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Markov-chain Monte Carlo method enhanced by a quantum alternating operator ansatz
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Quantum computation is expected to accelerate certain computational tasks over classical counterparts.
Its most primitive advantage is its ability to sample from classically intractable probability distributions. A
promising approach to make use of this fact is the so-called quantum-enhanced Markov-chain Monte Carlo
(qe-MCMC) method [D. Layden et al., Nature (London) 619, 282 (2023)], which uses outputs from quantum
circuits as the proposal distributions. In this paper, we propose the use of a quantum alternating operator ansatz
(QAOA) for qe-MCMC and provide a strategy to optimize its parameters to improve convergence speed while
keeping its depth shallow. The proposed QAOA-type circuit is designed to satisfy the specific constraint which
qe-MCMC requires with arbitrary parameters. Through our extensive numerical analysis, we find a correlation
in a certain parameter range between an experimentally measurable value, acceptance rate of MCMC, and the
spectral gap of the MCMC transition matrix, which determines the convergence speed. This allows us to optimize
the parameter in the QAOA circuit and achieve quadratic speedup in convergence. Since MCMC is used in
various areas such as statistical physics and machine learning, this paper represents an important step toward
realizing practical quantum advantage with currently available quantum computers through qe-MCMC.
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I. INTRODUCTION

The number of qubits in current quantum computers is lim-
ited. They hence lack the capacity to implement quantum error
correction, rendering them vulnerable to noise. These emerg-
ing systems are known as noisy intermediate-scale quantum
(NISQ) devices [1]. These devices have successfully demon-
strated the superiority of quantum computers over classical
computers in practice: quantum supremacy [2,3]. For practi-
cal applications, variational quantum algorithms (VQAs) [4]
emerge as a promising approach to utilize NISQ devices.
VQAs run parameterized quantum circuits (known as vari-
ational quantum circuits) on NISQ devices and optimize
parameters using an objective function which is expressed by
an expected value of an observable with respect to the output
distribution. This approach keeps the quantum circuit depth
shallow because the optimization is performed on classical
computers. Some algorithms based on the VQA framework
have been proposed for quantum chemical computation [5],
combinatorial optimization [6], and machine learning [7,8].

Unfortunately, existing VQAs have not yet demonstrated
a quantum advantage over the state-of-the-art classical
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approach for solving those problems. A possible weakness
of these algorithms is their use of the expected values of
operators. This requires us to run quantum circuits many times
to suppress statistical errors. Furthermore, since optimization
using the expected value is performed iteratively, the total
runtime can be prohibitively large [9–11].

In contrast, algorithms that utilize each sampling output
from quantum circuits may be more suitable for making use of
NISQ devices. For example, random circuit sampling used to
demonstrate quantum supremacy in NISQ devices is the task
of sampling from the output distribution of a random quantum
circuit [12] and is shown to be classically hard under a plau-
sible conjecture [13]. Sampling from instantaneous quantum
polynomial circuits [14] and random linear optical circuits
[15] is another famous example whose classical hardness is
strongly believed. These examples motivate us to develop
algorithms that fully exploit each sampling outcome from
NISQ devices.

The quantum-enhanced Markov-chain Monte Carlo
(qe-MCMC) method [16] is one of such algorithms, which
uses samples from a quantum circuit as the proposal
distribution in the Metropolis-Hastings method [17]. The
Markov-chain Monte Carlo (MCMC) method [17,18] is
a powerful technique for sampling from computationally
difficult distributions such as the Boltzmann distribution
and has many applications in statistical physics [19],
combinatorial optimization [20], and machine learning
[21]. The Metropolis-Hastings method, one of the MCMC
methods, consists of two steps: the generation of a sample by
the proposal distribution and the accepting or rejecting step
of this sample. Since the proposal distribution determines the
efficiency of the algorithm, the proposal distribution using
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a quantum computer, including those that are difficult to
simulate on classical computers, can improve the convergence
speed of MCMC over existing ones. The qe-MCMC method
employs a distribution defined by a classically intractable
quantum state as its proposal.

The circuit proposed in Ref. [16] is expressed as the
time evolution governed by a time-independent Hamiltonian.
However, when running it on quantum computers, the time
evolution must be decomposed by the Suzuki-Trotter expan-
sion [22], which increases the circuit depth when the evolution
time is long.

