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Continuous operation of large-scale atom arrays in optical lattices
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Scaling the size of assembled neutral-atom arrays trapped in optical lattices or optical tweezers is an enabling
step for a number of applications ranging from quantum simulations to quantum metrology. However, preparation
times increase with system size and constitute a severe bottleneck in the bottom-up assembly of large ordered
arrays from stochastically loaded optical traps. Here we demonstrate a method to circumvent this bottleneck
by recycling atoms from one experimental run to the next, while continuously reloading and adding atoms
to the array. Using this approach, we achieve densely packed arrays with more than 1000 atoms stored in an
optical lattice, continuously refilled with a 3.5 s cycle time and about 130 atoms reloaded during each cycle.
Furthermore, we show that we can continuously maintain such large arrays by simply reloading atoms that are
lost from one cycle to the next. Our approach paves the way towards quantum science with large ordered atomic
arrays containing thousands of atoms in continuous operation.
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I. INTRODUCTION

Atom arrays stored in optical lattices or optical tweezers
are a promising platform for quantum simulation, quantum
computation, and quantum metrology [1–7]. A usual experi-
mental sequence to control atoms in optical lattices or optical
tweezers starts with the preparation of an ensemble, followed
by the simulation, calculation, or metrology sequence. Finally,
a destructive measurement of the state of the system is per-
formed that typically renders a recycling of atoms from one
cycle to the next impossible. The subsequent preparation of a
fresh ensemble of atoms requires significantly more time than
the actual experimental sequence, leading to a dead time that
becomes significantly longer for large arrays. Furthermore, to
date, the largest sorted array sizes that have been realized in
this way contain a few hundred atoms [7–9]. This naturally
calls for a different mode of operation in which only the
lost atoms are prepared and replaced in each cycle. While
recently demonstrated in a seminal work in bulk gases [10],
a reuse of atoms and cyclic operation with microscopic con-
trol are challenging and require nondestructive detection in
combination with resorting to replenish lost atoms [11,12].
High-fidelity and low-loss detection of single atoms is now
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routinely achieved for several species in optical lattice and op-
tical tweezers [13–18]. Although first steps towards extended
operation of atom arrays have recently been demonstrated in
small-scale systems with finite reservoirs [19,20], truly con-
tinuous operation requires schemes for reloading new atoms
that do not affect the atomic array already present in the
system. Effective strategies to “hide” stored atoms during the
reloading of new atoms have recently been demonstrated in
dual-element arrays of two alkali-atom species [21,22], where
atoms of one species are only minimally affected by forming
a magneto-optical trap (MOT) of the other element, thereby
enabling continuous operation with arrays of each element
prepared in alternation. An alternative route is offered by
utilizing the more complex level structure available in alkaline
earth(-like) atoms such as strontium or ytterbium. Here two
separate optical series with different total spin and metastable
states exist, which has proven useful for a variety of applica-
tions in combination with microscopic control [20,23–33]. In
particular, the metastable states can also be used to effectively
hide stored atoms while forming a MOT for the ground-state
atoms. Although this level structure has been shown to be well
adapted for the preparation of one-dimensional atomic arrays
with near-unity filling based on dark-state enhanced loading
combined with site control using an acousto-optic deflector
(AOD) [32], continuous loading has so far remained an elusive
goal.

Here we show a scheme that combines several of the
foregoing aspects to realize continuously operated large-scale
atom arrays with atom numbers continuously exceeding 1000
atoms and reaching up to 1247 atoms. Our scheme relies on a
continuously operated storage zone in an optical lattice, which
is periodically replenished from a loading zone and a MOT.
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FIG. 1. Concept and demonstration of continuous operation. (a) Main features of our experimental machine. We use a 1040 nm stationary
bow-tie optical lattice (red beams) as our physics array (gray grid with ax = 579 nm and ay = 1187 nm). We subdivide the accessible area into
a loading zone and a storage zone. The loading zone is overlapped with a stationary tweezer array at 520 nm. Atoms are transported with AODs
that steer a single beam in the lattice plane from the loading zone to the storage zone. (b) Experimental sequence of our continuous loading
scheme. (c) Exemplary single shots at various instances in time of an iteratively assembled array exceeding 1000 atoms on average. Bottom
graph: Atom number of the continuously operated array (blue) and atom number in the loading area (red). Inset: Zoom-in of the atom number
in the build-up phase.

