis. The bath only couples the
ground state with |+〉 (red-dotted arrow), but |+〉 and |−〉 are coupled coherently with a tunneling amplitude �/2 (blue-dotted arrow).

simple form,

〈σz(t )σz(0)〉 = e− �2

4γ
t
. (24)

Thus, the maximally mixed state is reached in the long-time
limit, explaining the long-time behavior of the state regardless
of the basis in which one chooses to study its evolution. The
metastable state in the energy eigenbasis, characterized by
intermediate values of both the populations and coherence,
can now be understood as the basis-transformed version of
the metastable state we have characterized here, where the
coherences have died off quickly but the populations remain
close to their initial values.

III. DISSIPATIVE DYNAMICS BETWEEN
DISTINCT NEARLY DEGENERATE SUBSPACES

A. Setup and energy eigenbasis calculations

Another situation in which dramatic timescale separation
and long-lived coherences arise is that in which dissipative
dynamics lead a system to jump, over finite-energy splittings,
into and out of distinct nearly degenerate subspaces. To in-
vestigate this situation, we consider a simple system fitting
this description, the “V” model, which consists of one ground
state and two nearly degenerate excited states. This system
can exhibit long-lived transient coherences similar to those
identified in the two-level model of Sec. II [8,22,40]. Unlike
the previous model, however, these coherences arise not only
in the high-temperature limit.

The system Hamiltonian for this model is

HS = (ν − �)|2〉〈2| + ν|3〉〈3|, (25)

where � � ν. The ground state (zero energy) is labeled
|1〉. The level diagram for this model is shown in Fig. 6(a).
The structure of the Hamiltonian otherwise matches Eq. (3),
but with the system part of the interaction Hamiltonian now
given by

S = 1√
2

(|1〉〈2| + |1〉〈3| + H.c.) (26)

where H.c. represents the Hermitian conjugate. The derivation
of the unified QME for this model is analogous to that of

Sec. II; however, we identify two distinct collapse operators,

L↓ =
√

γ

2
|1〉(〈2| + 〈3|),

L↑ =
√

e−βνγ

2
(|2〉 + |3〉)〈1|. (27)

Note that these two operators represent jumps between levels
separated by finite energy differences: namely, between the
ground state and the coherent superposition of the two excited
states given by |+〉 = (|2〉 + |3〉)/

√
2. This represents a major

distinction from the situation considered in Sec. II, as transi-
tions in this system are associated with finite energy changes
in the bath, and therefore cannot be interpreted as pure deco-
herence into any basis. Indeed, the presence of a finite-energy
splitting permits changes to the expectation value of the sys-
tem Hamiltonian larger than order � as the system evolves. In
general, the level populations of the initial state do not match
those required for the Gibbs’ state describing the system at
equilibrium, and there must be some thermal relaxation that
takes place in addition to any dephasing.

As for the two excited levels, we neglect energy differences
of order � in defining the transition rates, allowing for the
derivation of a Lindblad-form quantum master equation. We
once again assume, merely for the purpose of calculations,
that the bath is bosonic with Ohmic spectral density, giving
the downward transition rate

γ (ν − �, ν) → γ ≡ γ (ν, ν) = J (ν)[n(ν) + 1]

= aν[n(ν) + 1]. (28)

The associated rate for an upward transition is given by
J (ν)n(ν) = e−βνγ , as reflected in the expression for L↑. The
presence of the finite-energy splitting ν is further reflected by
the distinction between the upward and downward transition
rates, whose ratio exhibits temperature dependence satisfying
detailed balance relations [29]. This temperature dependence
will propagate through to temperature dependence of the re-
laxation timescales themselves.