In addition, the quantum circuits and their parameters are
selected heuristically, and the strategy to construct a quan-
tum circuit that improves the convergence speed of MCMC
remains unclear.

In this paper, based on the qe-MCMC method, we propose
a MCMC method called quantum alternating operator ansatz
Monte Carlo (QAOA-MC). This algorithm uses a fixed-depth
parameterized quantum circuit in the form of the so-called
quantum alternating operator ansatz (QAOA) [23] as the pro-
posal distribution. We thereby aim to suppress the increase
in circuit depth regardless of the choice of parameters. Fur-
thermore, we construct a systematic strategy to optimize the
circuit to improve the convergence speed by examining the
relationship between the absolute spectral gap and the accep-
tance rate (AR) of the proposal distribution. More precisely,
we find that MCMC can be accelerated by minimizing AR
after properly limiting the parameter range and reducing the
number of circuit parameters. Through the numerical exper-
iments, we evaluate the performance of QAOA-MC through
the Boltzmann distribution for a spin-glass model, which is
one of the most challenging systems to simulate due to its
complex energy landscape and slow relaxation dynamics. As
a result, we show that QAOA-MC achieves a near quadratic
speedup in the convergence speed compared with the proposal
using the uniform distribution. Additionally, we demonstrate
QAOA-MC through the estimation of the average magnetiza-
tion in a spin glass consisting of 15 spins. Our results suggest
an acceleration of MCMC using NISQ devices and contribute
to promoting the use of current NISQ devices.

The rest of this paper is organized as follows. First, we
will explain MCMC in detail and introduce qe-MCMC in
Sec. II. Furthermore, we discuss the challenges of qe-MCMC.
Section III outlines our scheme: QAOA-MC. There, we pro-
pose utilizing a parameterized quantum circuit for MCMC
proposals and provide guidance on optimizing the circuit. In
Sec. IV, we describe the details of the numerical experiments
and their results. Finally, a conclusion and future perspectives
are presented in Sec. V.

II. PRELIMINARY

In this section, we provide an overview of MCMC and
introduce qe-MCMC.

A. MCMC

The MCMC method is a very powerful algorithm that can
sample according to an arbitrary probability distribution. This
algorithm starts with a state x = [x1, x2, . . . , xn] and changes

the state according to a Markov chain, which is a stochastic
process denoted by a transition probability P(x′|x). Espe-
cially an irreducible and aperiodic Markov chain has a unique
stationary distribution [24]. This indicates that, after large
enough transitions, the states x will converge to this station-
ary distribution, a feature exploited by the Markov chain for
sampling tasks. The subsequent challenge involves designing
a Markov chain, denoted by P(x′|x), so that its stationary
distribution matches the desired target distribution π (x). This
can be achieved straightforwardly by fulfilling the detailed
balance. The detailed balance is that, for any state transition
from x to x′, the following equation is satisfied:

π (x)P(x′|x) = π (x′)P(x|x′) ∀x, x′. (1)

The Metropolis-Hastings method [17,18] realizes a transition
that satisfies the detailed balance. In this method, a transition
from x to x′ with probability P(x′|x) is factored into a proposal
distribution Q(x′|x) and an acceptance probability A(x′|x) for
the proposal. The procedure is as follows: first, propose the
next state according to Q(x′|x). Secondly, decide whether to
accept the proposal based on the acceptance probability:

A(x′|x) = min

[
1,

π (x′)
π (x)

Q(x|x′)
Q(x′|x)

]
. (2)

If the proposal is rejected, the next state remains the same
as the state before the proposal. There are no restrictions
on the choice of Q(x′|x), but the ratio Q(x|x′)/Q(x′|x)
must be in a form that can be calculated efficiently. How-
ever, if Q(x′|x) = Q(x|x′), then Q(x′|x) does not require
explicit calculation, and the acceptance probability simplifies
to A(x′|x) = min{1, π (x′)/π (x)}. This approach is known as
the Metropolis method [18].