Using a bichromatic combination of loading and storage ar-
rays, we achieve excellent spatial control over the loading
zone, strongly suppressing loading of sites in the storage reg-
ister. Loading about 130 new atoms for each cycle, we grow
and then continuously maintain an array of atoms in an optical
lattice with more than 1000 atoms, which is about eight times
larger than the number of atoms loaded during each cycle.
Our results mark a paradigm shift in the operation of quantum
simulators and quantum computers based on neutral atoms to
iteratively assembled and continuously operated arrays.

II. ASSEMBLY OF LARGE ARRAYS

The architecture of our apparatus for continuous operation
is shown in Fig. 1 and contains the folded optical lattice at
a wavelength of 1040 nm as well as a tweezer array at a
wavelength of 520 nm, both described in detail in our previous
work [16]. We operate the experiment in one region spanning
about 130 µm × 130 µm, corresponding to the area that the
AODs can currently address. This region is centered above
our objective lens and contains about 24 000 trapping sites in
a bow-tie lattice. We divide this lattice region into two subre-
gions: a loading zone and a storage zone; see Fig. 1(a). The
loading zone of the lattice is replenished from a reservoir of
323 tweezers, which are overlapped in three dimensions with
the lattice sites. These tweezers are themselves loaded with
88Sr atoms from a dual-stage MOT, on the broad 1S0 − 1P1

transition at 461 nm and on the narrow-line 1S0 − 3P1 transi-
tion at 689 nm [34]. For high-fidelity detection, we transfer
the atoms from the tweezer array into the optical lattice
[16,17,27,35] and perform fluorescence imaging therein. Our

cyclic sequence is presented in Fig. 1(b) and has a cycle time
of 3.5 s, including data processing.

In the first iteration, we load in average NL atoms from the
MOT into the tweezer array. Then we transfer the atoms in the
lattice and perform a high-fidelity and low-loss imaging step
[image 1 in Fig. 1(b)] to detect the position of loaded atoms
in the loading zone [16]. Detected atoms are subsequently
displaced on demand from the loading zone to the storage
zone by a moving tweezer controlled by crossed AODs. After
resorting, we take an image to benchmark the resorting step.
In future implementations, this additional image can be omit-
ted [image 2 in Fig. 1(b)]. Afterwards, we shelve the atoms
in the storage zone to the long-lived metastable 3P0-state and
subsequently refill the tweezer array in the loading zone from
a MOT created at the same location overlapped with our
lattice. Shelving in the magnetically insensitive clock state
protects the stored atoms from loss occurring during the MOT.
A subsequent fluorescence image [image 1 in Fig. 1(b)] of
both the storage and the loading zone depumps the atoms in
3P0 back to the ground state 1S0, revealing unoccupied sites
in the storage zone that need to be refilled. The possibility of
reusing atoms across experimental runs results in an important
scaling advantage for the achievable array sizes. The largest
array size is reached when the number of atoms lost during
the previous cycle is precisely balanced by the number of
atoms replenished in the current cycle. This condition limits
the maximally reachable atom number to N∞ = βNL, where
the amplification factor

β = 1 − αr

αc
(1)
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is proportional to the atom move success probability 1 − αr