Due to a symmetry of the system, the difference,
ρ22 − ρ33, between the populations of the two excited states
decouples under the UQME from the rest of the dynam-
ics and decays to zero with rate γ /2. We will consider
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FIG. 7. (a) The populations of states |1〉 and |2〉 and (b) the real and imaginary part of the coherence ρ32 for the V model in the energy
eigenbasis, initially in the ground state. Note that ρ33(t ) = ρ22(t ) for all t , so only ρ22(t ) is shown here. The dashed lines correspond to
analytic perturbative calculations, showing close correspondence to the exact numerical values, with the exception of the imaginary part of
the coherence, which the perturbative calculations do not capture. The two characteristic timescales are shown as vertical-dashed lines. ν = 1,
� = 0.001, a = 0.02, and T = 1.

the case where the system begins in the ground state,
ρ(0) = |1〉〈1|. Therefore, ρ22(0) = ρ33(0) = 0, and we have
that ρ33(t ) = ρ22(t ) = (1 − ρ11(t ))/2 for all t . This allows
the dynamics to reduce to a system of three homogeneous
equations when we make a variable substitution, now defining
P ≡ (ρ33 + ρ22)/2 − e−βνρ11. We have

Ṗ = −γ

(
1

2
+ e−βν

)(
P + ρR

32

)
,

ρ̇R
32 = −γ

2

(
P + ρR

32

) + �ρI
32,

ρ̇I
32 = −�ρR

32 − γ

2
ρI

32. (29)

Using the perturbative method outlined in Sec. II along with
the assumption that the initial state is the ground state, we are
able to obtain expressions for the ground-state population and
the real part of the coherence,

ρ11(t ) = 1

Z (β )
+ e−βν

ZI (β )

(
1

Z (β )
e− Z (β )

ZI (β )
�2

γ
t + e−ZI (β )γ t

)
,

ρR
32(t ) = e−βν

2

(
e− Z (β )

ZI (β )
�2

γ
t − e−ZI (β )γ t

)
, (30)

where Z (β ) = 1 + 2e−βν is the partition function up to lead-
ing (zero) order in β�. ZI (β ) = 1 + e−βν is the analogous
partition function for a two-level system with splitting ν.
As we will see, this quantity is relevant to describing the
intermediate state of the system. In analogy to the two-level
system, the perturbative method once again cannot capture
the leading order of the evolution of the imaginary part of
the coherence. We plot a selection of the matrix elements
of ρ(t ) in Fig. 7 as determined by solving the unified QME
numerically, alongside the predictions associated with these
perturbative calculations. Here we can see a good level of
accuracy for the elements that the analytic method is able to
capture.

Similar to the two-level system discussed in Sec. II, we
identify here two distinct timescales for the relaxation to

equilibrium, which scale in the same manner with the tran-
sition rate γ , and small splitting �. The V model, however,
has a larger splitting ν, which we do not assume is small
relative to T . Therefore, the timescales depend additionally
on temperature via the quantity βν, the magnitude of which
we assume nothing about. They are given by

τ1 = ZI (β )

Z (β )

γ

�2
,

τ2 = 1

ZI (β )

1

γ
. (31)

Once again, this system exhibits long-lived coherences in
the energy eigenbasis, which arise after the dynamics begin,
and decay to zero only on the longer timescale τ1. We note
that these timescales are in agreement [42] with the results
obtained using the Redfield equation in Refs. [8,40].

In an important contrast to the two-level system, the finite
splitting ν means that any bath-induced transition is necessar-
ily accompanied by a non-negligible change in energy of the
bath. Therefore, no change of basis can make the interaction
with the bath “look like” pure decoherence—the Lindblad op-
erators cannot be simultaneously diagonalized. Accordingly,
there is no basis in which each element of the density matrix
evolves with only a single timescale, as we have identified for
the two-level system and show in Fig. 3.

B. Alternate basis and trajectory analysis

We can, however, make an argument that is similar in
spirit, by transforming to the basis, {|1〉, |+〉, |−〉}, where
|±〉 = (|2〉 ± |3〉)/

√
2. The Lindblad operators then describe

jumps between basis states,

L↓ = √
γ |1〉〈+| and L↑ =

√
e−βνγ |+〉〈1|. (32)

Furthermore, |+〉 and |−〉 are not energy eigenstates, and the
Hamiltonian gives rise to Rabi oscillations between them. In

033106-9



GERRY, KEWMING, AND SEGAL PHYSICAL REVIEW RESEARCH 6, 033106 (2024)

particular, the system Hamiltonian is

HS =
(

ν − �

2

)
(|+〉〈+| + |−〉〈−|) + �

2
(|+〉〈−| + |−〉〈+|).