The Boltzmann distribution of classical Ising models is
one of the most representative distributions sampled using
MCMC. The Boltzmann distribution describes the thermal
equilibrium state of a system and is defined as

μ(x) = 1

Z
exp[−βE (x)], (3)

Z =
∑

x

exp[−βE (x)], (4)

where Z represents a partition function: the sum of the
Boltzmann factor exp[−βE (x)] for all states x, and β =
1/kBT is known as the inverse temperature, where T is the
temperature of the system. In this paper, the Boltzmann con-
stant is set to kB = 1, and E (x) is an energy function of the
system. The energy function of the classical Ising model is

E (x) = −
∑
〈 j,k〉

Jjkx jxk −
n∑

j=1

h jx j, (5)

where x j ∈ {1,−1} is a variable of the spin of the jth site.
In MCMC, the choice of proposal distributions is crucial,

as it determines the convergence speed. The simplest method
is to flip one spin in the configuration at random, which is
called the local update. This method can be applied to any
model and is easy to implement. However, it requires a large
number of transitions to distant configurations at Hamming
distance, increasing the probability of rejection in the process.
[This is particularly true for μ(x) at low T .] This problem can
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be avoided by flipping multiple spins at once. This proposal is
called the global update. One of the simplest global updates
is to propose transitions with equal probability for all possible
states. This proposal follows a uniform distribution, which we
refer to as the uniform update. A more sophisticated global
update is called the cluster update. In this update, we flip all
spins in a group (a cluster), which is determined according
to model-specific algorithms. The cluster update improves
computational time for certain models [25,26]. However, gen-
erating clusters using this method is not straightforward, and
it can only be applied to specific models.

Finally, we will now describe the convergence speed of
MCMC. The convergence speed of a Markov chain can be
represented by the eigenvalues of the transition matrix P
[27,28]. The transition matrix P is defined by a 2n × 2n

matrix, in which each element is the transition probability
P(x′|x). In this paper, we use a quantity called the absolute
spectral gap as the metric to evaluate convergence speed fol-
lowing Ref. [16]. The absolute spectral gap [24] is defined
as the absolute difference between the first two largest eigen-
values (λ1 and λ2, which satisfy 1 = λ1 � λ2) of P, which is
represented by

δ = 1 − |λ2|, (6)

where δ is in the range from 0 to 1. The larger the value of δ,
the faster the convergence speed becomes.

B. qe-MCMC

The qe-MCMC algorithm, developed by Layden et al. [16],
samples the Boltzmann distribution μ(x) for the classical
Ising model using NISQ devices. The qe-MCMC algorithm
uses a quantum circuit to sample a proposal distribution
to realize sampling μ(x). More concretely, the proposal is
executed by applying the quantum circuit U to |x〉, which
encodes x as a quantum state, and then measuring U |x〉 to
obtain x′. The proposal distribution is therefore given by
Q(x′|x) = |〈x′|U |x〉|2. At first sight, Eq. (2) seems to require
us to compute the exact value of Q(x′|x). The computation of
|〈x′|U |x〉|2 for a general quantum circuit U generally requires
exponential time and cannot be performed efficiently even
with quantum computers. However, we can avoid its compu-
tation by imposing the symmetry U = U � on the quantum
circuit, which leads to

Q(x′|x) = ∣∣〈x′|U |x〉∣∣2 = ∣∣〈x|U |x′〉∣∣2 = Q(x|x′). (7)

This eliminates the Q term in Eq. (2), simplifying it to
the Metropolis method. When the target distribution π (x) =
μ(x), Eq. (2) becomes A(x′|x) = min[1, exp{−�E/T }],
where �E = E (x′) − E (x) is an energy difference between
two configurations. It can be efficiently calculated on a classi-
cal computer so that the decision of accepting/rejecting the
proposal is done on classical computers. The quantum cir-
cuit is only used for the proposal x → x′. More importantly,
while VQAs necessitate multiple runs and measurements of
the quantum circuit to calculate the objective function and
optimize the circuit, qe-MCMC requires only a single run and
measurement of the quantum circuit for each MCMC step.

A variety of quantum circuits can be used in the qe-MCMC
algorithm if U = U � is satisfied. In Ref. [16], the time

evolution is used under a time-independent Hamiltonian H as
U , and the performance of this algorithm is evaluated. More
concretely, their choice of U is given by

U = exp(−iHt ), (8)

H = (1 − u)αHprob + uHmix, (9)

where

α = ||Hmix||F/||Hprob||F (10)

is the normalization factor for Hmix [‖A‖ f = tr(A†A)1/2 is the
Frobenius norm of a matrix A], and u ∈ [0, 1] is a parameter
that controls the relative weights of both Hmix and Hprob. The
Hmix and Hprob are given by

Hmix =
n∑

j=1

Xj, (11)

Hprob = −
∑
〈 j,k〉

JjkZ jZk −
n∑

j=1

h jZ j, (12)

where Xj and Zj are the Pauli operators acting on the jth qubit,
and Hprob is the target Hamiltonian from whose Boltzmann
distribution we wish to sample. The coefficients {Jjk} and
{h j} are defined by couplings and external fields of the target
Hamiltonian. The algorithm flow is shown in Algorithm 1.