and inversely proportional to the cycle loss αc, which quanti-
fies the fraction of stored atoms that are lost from one cycle to
the next. The effective number of atoms that can be added
to the array in each cycle is NL,eff = NL(1 − αr ), which is
smaller than the loaded atom number due to atom loss during
the transport. In our work, αr ≈ 30%, resulting from atom
transport over long distances. For typically achieved cycle
losses in this work (αc ≈ 10%), the saturated atom numbers
already significantly exceed the number of loaded atoms per
cycle NL; see Fig. 1(c). We note that, in principle, the loading
zone could be fully overlapped with the storage zone by inter-
leaving loading sites and storage sites. Such a configuration
would be beneficial, since it increases the available space for
the storage area and shortens the move distance between the
loading and storage zone. However, in our configuration, the
tweezer light at 520 nm induces considerable loss of atoms
stored in the 3P0 states and prevents us from overlapping
the two zones. We find evidence that photoionization of the
3P0 state is responsible for this loss (see Appendix A [29]),
which could be mitigated in the future at alternative tweezer
wavelengths, such as 813 nm. In the following, we perform a
detailed characterization of all steps involved in the continu-
ous operation of our arrays.

III. RELOADING THE RESERVOIR

An important step in the cyclic operation of the array con-
cerns the transfer of atoms from 1S0 to 3P0 before reloading
the reservoir. Population shelving is currently implemented
via a combination of light at 689 nm and 688 nm driving
1S0 →3 P1 →3 S1. An additional repumper beam at 707 nm
renders the 3P0 state the only dark state; see Fig. 2(a). The
fraction of shelved atoms reaches 97% after 10 ms of pump-
ing, as shown in Fig. 2(c). We note that a higher shelving
fraction could be achieved by a combination of coherent
shelving and incoherent pumping, which would directly re-
duce our cycle loss [36]. At our lattice trap depth of 200 µK,
the lifetime of atoms in 3P0 state is 13 s; see Fig. 2(d). The
lifetime significantly exceeds the total duration during which
the shelved atoms stay in 3P0 of 115 ms in our sequence, such
that holding of shelved atoms by itself induces an insignificant
loss. However, we observe a small increase of the shelved
atom loss induced by the presence of the MOT, resulting in a
total of 6% shelving loss during the 3P0 preparation and atom
reloading steps; see Fig. 2(d) inset. Importantly, we make our
MOT without a repumper at 679 nm, which would otherwise
deplete the shelved atoms in 3P0. This considerably reduces
the number of loaded atoms. Still, with optimized parameters,
we obtain a filling fraction as high as 40% atom loading prob-
ability in the loading tweezer-lattice register sites after parity
projection. An additional consequence of the absence of a 3P0

repumper is the decay of a small fraction of atoms into 3P0

via 1D2 →3 P2 →3 S1, where they become indistinguishable
from the shelved atoms in the stored array. To counteract this
effect, the 1D2 state could be repumped to higher-lying 1P1-
states on transitions either at 716 nm or 448 nm [37], which
would increase the MOT loading fraction and remove defects
originating from accidentally shelved atoms in 3P0 during the
MOT stage.

(a) (c)

(b) (d)

FIG. 2. Shelving and trap-selective heating. (a) Energy level of
88Sr. (b) Resulting filling after a trap-selective 689 nm Sisyphus-
heating pulse applied to atoms trapped in the lattice (blue) and in
the combined tweezer-lattice potential (red) as a function of the
applied frequency detuning. The trace is normalized to the loading
fraction without heating pulse for the lattice and normalized to our
tweezer number (323) for the combined potential. An extinction of
5 × 10−4 for ground-state lattice atoms is achieved when choosing a
frequency detuning of 1.28 MHz (green dashed line), while the atoms
in the combined tweezer-lattice potential remain almost unaffected
with a loading fraction of 40%. (c) Round-trip shelving infidelity
as a function of shelving duration, reaching 3% (green dashed line)
after 10 ms. (d) Shelving lifetime in our lattice at 200 µK, reaching
13 s, extracted from an exponential fit to the last four data points
(green dashed line). Inset: Zoom-in of the hold time region below
one second. The red dot indicates our actual recovered fraction when
a MOT is created within the hold time.