(33)

In this basis, the bath couples the ground state to the |+〉
level, which itself is coupled to the |−〉 site through a tun-
neling term �/2. Furthermore, in this basis it is the real part
of the coherence, ρR

+− ≡ Re[〈+|ρ|−〉], that decouples from
the rest of the dynamics. The UQME once again amounts
to a system of three homogeneous equations. Making use of
the variables P1 = (ρ++ − e−βν )/2 and P2 = (ρ++ − ρ−−)/2,
where ρ±± ≡ 〈±|ρ|±〉, these are

Ṗ1 = −γZI (β )P1 − �

2
ρI

+−,

Ṗ2 = −γ P1 − �ρI
+−,

ρ̇I
+− = �P2 − γ

2
ρI

+−. (34)

Using the same perturbative method of Ref. [2] to obtain
expressions for the populations, ρ++ and ρ−−, of state |+〉
and |−〉, respectively, we find

ρ++(t ) = e−βν

Z (β )
+ e−βν

ZI (β )

(
e−βν

Z (β )
e− Z (β )

ZI (β )
�2

γ
t − e−ZI (β )γ t

)
,

ρ−−(t ) = e−βν

Z (β )

(
1 − e− Z (β )

ZI (β )
�2

γ
t)

. (35)

In analogy to the two-level system, the perturbative method
does not capture the dynamics of ρI

+− since the leading or-
der contribution to its evolution is of order �. Luckily, the
populations in this basis are sufficient to draw the insights we
want to discuss. We plot in Fig. 8 the populations obtained
by solving the master equation numerically, alongside curves
representing these expressions. Transforming the results plot-
ted in Fig. 8 back into the energy eigenbasis yields behavior
very close to the results of the direct eigenbasis calculations
shown in Fig. 7.

Interestingly, only the longer timescale τ1 appears in the
expression for ρ−−. This can be understood as a result of
the fact that |−〉 is isolated as the state that is not “included”
in the dissipative dynamics, see Eq. (32). Bath-induced jumps
from the ground state, which occur with a rate e−βνγ , serve
only to populate state |+〉 directly. Population can only arrive
in |−〉 via the Rabi oscillations that take place after a jump up
to |+〉. The period for these Rabi oscillations is proportional
to 1/�, but the timescale for ρ−− to reach its steady-state
population is increased to ∼γ /�2 by the fact that these Rabi
oscillations are often quickly interrupted by a jump back down
to the ground state, as shown in Fig. 9(a). Figure 9(b) displays
an average of 50 distinct trajectories of the type depicted in
Fig. 9(a), showing that averaging as such indeed recovers
the nonconditional reduced density operator. Interestingly, the
averaged trajectories for ρ11 and ρ++ exhibit far more noise
than that for ρ−−, likely attributed to the special status of |−〉
as the state not directly involved in the dissipative dynamics,
and thus not involved in the frequent jumps that occur as a
consequence of the coupling to the bath.

10-1 101 103 105
0

0.2

0.4

0.6

0.8
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FIG. 8. Populations of the three levels of the V model in the
{|1〉, |+〉, |−〉} basis, starting from the ground state. The dashed
curves represent the results of analytic perturbative calculations. As
with the other setups considered, thermalization takes place over two
distinct timescales. Here, only the slower timescale τ1 shows up in
the evolution of the population ρ̃−−, which is not directly involved
in the dissipative dynamics. The two characteristic timescales are
shown as vertical-dashed lines. Parameter values are the same as in
Fig. 7.