ALGORITHM 1. Quantum-enhanced MCMC [16].

1: x = initial spin configuration
2: while not converged do
3: Propose jump (quantum step)
4: u = random.uniform(0.25, 0.6)
5: t = random.uniform(2, 20)
6: |ψ〉 = exp[−iH (u)t] |x〉 on quantum device
7: x′ = result of measuring |ψ〉 in computational basis
8: Accept/reject jump (classical step)
9: A = min(1, exp{[E (x) − E (x′)]/T })
10: if A � random.uniform(0, 1) then
11: x = x′

12: end if
13: end while

However, U in Eq. (8) must be implemented by the
Suzuki-Trotter decomposition, which increases the circuit
depth depending on the choice of the time parameter t . In
addition, the parameters (u, t ) are chosen randomly, and no
optimization method has been established. In this paper, we
aim to resolve these challenges.

III. QAOA-MC: MCMC WITH VARIATIONALLY TRAINED
QUANTUM SAMPLING

In this section, we propose using a parameterized quan-
tum circuit with a fixed depth as the proposal distribution of
qe-MCMC and optimizing this circuit based on the MCMC
AR. We call this method QAOA-MC. An overall view of this
algorithm is shown in Fig. 1.
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2. Estimate the objective function3. Optimize the quantum circuit

1. MCMC simulation with parameterized quantum proposal (qe-MCMC)

Propose a new state with Accept or reject the proposal

Metropolis-
Hastings

Accept Reject

MCMC samplesi = i + 1 

(b)(a)

FIG. 1. An overview of the quantum alternating operator ansatz (QAOA)-Monte Carlo (MC) algorithm. (a) Schematic illustration of the
QAOA-MC algorithm. (b) Parameterized quantum circuit used in the Markov-chain MC (MCMC) proposal. A structure of the circuit is inspired
by the QAOA but is designed to satisfy the symmetry constraint which quantum-enhanced MCMC requires regarding arbitrary parameters,
which is slightly different from the original QAOA.

A. Parameterized quantum circuit

We apply QAOA [23] to the structure of the circuit that
generates MCMC proposals. Concretely, this circuit is defined
as follows:

U = V (β,γ)�V (β,γ), (13)

where,

V (β,γ) = UC (γp)UB(βp) · · ·UC (γ1)UB(β1), (14)

UB(β ) = exp(−iHmixβ ), UC (γ ) = exp(−iαHprobγ ), (15)

and p is a hyperparameter that determines the depth of the
circuit. It is shown in Fig. 1(b). The circuit has 2p parameters:
β = {β1, · · · , βp} and γ = {γ1, · · · , γp}. Here, α, Hmix, and
Hprob are as defined in Eqs. (10)–(12), respectively. Note that
the circuit defined by Eq. (13) always satisfies U = U � by
construction.

The quantum circuit U in Eq. (13) has a similar structure
to Eq. (8). However, unlike the circuit implementation in
Eq. (8), this circuit is more NISQ friendly because the circuit
depth is fixed. The initial state |x〉 is expected to be updated
globally through Hmix, and Hprob is responsible for proposing
a transition respecting the energy landscape of the system.
The generated probability distribution Q(x′|x) includes those
that are classically difficult to simulate and may realize accel-
eration of the convergence compared with existing proposal
distributions.