Importantly, the MOT loads the entire lattice, including
the loading zone and the storage zone. To remove ground-
state atoms from the lattice everywhere except from the sites
overlapped with the tweezer array in the loading zone, we
subsequently apply an essential trap-selective heating pulse.
This heating pulse is optimized to remove ground-state atoms
in the lattice, while leaving both ground-state atoms in the
tweezer array and 3P0 atoms in the lattice intact; see Fig. 2(b).
We do not observe any additional loss of shelved atoms
resulting from our heating pulse within error bars of our
measurement. The red data point in Fig. 2(d) inset includes
the combined effect of the MOT overlapping with the stor-
age array and the heating pulse on the stored atoms in 3P0,
and shows only a slight reduction of ≈3% for both effects
combined, which we mostly attribute to the overlapping MOT.
To realize this selective removal of atoms, we use a beam at
689 nm tuned to a repulsive Sisyphus heating regime. This
heating feature is unique to transitions narrow enough to
spatially resolve the differential trap depth between the 1S0

state and the 3P1 state. For the chosen detuning, a net kinetic
energy gain is realized between subsequent excitation-decay
cycles, and thus leads to a fast, highly parallel, and well-
controllable heating mechanism of ground-state atoms in the
lattice. The atoms in the loading zone experience an additional
light shift from the combined bichromatic lattice-tweezer
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potential which shields them from the heating resonance, and
thus they remain trapped; see Fig. 2(b). Consequently, our
selective heating pulse effectively removes all atoms in 1S0

that experience only the lattice potential with an extinction
of more than 5 × 10−4. This prevents uncontrolled storage
of atoms directly loaded from the MOT in the storage zone.
The heating pulse is performed using a trap depth of 200 µK
and 430 µK for the lattice and the tweezers, respectively,
and using an intensity of 40 mW/cm2 for the heating beam.
Alternatively, site-selective parallel addressing can also be
used to hide already loaded sites from being further loaded,
as effectively shown in one dimension [32], with direct ex-
tensions using state-selective parallel addressing in higher
dimensions [38].

IV. RESORTING IN AN OPTICAL LATTICE

The next important step in our cyclic sequence is the rear-
rangement of newly loaded atoms to vacancies in the target of
the sorted array. We perform such moves using a pair of AODs
similar to previous work [9,17,31,39]. In contrast to the case
of optical tweezer arrays, atoms moving through lattice sites
experience a large periodic trap depth modulation, potentially
leading to strong heating. In the special case of a bow-tie
lattice, this modulation can be strongly reduced by moving
atoms in between the lattice sites, thereby ameliorating any
heating effects; see Fig. 3(a). In line with this expectation,
we directly observe that long moves in between the lattice
sites exhibit a significantly higher success probability than
moves through lattice sites; see Fig. 3(d). In this measurement
and during the continuous loading operation, all moves are
performed with a peak velocity of 54 µm/ms. In particular, for
the long moves considered in this work, movement between
sites is crucial. Our lattice has spacings between sites of ax =
579 nm and ay = 1187 nm along the x and y axis, respectively,
and is therefore particularly suited for horizontal moves; see
Fig. 3(a). To optimally leverage the favorable geometry of
our lattice, our resorting procedure has been designed to
predominantly move between lattice sites with a five-stroke
move pattern; see Fig. 3(b). The first stroke removes the atom
out of its lattice site and brings it between lattice sites. The
second stroke displaces the atom outside of the loading area.
The third and fourth strokes adjust the vertical (y axis) and
horizontal (x axis) positions, respectively, to almost match that
of its final destination, and finally the last stroke inserts the
atom in its final location; see Fig. 3(b). Each move consists
of (1) a slow ramp-up of the moving tweezer potential depth
to about ten times the lattice depth to extract the target atom
out of the lattice, (2) a sequence of parameterized frequency
chirps encoding velocity profiles and turns, and (3) a final
ramp-down of the tweezer depth to release the atom in the
desired target lattice site in the storage zone. The initial and
final intensity ramp durations are 400 µs each, to ensure adia-
baticity [40]. No cooling is present during the entire resorting
operation.