The approach to equilibrium can be understood to hap-
pen in two distinct phases. The first is thermalization with
respect to the larger energy gap ν, which occurs over a
shorter timescale τ2 set by the rate constant γ characteriz-
ing the dissipative dynamics. The second is the “mixing” of
the two excited states |+〉 and |−〉, which happens over a
slower timescale due to the constraints placed on the dynamics
by the Hamiltonian. We can understand this by considering
how we neglect the energy difference � between states |2〉 and
|3〉 in describing the dissipative dynamics. Because of this,
ρ22 = ρ33 in the Gibbs state describing the system at equilib-
rium, i.e., the steady state is “maximally mixed” with respect
to these two states. Thus, the 2 × 2 submatrix of ρ describing
the excited states and their coherences is proportional to I2

at equilibrium, and invariant under any change of basis that
affects only these two states (like the one we have used).

The thermalization dynamics must therefore reflect both
that (i) at steady state ρ++ = ρ−− = e−βνρ11, and that
(ii) only the state |+〉 is accessible to the system on the
shorter timescale τ2 over which thermalization with respect to
the larger splitting takes place. Indeed, at intermediate times
τ2 � t � τ1, the populations of |1〉 and |+〉 are

ρ11 ≈ 1

ZI (β )
and ρ++ ≈ e−βν

ZI (β )
, (36)

which is simply the Boltzmann distribution for a two-level
system. This suggests that the first stage consists of the system
thermalizing as if it were a two-level system, with the system
later proceeding towards its “correct” equilibrium state, once
sufficient time has passed for the Rabi oscillations to have an
effect on the density operator.
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FIG. 9. (a) An example trajectory for the V model in the {|1〉, |+〉, |−〉} basis, showing early stages of the dynamics only. A bath-induced
jump instantaneously sends the population of |+〉 (orange) to 1 as the population of |1〉 (blue) goes to 0, or vice versa. Only once the system
has jumped to state |+〉 can any population reach |−〉 through Rabi oscillations. Typically, since � � ν, this process is interrupted by a jump
back down to |1〉 well before a single period of the Rabi oscillations is completed. (b) One hundred such trajectories, averaged. This averaging
recovers the density operator given by quantum master equations, with noise due to the limited size of the sample. Parameter values are the
same as in Fig. 7.

IV. DISCUSSION

We have investigated two situations in which open quan-
tum systems with nearly degenerate eigenstates exhibit a
dramatic separation of timescales, and associated long-lived
coherences, in the process of relaxation towards equilibrium.
These effects are captured when dynamics are modelled using
the unified quantum master equation, which is better suited
to such systems than the fully secular master equation. In
examples, we have considered quantum systems interacting
with bosonic baths with Ohmic spectral density. However,
these choices were made only for the purposes of calculating
transition rates, and are not essential to the observation or
explanation of the phenomena under investigation. Our ap-
proach towards gaining insight as to the physics underlying
these timescale effects has been twofold.

Firstly, we have considered how transforming to different
bases can reveal different characteristics of the time evolution.

In particular, when the system part of the system-bath interac-
tion Hamiltonian takes on a nontrivial, nondiagonal form, the
energy eigenbasis may not be the only natural basis in which
to study the dynamics. Transforming to a basis that simplifies
the interaction Hamiltonian and/or Lindblad operators can
lead to simplified expressions for the state as a function of
time and aid in the analysis.

Secondly, using a QME that is of Lindblad form has al-
lowed us to straightforwardly simulate quantum trajectories
consistent with these dynamics. While the reduced density
operator takes into account the presence or absence of phase
coherence between separate instantiations of a quantum sys-
tem interacting with a bath, individual trajectories, in a sense,
provide a more insightful visualization of the underlying dy-
namics, with randomly timed jumps punctuating periods of
coherent evolution.

The presence of nearly degenerate levels in an open quan-
tum system means that, up to leading order in the small
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splitting between them, which we have denoted �, the re-
duced density operator at equilibrium is maximally mixed
with respect to the nearly degenerate subspace. As such, it will
be invariant under any basis transformation that only affects
states within this subspace, mimicking the “basis freedom”
that occurs for systems with strict degeneracies. For this rea-
son, while the system Hamiltonian technically does specify a
unique energy eigenbasis, using a basis chosen by considering
the system-bath interaction leads to a clearer understanding of
the distinct timescales that arise in the evolution. This was
seen very directly in Sec. II, where it turned out that the
interaction between our two-level system and its bath could be
interpreted as simple decoherence, but into a basis other than
the energy eigenbasis. The long-lived coherence, therefore,
is highly analogous to spurious coherences that might arise
when investigating quantum systems with strict degeneracies,
but which are uncontroversially explained away in these sce-
narios with an appeal to the well-understood basis freedom.