B. Optimization of circuit

Next, we explain how to optimize the proposal distribution
generated by the proposed circuit [Eq. (13)] to achieve faster
convergence. One might think that we can use the absolute
spectral gap δ [Eq. (6)] which directly determines the conver-
gence speed as an objective function to maximize. However,
computing δ requires solving for the eigenvalues of a transi-
tion probability matrix P with a size of 2n × 2n for a system
of size n and is not feasible. The objective function must be a
quantity that reflects the convergence speed of MCMC and is

easily computable. We find that the MCMC AR can be used as
the objective function after some numerical experiments. The
AR [29] is defined as

AR =
∑
x,x′

π (x)Q(x′|x)A(x′|x). (16)

This formula includes π (x), making it difficult to calculate di-
rectly. However, it can efficiently be estimated by performing
MCMC on π (x). We estimate AR using samples generated by
M samples of MCMC as follows:

AR ≈ 1

M

M−1∑
j=0

A[x( j+1)|x( j)], (17)

where x( j) represents the state at the jth step of the MCMC.
After experimenting with the Boltzmann distributions for

various Ising models, we have discovered a relationship be-
tween AR and the absolute spectral gap δ. Figure 2 illustrates
this relationship in a typical Ising model instance. In this
experiment, we use a single-parameter circuit U (θ ) which is
defined by setting the parameters in Eq. (13) as

θ = β1 = · · · = βp = γ1 = · · · = γp.

Figure 2 shows that, although there is usually no correlation
between AR and δ, a correlation exists for small θ , where δ

increases as AR decreases. It continues until the AR reaches
a local minimum, which is often a local maximum value of δ.
Based on these observations, we optimize U (θ ) by searching
for a small θ that achieves the locally minimal AR.

There are several reasons for AR minimization in
QAOA-MC optimization. Firstly, the optimization process ini-
tiates near θ = 0. At this point, for the Metropolis-Hastings
method, the proposal distribution is maximized with AR =
1, yet it corresponds to the delta-function proposal which
proposes the same state as before, rendering it the most
inefficient proposal [30]. Consequently, in most instances,
directing the search toward minimizing AR tends to signifi-
cantly enhance convergence speed. Moreover, the practically
desirable AR values are generally considered to fall between
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AR local minimum
Our target’s gap

Maximum gap

FIG. 2. The relationship between the circuit parameter θ , acceptance rate (AR), and the absolute spectral gap δ in a typical instance. The
right figure is an enlarged image of the area around the smallest parameter θ∗ among those taking AR minima in the left figure. In many cases,
θ∗ gives a large absolute spectral gap. In these figures, we use a n = 5 fully connected Ising model [described by Eq. (5)]. {Jjk} and {hj} are
randomly generated from a standard normal distribution.

0.1 and 0.6 [31]. Given these observations, it is reasonable to
optimize the system with the aim of moderately reducing the
AR value. The reason AR local minima near the origin lead to
effective global convergence speed remains an open question.
While we expect that these considerations will remain valid
when multiple parameters are involved, such an optimization
becomes increasingly challenging as the dimensionality of the
parameter space grows. Therefore, in this paper, to maintain
simplicity, the single parametrization is employed. It is impor-
tant to note that our observation is given for the classical Ising
model; its applicability to other models remains open.

Finally, the overview of QAOA-MC is shown in Fig. 1(a).
We perform a search for the local minimum value of AR by
restricting the search range to θ ∈ (0, θmax]. Here, θmax is set
as a hyperparameter in our optimization method. We find that
a fixed θmax can be used for different model instances without
deteriorating the performance if we fix the depth parameter p
(see Appendix).

IV. NUMERICAL EXPERIMENTS

A. Average convergence speed

First, to investigate the performance of QAOA-MC, we
analyze the absolute spectral gap δ of the Boltzmann distribu-
tion μ(x) for fully connected Ising model instances of various
sizes n. The temperature of the Boltzmann distribution is set
to T = 0.1. We prepare 500 random spin-glass instances by
randomly choosing {Jjk} and {h j} from a standard normal
distribution and calculate δ for each μ(x). The average con-
vergence speed 〈δ〉 for a model size of n is obtained from these
500 δ values. This is done for each 3 � n � 10 to investigate
the relationship between n and 〈δ〉. We use the circuit in
Eq. (13) [Fig. 1(b)] with p = 5 and set the hyperparameter
θmax = 0.3 (see Appendix). In this numerical experiment, we
compare the QAOA-MC proposal to three proposal distri-
butions: local update, uniform update, and random circuit.
This random circuit corresponds to a distribution defined by
Eq. (13) with a randomly chosen parameter θ ∈ [0, 2π ] to
verify the improvement of convergence speed through opti-
mization. This numerical experiment is simulated entirely on
a classical computer using Python. Qulacs [32] is utilized to

simulate the quantum circuit. The optimization method used
is L-BFGS-B [33], which is implemented by SciPy [34]. AR
is calculated exactly by Eq. (16).