The imperfect resorting process affects continuous load-
ing in two ways: First, it reduces the effective atom number
NL,eff that can be maximally added to the storage array in
each cycle when atoms are lost during transfer. Second,
by traveling at a close distance to an already stored atom,

(a) (b)

(c) (d)

FIG. 3. Atom rearrangement. (a) Upper graph: Energy landscape
of our folded lattice. Lower graph: Reduction of the trap depth
modulation experienced by an atom traveling between the lattice sites
(blue line in the upper graph), as compared to through the lattice
sites (red line in the upper graph). (b) Resorting algorithm favoring
horizontal moves along corridors between the lattice sites. (c) Atom
loss probability as a function of the distance between an occupied
lattice site and the traveling resorting tweezer. Disturbance leading
to atom loss are observed below 1 µm of distance. (d) Atom move
success probability 1 − αr as a function of the traveling distance,
when the moves are performed through the lattice sites (red points)
and when they are performed between the lattice sites (blue points).
The atom move success probability is defined as the probability of
not losing the atom during the entire move operation.

the unintended perturbation of the trapping site can result
in a loss of the stored atom and thus directly increases
the cycle loss. We observe a corresponding limit for the
minimum distance between a stored atom and the trajec-
tory of the moving tweezer, which is approximately equal
to 1 µm; see Fig. 3(c). This minimum distance sets a limit
for the minimal achievable spacing between atoms in the
storage register. The total resorting duration for each cycle
is about 700 ms. This duration could be drastically reduced
by implementing a more complex parallel resorting scheme
[11,17,41,42].

V. CONTINUOUS OPERATION

Finally, combining all steps, we demonstrate the ability to
build and maintain a large-scale, densely packed tweezer array
for more than an hour; see Fig. 4. After the initial loading
stage, the number of atoms stored in the array remained above
1000 atoms for most of the operation time. From the atom
loss within and across different cycles, we can extract both
the cycle loss αc, as well as the resorting loss αr that enter in
a simple model for the build-up and saturation of the stored
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FIG. 4. Characterization of continuous operation. (a) Number of atoms in the storage area as a function of cycles. After 80 cycles, we
disable the resorting and let the array naturally decay. The black dashed line is our model from Eqs. (2) with measured average parameters,
while the red line is an exponential fit that enables us to measure the cycle loss αc (neglecting the influence of resorting in this case).
(b) Evolution of the loading fraction (orange triangles), resorting move success probability (red squares), shelved survival fraction (blue
circles), and stored survival fraction during resorting (green pentagons) as a function of cycles. (c) Single-shot image of the storage array
containing 1230 atoms. (d) Average image of the storage array. (e) Continuous operation of the array for more than 1.5 h.

atom number Ni at each cycle i,

Ni+1 = (1 − αc)Ni + (1 − αr ) · NL, i = 0, 1, . . . ,

N∞ = (1 − αr )NL

αc
. (2)

The dashed line in Fig. 4(a) is computed from these equa-
tions using time-average values of the measured cycle loss
and resorting loss, and is in excellent agreement with the mea-
sured atom number. Four parameters of interest are extracted
from the occupation matrices and plotted in Fig. 4(b): (1) the
loading fraction, defined as the number of loaded atoms in
the loading zone NL normalized to total number of tweezer
sites (323); (2) the resorting move success probability 1 − αr ,
defined as the number of loaded atoms that are successfully
moved into the storage zone, normalized to the total loaded
atom number NL; (3) the shelved survival fraction, defined as
the number of atoms that survive the shelving, holding and
repumping operation between two cycles, normalized to the
total atom number in the storage zone; and (4) the stored atom
survival fraction during resorting, defined as the number of
atoms in the stored array that survive the resorting procedure
without being moved themselves, normalized to the total atom
number in the storage zone. We observe that, in our system,
both the shelved survival fraction and the stored atom survival
fraction during resorting contribute equally to the cycle loss.
After 80 cycles, we disable the resorting operation and let
the stored array decay. Subsequently, we observe that (1) the
loading curve rises, since the loaded atoms are no longer
removed and accumulate in the loading zone and (2) the

stored atoms survival fraction during resorting rises, since no
resorting operation disturbs the stored array.