In Sec. III, we considered the case where dissipative dy-
namics excite jumps over finite-energy splittings between
distinct nearly degenerate subspaces, giving rise to a set of
nonsimultaneously diagonalizable Lindblad operators. The
system-bath interaction could not, therefore, be interpreted
as pure decoherence in any basis. However, the same type of
basis freedom was employed to identify a basis more natural
for describing the dynamics, without having any effect on
the reduced density operator at equilibrium. This amounted
to identifying, within the nearly degenerate subspace, a pair
of orthogonal states, of which one is directly involved in the
dissipative dynamics and one is not. Once again, this led to
some clarity surrounding the existence of distinct timescales
in the dynamics, as it elucidated the fact that the shorter
timescale is associated more closely with the dissipative part
of the dynamics only, while the longer timescale characterizes
effects that involve an interplay between the coherent dynam-
ics (Rabi oscillations) and the dissipative dynamics.

For both cases considered, changes of basis lent themselves
well to the inspection of quantum trajectories, as differences
between how different matrix elements evolve at the trajec-
tory level, both qualitatively and quantitatively, reflect the
different timescales that show up in the expressions for the
nonconditional reduced density matrix elements. Certain open
questions do, however, remain. For instance, while it is imme-
diately evident by inspecting the trajectories for the two-level
system in Fig. 4 how an average of many statistically similar
trajectories would recover the curves in Fig. 3, the same can-
not quite be said of those for the V model in Fig. 9. Looking
at a single trajectory, it appears that the population of |−〉 only
very rarely has a chance to increase beyond about 0.01 or
0.02 before a jump occurs, resetting it to zero. It therefore
seems unintuitive that at steady state, this population gets
as high as e−βν/Z (β ) (about 0.21 for the parameter values
plotted). This is not to dispute the results of the calculations,
just to emphasize the limitations of building intuition by
studying an individual trajectory in a particular basis while
the reduced density operator is really an ensemble average of
infinitely many.

We wish to distinguish these results from related study
investigating the presence of coherence at steady state in
nonequilibrium situations for open quantum systems that

include near degeneracies [42,59,60]. Employing the frame-
work of quantum trajectories to gain insight into the physical
processes underlying these steady-state coherences remains
an open direction for future research. Furthermore, it is
worth noting that recent studies have worked towards es-
tablishing methods of obtaining quantum trajectories even
if the dynamics are described by non-GKLS-form master
equations [67,68]. Such methods would, in principle, allow
analyses like this for systems even when no GKLS-form mas-
ter equation serves as a valid approximation for the dynamics.
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APPENDIX: LAMB SHIFT

In general, the unified quantum master equation includes
a contribution associated with the Lamb shift [31]. This
contribution appears in the unitary part of the evolution
and effectively adds an additional term, HLS , to the system
Hamiltonian HS , taking the UQME to

dρ

dt
= Lρ = −i[HS + HLS, ρ] +

∑
i

D[Li]ρ, (A1)

where the summation runs over each collapse operator Li. For
the models we consider, the Lamb shift Hamiltonian itself
is constructed of contributions proportional to products of
contributions to the system coupling operator, S†

ω′Sω where
|ω − ω′| � �, and

Sω =
∑

j, j′;ε j−ε j′=ω

Pj′SPj, (A2)

where Pj is a projector onto an energy eigenstate with
energy ε j .

We will briefly consider the role of the Lamb shift in each
of the cases studied. Note that for a given model, the Lamb
shift Hamiltonian differs between the two bases considered
by more than just the basis transformation itself. This is be-
cause the transformation can be understood to change how
the various elements of the total Hamiltonian manifest in the
unitary or dissipative part of the dynamics. Furthermore, while
energy splittings of order � are neglected in constructing
the dissipative part, it is often advantageous to retain them
in constructing a “refined” Lamb shift [31]. Accordingly, the
choice of basis amounts, in part, to a choice of the extent to
which small energy splittings are accounted for explicitly.