Figure 3(a) shows the relationship between n and 〈δ〉 ob-
tained from the numerical experiment. The points represent
〈δ〉 computed using 500 random instances at each value of
n. The error bars represent the standard deviations computed
over 500 δ values. Although 〈δ〉 decreases as n increases for
all methods, QAOA-MC shows a slower rate of decrease than
others and is superior in terms of 〈δ〉. We fit 〈δ〉 by 2−kn

with a parameter k and show the result as the straight lines
in Fig. 3(a). The approximation curves fit the data well except
for the local update. The fitting is calculated using the least
squares method. Figure 3(b) displays the scaling factor k for
these curves. Uncertainties in Fig. 3(b) are from the covari-
ance matrices obtained in the fitting process. QAOA-MC has a
scaling factor k ∼ 1

1.89 times that of the uniform update, which
represents an approximately quadratic acceleration concern-
ing 〈δ〉. On the other hand, the results of the random circuit
are almost identical to those of the uniform update, suggesting
that this acceleration is due to the optimization of the circuit.

Although QAOA-MC optimizes a parameter based on the
observation that a local minimum of AR often gives a local
maximum of δ, it does not always hold for all instances. To
see the effect of this imperfect assumption, we next show the
percentage of instances for which QAOA-MC surpasses δ of
other methods for each size n in Fig. 3(c). The percentage
of instances in which QAOA-MC is dominant increases with
increasing n. For n � 7, QAOA-MC outperforms the others
in >90% of the 500 instances, making it the best-performing
proposal in this experiment. This result indicates that our
optimization method, which searches for a local minimum of
AR for small values of θ , works for many instances.

B. Optimization with MCMC estimator of AR

We now examine the impact of MCMC estimation of AR
on the performance of QAOA-MC. Since QAOA-MC must
use the MCMC estimate for obtaining AR in practice, the
objective function contains statistical errors that could ad-
versely affect the convergence performance. We analyze the
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(a) (b)

(c)

FIG. 3. Numerical simulation results for the absolute spectral gap δ of the Boltzmann distribution at T = 0.1 for fully connected Ising
model instances. (a) Relationship between model size n and average convergence rate 〈δ〉. “QAOA-MC (unoptimized),” where QAOA-MC
stands for quantum alternating operator ansatz Monte Carlo, uses the randomly chosen parameter θ ∈ [0, 2π ] in the parameterized quantum
circuit [Fig. 1(b)]. (b) The value of the scaling factor k obtained by fitting 〈δ〉 with 2−kn. (c) Percentage of cases where QAOA-MC surpasses
other methods in convergence speed δ.

relationship between the number of samples used in AR es-
timation and the performance. The numerical experiments
performed here are under the same setup as discussed in
Sec. IV A unless otherwise stated. AR is estimated from M
samples, which are obtained through MCMC as described
by Eq. (17). We set M to 8, 32, 128, and ∞ [where AR is
calculated directly from the target distribution via Eq. (16)]
and optimize θ . Note that, in the AR estimation, the MCMC
simulations start from a random initial configuration, and no
postprocessing techniques, such as burn-in, are employed.
Then using the optimized θ , we calculate the absolute spectral
gap δ for the same instances used in Sec. IV A. When using
MCMC estimators, the L-BFGS-B method cannot be used as
the optimization method because the objective function con-
tains statistical errors. Here, we employ the bisection method
for optimization, taking advantage of the fact that we only
have a single parameter θ . In the numerical experiments, we
used Brent’s method [35], which is implemented by SciPy.
The circuit and the hyperparameter settings are the same as in
Sec. IV A.

Figure 4 displays the relationship between M and the
resulting 〈δ〉. Figure 4 shows the scaling factor k for the
approximate curves obtained by the same fitting as Fig. 3. As
M becomes smaller, the standard deviation of 〈δ〉 increases,
and the scaling factor k deteriorates at the same time. This is
because decreasing M results in a less accurate AR estimate.
It then leads to poor optimization, the result approaching
random outcomes. On the other hand, if M is large enough,
Brent’s method can be used to achieve a performance that is
nearly the same as that attained by the L-BFGS-B method.
Note that the size of a sufficient M in QAOA-MC is much less
than the number of measurements used for a single evaluation
of an expected value in VQAs. Additionally, once the param-
eters are optimized, only a single-shot measurement from the
optimized circuit is required for each step of the MCMC.