In order to investigate the observed fluctuations on top of
the steady-state atom number, a detailed correlation analysis
relating the measured final atom numbers to the extracted cy-
cle loss, the resorting infidelity, and the reloaded atom number
directly reveals that the fluctuations of the final atom number
are most strongly correlated with the cycle loss; see Ap-
pendix B. Such a behavior is expected from the inverse scaling
of steady-state atom number with cycle loss and highlights the
large potential gains in a further optimized sequence.

VI. CONCLUSION AND OUTLOOK

To conclude, we have presented a first realization of
densely packed, continuously loaded atom arrays stored in
an optical lattice. Prospectively, we expect that our technique
could allow for the assembly of significantly larger atom ar-
rays than what we have demonstrated. One improvement of
our experiment would be to move the position of the MOT
slightly away from the storage array. This would mitigate
the need to empty the storage array from accidentally loaded
atoms, enable parallel MOT and the storage array operation,
and reduce the small effect of unwanted off-resonant scatter-
ing from MOT light on the storage atoms further. In previous
work, the efficiency of shelving atoms in 3P0 has been shown
to reach 99.7% [36]. For a clock-state lifetime of the order
of 100 s with a reduced lattice potential [43] and a typical
MOT stage of 100 ms duration, the shelved atoms loss during
the MOT stage could be reduced to 0.1%, leading to a total

033104-5



FLAVIEN GYGER et al. PHYSICAL REVIEW RESEARCH 6, 033104 (2024)

shelving loss as low as 0.4%. Assuming our measured vacuum
lifetime of 273 s, the typical vacuum-limited loss for a 1-s
cycle time experiment is roughly also equal to 0.4%, leading
to a total cycle loss of about αc ≈ 0.8%. Together with an
atom loss due to resorting moves αr that could be reduced to
≈2% [17], Eq. (1) predicts the achievable amplification factor
to reach β > 100. With such a large amplification, one could
reach about 10 000 atoms in a single array with 100 loaded
atoms at each cycle, provided that a sufficient area for storage
and high-fidelity detection is available [16]. Deterministically
loaded arrays [24,44] or directly loaded lattices [16] as load-
ing zones could further boost the achievable steady-state atom
numbers potentially by orders of magnitude. We want to em-
phasize that, compared to directly assembling such a large
number of atoms in a single experimental cycle, continuous
loading has the benefit of moving only the newly loaded
atoms for each cycle, thus reducing both move-induced losses
as well as the resorting time overhead by the amplification
factor β. We foresee our large-scale continuously operated
arrays to find applications in quantum simulation, quantum
optics, and quantum metrology. For example, we anticipate
that continuously loaded arrays can be utilized as light-matter
interfaces based on subwavelength ordering [45,46], where
lost atoms can be continuously replenished from the loading
area. For quantum metrology, in particular optical clocks,
our large arrays enter an interesting regime of large-scale
but still microscopically adressable systems that bridge the
gap between smaller [23], potentially quantum-enhanced [31]
ensembles and large-scale, highly precise classical ensembles
without microscopic control [47]. Moreover, maintaining co-
herence during the reloading stage, for example, for atoms
placed in a specially shielded physics array, would open up
exciting perspectives for both quantum metrology or quan-
tum information tasks [20,22]. We foresee the possibility
to use qubit encodings in the metastable manifold, such as
the recently demonstrated fine-structure qubit encoding in
strontium [48,49], in combination with dynamical decoupling
similar to recently demonstrated dual-element realizations
[22], motional qubit encodings [50], or nuclear-spin qubit
encodings in 3P0 as recently realized in ytterbium [28,29].
Such large, continuously maintained atom arrays combined
with the recently demonstrated fast, high-fidelity quantum
gates [51] and elementary logical quantum circuits [9] make
neutral atoms a promising platform for quantum computing
and quantum simulation at scale.