For the two-level system, in the energy eigenbasis, the
Lamb shift contains off-diagonal elements describing coher-
ent tunneling between the two levels. It is possible to show,
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however, that this element is given by

〈1|HLS|0〉 = 1

2i
(γ (−�,�) − γ (0, 0)). (A3)

By inspection, the magnitude of this element is O(�), and
therefore “small” by the standards stipulated in this paper.

The diagonal elements are given by the imaginary parts of
half Fourier transforms of the bath autocorrelation function,
evaluated at the splitting. We denote these half Fourier trans-
forms using the symbol � e.g.,

〈1|HLS|1〉 = Im[�(�)],

�(ω) ≡
∫ ∞

0
ds eiωsTr[e−iHBsB†eiHBsBρB], (A4)

where ρB is the density operator of the bath, given by a Gibbs
state at temperature T . Evaluating these integrals using a
Drude-Lorenz spectral density with a high cutoff frequency to
mimic an Ohmic bath, they are found to take on values smaller
than ∼a�, where a � 1 is the dimensionless system-bath
coupling constant [42,69]. As such, the Lamb shift serves to
increase the energy separation between the two levels, but
only by an amount on the order of �, leaving the splitting
small relative to the temperature scale.

Conversely, in the transformed basis for the two-level
system, the system coupling operator takes on a form propor-
tional to σz, leaving the only contribution to the Lamb shift
Hamiltonian proportional to the identity operator, σ 2

z = I , giv-
ing rise to no physical effect on the dynamics.

Therefore, while considering the Lamb shift leads to a
qualitatively different picture of the system’s behavior when
studied in the energy eigenbasis (coherent oscillations be-
tween eigenstates become possible), the quantitative effects
are not significant. For example, relaxation timescales may
differ as the eigenstate splitting � is augmented by the contri-
bution from HLS , but the small relative size of this contribution

means that the general phenomenon of dramatic timescale
separation arises nonetheless. Furthermore, since the Lamb
shift has no physical impact in the transformed basis, the
procedure outlined in the main text of first transforming to a
basis that more naturally captures the system-bath interaction,
and only then solving for the dynamics, is unaffected.

The effect of Lamb shift for the V model similarly differs
between the two bases considered. In the eigenbasis, there are
nonzero off-diagonal elements describing tunneling between
eigenstates |2〉 and |3〉 of HS . The real part of this coupling is
given by the average of imaginary parts of �(ν − �) and �(ν),
once again shown to be small at relatively high temperatures
[42]. The imaginary part of the off-diagonal term, in analogy
to Eq. (A3), is manifestly of order-�. The levels also shift by
amounts given by the imaginary parts of these half Fourier
transforms.

In the transformed basis, as for the two-level system, there
is no tunneling introduced by the Lamb shift (importantly,
the state |−〉 remains “dark” under the dissipative dynamics
and not coupled to state |1〉 via a tunneling element), lead-
ing to the conclusion that the approach of changing basis
before deriving the UQME remains a valid approach towards
characterizing dramatic timescale separation effects. There is,
however, a slight increase to the splitting between levels |1〉
and |+〉. In particular, the level |+〉 shifts by Im[�(�/2 − ν)]
while the level |−〉 is unaffected. Therefore, incorporating
the Lamb shift leads to the conclusion that the site ener-
gies of |+〉 and |−〉 are not equal, as they are if the Lamb
shift is neglected. Thus, there is a slight change to the qual-
itative behavior in this basis: namely, the Rabi oscillations
that take place between |+〉 and |−〉 must leave at least a
small amount of the population in state |+〉 after a jump
up, even in the unlikely case that the oscillation is able to
proceed through an entire period uninterrupted by a jump
down. This difference in behavior does not, however, diminish
the dramatic timescale separation effects that are the focus of
this paper.
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