C. Magnetization estimation

Finally, we conduct numerical experiments of QAOA-MC
by estimating a physical quantity, the average magnetization

FIG. 4. (Upper) Relationship between model size n and av-
erage convergence rate 〈δ〉 toward the number of Markov-chain
Monte Carlo (MCMC) samples M using each estimation of the
acceptance rate (AR). The dotted line represents the “QAOA-MC
(unoptimized),” where QAOA-MC stands for quantum alternating
operator ansatz Monte Carlo, result in Fig. 3(a). (Lower) The value of
the scaling factor k of the approximate curve 〈δ〉 ≈ 2−kn in QAOA-
MC, as M varies.
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: spin  

(a) (b)

True value

FIG. 5. Estimation of the average magnetization 〈m〉 using the Markov-chain Monte Carlo (MCMC) method. (a) (Top) A graph of a n = 15
fully connected instance used in this experiment. (Bottom) Histogram of the Boltzmann distribution for the instance. The horizontal axis is
sorted in ascending order of energy Ei (E0 � E1 � · · · � E2n−1). (b) (Top) The relationship between the number of MCMC steps and the
estimated value m̄. (Bottom) The absolute difference between the mean of the estimated value m̄ and the true value 〈m〉.

〈m〉 of the Ising model. The average magnetization, de-
fined in the context of the Boltzmann distribution μ(x), is
expressed as

〈m〉 =
∑

x

μ(x)m(x), (18)

where m(x) = 1
n

∑n
j=1 x j denotes the magnetization of a state

x. In this numerical experiment, we estimate the average mag-
netization of an n = 15 fully connected spin-glass instance
[Fig. 5(a)] with respect to the Boltzmann distribution at T =
1.0. As shown in Fig. 5(a), the Boltzmann probabilities for
the ground, first, second, and third excited states (E0, E1, E2,
and E3) are ∼45.0, 39.3, 8.6, and 4.8%, respectively, resulting
in a multimodal distribution with large probabilities corre-
sponding to several low-energy configurations. Notably, this
instance features several energy minima, each separated by
considerable Hamming distances. As a result, MCMC for
such an instance faces significant challenges in transitioning
frequently between these distant energy minima, a task that
proves difficult for traditional classical proposal distributions.

We simulate not only an ideal quantum computer but
also examine the effects of noise on the convergence per-
formance of MCMC. Various implementation methods for
quantum computers exist, and noise models can vary signif-
icantly among them. For our simulations, for simplicity, we
employ one of the most commonly employed noise model,
depolarizing error, and observe how noise impacts the MCMC
convergence performance. For instance, a single-qubit gate is
followed by a single-qubit depolarizing error:

D(ρ) = (1 − pe)ρ + pe

3
(XρX + Y ρY + ZρZ ). (19)

Here, pe denotes the gate error probability, with Pauli opera-
tors X , Y , and Z acting with equal probability. The two-qubit
gate error is also similarly introduced by using the two-qubit
depolarizing noise with error probability pe. While actual de-
vices encounter various other types of noise, in this paper, we
simplify by not delving into additional details. In this exper-
iment, we set the error probability to pe = 1.0 × 10−2, 5.0 ×
10−3, and 1.0 × 10−3, which is feasible with current quantum
computers.

In the experiment, optimization is conducted as previously
described, utilizing AR estimated from MCMC samples. We
employ Brent’s method for this optimization. The number
of samples used for AR estimation is set at M = 1000. All
optimization processes are computed through noise-free sim-
ulations, while noise simulations are conducted on the MCMC
using the optimized parameter θ∗. The MCMC simulations
begin from a spin configuration randomly selected according
to a uniform distribution, and each of the 10 simulations runs
for 10 000 steps, with each simulation starting from a new
initial configuration.