Note added. We recently became aware of related work,
where similar results have been reported using arrays of 171Yb
[52].
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APPENDIX A: 3P0 IONIZATION IN 520 nm TWEEZERS

In our experiments we find the 3P0 lifetime of atoms in
520 nm tweezers to be limited to 40 ms for tweezers at a
trap depth of 300 µK, and to depend quadratically on the trap
depth, as shown in Fig. 5. This suggests that light at 520 nm
could ionize atoms stored in 3P0 in a two-photon excitation.
In our continuous loading experiment, we observed that the
shelving lifetime was considerably decreased for atoms in
the loading zone, even when atoms were trapped in a lattice
site not overlapping with a tweezer. As a consequence of this
observation, we spatially separated our loading and storage
zone to mitigate this extra tweezer-induced cycle loss. We
anticipate that using another wavelength for the tweezers (e.g.,
813 nm) would sidestep this issue and increase the available
space for both the loading and storage zones.

APPENDIX B: CORRELATION ANALYSIS ON THE ATOM
NUMBER FLUCTUATION IN THE STORED ARRAY

To understand the origin of the atom number fluctuation in
continuous operation of the stored array, we study the corre-
lations between the fluctuations and a set of parameters based
on the atom occupation during various stages of the sequence.
In this analysis, we consider only atoms placed at sites of the
stored array defined by a custom target; all atoms which are
not in a site of the stored array, even if they are placed in
the storage zone (defects), are ignored. We define the survival
fraction smn as the sum over all stored array sites that are filled
in both image m and image n, normalized to the occupation of
image m. Therefore, 0 � smn � 1 quantifies the atoms in the
stored array that survived from image m to a succeeding image
n. Similarly, we define the gain fraction amn as the sum over

FIG. 5. 3P0 ionization from 520 nm tweezers. Measured and
parabolic fit of 3P0 lifetime as a function of the tweezers trap depth.
The extracted quadratic contribution to the loss rate is 250 s−1

(mK)−2.
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(a)

(b)

(c)

FIG. 6. Correlations analysis on atom number fluctuation. (a) Se-
quence of images taken during continuous loading for the current
cycle i and the next cycle i + 1 indicating between which images
various quantities of interest are computed at the cycle i; see text
for more details. (b) Survival fraction of atoms from one image to
another, as a function of atom number fluctuation. (c) Gain fraction
of atoms from one image to another, as a function of atom number
fluctuation.

all stored array sites that are empty in image m but filled in
image n, normalized to the occupation of image n. Therefore,
0 � amn � 1 quantifies the atoms that have appeared in the
stored array from image m to a succeeding image n. For
the survival fraction smn and gain fraction amn, we label the

TABLE I. Pearson coefficients of the correlated quantities.

Quantity s1′2′ s21′ s22′ a1′2′ a21′ a22′

Pearson coefficient 0.46 0.50 0.68 0.53 −0.12 0.51

images using an augmented image index m, n = {1, 2, 1′, 2′},
where the indices 1 and 2 refer, respectively, to the first and
second image of a cycle i, and where the indices 1′ and 2′
refer, respectively, to the first and second image of the next
cycle i + 1; see Fig. 6(a). The fluctuations are quantified by
the quantity �Ns/Ns, where Ns is the number of filled sites in
our stored array, while �Ns is defined as the difference of the
number of filled sites in the stored array between two consecu-
tive cycles. The correlations of the atom number fluctuations
�Ns/Ns with smn and amn are summarized in Figs. 6(b) and
6(c). We quantify the strength of the correlations using the
Pearson coefficient ρ(X,Y ) between two random variables X
and Y , defined as

ρ(X,Y ) = cov(X,Y )

σ (X )σ (Y )
, (B1)

where cov is the covariance and σ (X ), σ (Y ) are the standard
deviations of X and Y , respectively. We observe that �Ns/Ns

correlates most strongly with the cycle survival (s22′), com-
prising the contribution of the shelved survival fraction (s21′ )
and the stored atom survival fraction (s1′2′ ); see Table I.

Interestingly, we also observe a nonvanishing value of a21′ ,
despite no atoms being intentionally added to the array be-
tween the second image of the cycle i and the first image of
the cycle i + 1. Since neither imperfect heating nor atoms ac-
cidentally shelved in 3P0 during the MOT yield large enough
contributions to explain the observed increased atom number
from one cycle to the next, we speculate this effect to mostly
arise from misclassification of our deconvolution algorithm.
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