Figure 5(b) presents the MCMC estimation results for the
average magnetization 〈m〉. The solid lines depict the average
of running averages m̄, derived from 10 independent Markov
chains at each step. The shaded bands around these lines
indicate their standard deviations, illustrating the variability
among the chains. The dotted line in Fig. 5(b) represents
the true value of 〈m〉, which has been calculated from the
target distribution μ(x). It is clear from the QAOA-MC results
that the running average m̄ converges more rapidly to the
true value than other methods, under both noisy and noise-
free conditions. Additionally, the standard deviation of m̄
within this algorithm remains low and stable throughout the
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simulations. In the presence of noise, observations indicate
that the convergence speed decreases with the increasing error
probability pe. Simultaneously, it is also observed that, when
pe is sufficiently small, the advantage over classical proposals,
such as the uniform proposal, remains. In practical devices,
there may be additional factors not accounted for in this ex-
periment that could adversely affect the performance of the
algorithm. Notably, the presence of biased noise could dis-
rupt the symmetry of the circuit. Nevertheless, this issue can
be mitigated through the use of a noise-averaging technique
known as Pauli twirling [16,36–38]. While we do not consider
such factors in this experiment, and the implementation of
twirling could potentially further impact performance, it is
anticipated that this method would still substantially improve
upon traditional classical proposal distributions.

V. CONCLUSIONS

In this paper, we proposed QAOA-MC, which uses samples
from quantum circuits in the form of QAOA as the proposal
for MCMC. Quantum computation is used only for proposing
transitions, and the other parts of the algorithm are executed
on classical computers, which makes the algorithm feasible on
current NISQ devices. We introduced the use of a QAOA-type
circuit to realize the algorithm with shallow circuits. Fur-
thermore, we showed that the convergence speed of MCMC
can be improved by finding a local minimum of the AR. As
shown in numerical experiments, QAOA-MC confirmed an
approximately quadratic speedup in the absolute spectral gap
for the Boltzmann distribution in spin glass, when compared
with the uniform distribution.

Some future directions are in order. First, the circuit
in Fig. 1(b) has multiple parameters that could be further
tuned to achieve a better proposal distribution. However,
the optimization of multiple parameters using AR did not
work in our trials. Building more advanced optimization
methods remains for possible future work. Additionally,
the results of the numerical experiments in this paper are
based on the assumption of a quantum computer operating
under an ideal or simplified noise model. It is unclear
whether the acceleration can be achieved on real NISQ
devices. If this advantage can be maintained despite the noise,
QAOA-MC has the potential to become a practical algorithm
for current quantum computers. This algorithm leaves much
room for improvement; in any case, it represents a step
toward implementing MCMC with quantum computers and
facilitates the use of current NISQ devices.
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APPENDIX: THE CHOICE OF HYPERPARAMETER θmax

In this section, we analyze the distribution of parameters
θ∗ that give the locally minimal AR for various instances to

FIG. 6. Relationship between θ∗ and n calculated by 500 random
instances.

determine the hyperparameter θmax. We define θ∗ as θ that
achieves the local minimum of AR, satisfies θ∗ > 0, and is
closest to 0. In this paper, we use the average of θ∗ in various
instances as a hyperparameter θmax.

1. Analyzing θ∗ vs instance

Here, θ∗ varies with specific model instances. To examine
the distribution of θ∗ among various instances, we generate
500 instances [Eq. (5)] with random {Jjk} and {h j} for each
3 � n � 10 and determine θ∗ for each of them. In this numer-
ical experiment, we use the circuit of Fig. 1(b) with p = 5. The
target distribution is the Boltzmann distribution with T = 0.1
[Eq. (4)]. The result is shown in Fig. 6. The dots denote the
average 〈θ∗〉 of the 500 instances for each n, while the bands
represent the corresponding standard deviations. It can be seen
that the average of 〈θ∗〉 remains ∼0.3 (indicated by a dotted
line in Fig. 6) irrespective of n. We, therefore, set θmax = 0.3
in the numerical experiments presented in the main text.

2. Analyzing θ∗ vs p

We investigate the relationship between p and θ∗. From
Appendix 1, we see that θmax can be set at the same value,
regardless of model instances. However, this is not the case

FIG. 7. Relationship between θ∗ and p for each of the 50 random
instances.
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when p varies. We prepare 50 random instances for the spin
glass [Eq. (5)] for n = 5, vary the p from 1 to 10, and calculate
θ∗. The results are shown in Fig. 7. The dots denote the
average θ∗ of the 50 instances for each p, while the bands
represent the corresponding standard deviations. Here, 〈θ∗〉 is

approximately proportional to 1/p; the curved line in Fig. 7
represents a/p with a = 1.455 58(25) which is obtained by
using the least squares method. When varying p, it seems ap-
propriate to select θmax according to the fitting curve displayed
in Fig. 7.
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