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Thermometry with a dissipative heavy impurity
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Improving the measurement precision of low temperature is significant in fundamental science and advanced
quantum technology application. However, the measurement precision of temperature T usually diverges as T
tends to zero. Here, by utilizing a heavy impurity to measure the temperature of a Bose gas, we obtain the Landau
bound to precision δ2T ∝ T 2 to avoid the divergence. When the initial momentum of the heavy impurity is close
to be fixed and nonzero, the measurement precision can be δ2T ∝ T 3 to break the Landau bound. We derive the
momentum distribution of the heavy impurity at any moment and obtain the optimal measurement precision of
the temperature by calculating the Fisher information. As a result, we find that increasing the expectation value
P0 and reducing the variance �/2 of the initial momentum can help to improve the measurement precision.
Moreover, under certain conditions,

√
�/P0 is a relevant parameter, the smallness of which helps improve the

thermometric precision of the probe. In addition, the momentum measurement is the optimal measurement of
the temperature in the case that the initial momentum is close to be fixed and not equal to zero. The kinetic
energy measurement is the optimal measurement in the case that the expectation value of the initial momentum
is close to zero. Finally, we obtain that the temperatures of two Bose gases can be measured simultaneously. The
simultaneous measurement precision is proportional to T 2 when two temperatures are close to T .

DOI: 10.1103/PhysRevResearch.6.033102

I. INTRODUCTION

With the rapid development of quantum technology,
precise measurement of low temperature is becoming an
important and significant subject in the field of quantum
metrology [1–7] and quantum thermodynamics [8–10]. The
measurement of low temperature has always been a challeng-
ing task due to the fact that the uncertainty of temperature
diverges as the temperature tends to zero [11,12]. Strong cou-
plings [13,14], periodic driving [15], and correlations among
multiple probes induced by the common bath [16] have been
used to slow down the divergence. In order to truly avoid
the divergence, quantum system with a vanishing gap [17],
a non-Markovian reservoir [18], and invariant subspaces due
to the polariton thermalization [19] have been utilized to
obtain the Landau bound to precision δ2T ∝ T 2. In these
cases, the measurement uncertainty is not only not diver-
gent but also getting smaller and smaller as the temperature
decreases to zero.

With the progress of experimental techniques in quan-
tum gases, the high-resolution imaging of distinguishable
impurities has been realized [20–22]. The strength of the
impurity-environment coupling can be tuned to obtain many
significant physical results. The motion of mobile impurities
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through one-dimensional quantum liquid or gas has been ex-
tensively studied [23–27]. A heavy impurity moving through
a Luttinger liquid [28] was explored to find that the friction
force experienced by the impurity behaves as the fourth power
of temperature (T 4). By controlling the system parameter,
the friction force can dramatically change its temperature
dependence from T 4 to T 8 in Bose liquid [29,30]. In recent
work [31], the low-temperature T 2 dependence of the friction
force has been obtained for a strong coupling between a heavy
impurity and a Bose gas, which is contrasted with the expected
T 4 scaling for a weak coupling. In order to obtain the friction
force from the Bose gas, the temperature of the Bose gas
should be measured accurately in advance.

In this article, we use a heavy impurity (probe) to mea-
sure the temperature of a Bose gas. Based on the relation
between the friction force and the momentum being linear, we
analytically derive the momentum distribution of the heavy
impurity at any time given by the initial Gaussian distribu-
tion. The optimal temperature measurement precision can be
analytically derived by achieving the Fisher information from
the momentum distribution of the heavy impurity. As a result,
we show that the Landau bound to precision δ2T ∝ T 2 can be
obtained in the general case. More importantly, when the ini-
tial momentum of the heavy impurity is close to be fixed and
nonzero, the measurement precision can be δ2T ∝ T 3 to break
the Landau bound. And we find that enhancing the expectation
value and reducing the variance of the initial momentum can
help to improve the measurement precision. Under certain
conditions, the smaller the relevant parameter

√
�/P0 is, the

higher the measurement precision of the temperature. In the
case that the initial momentum is close to being fixed and not
equal to zero, we show that the momentum measurement is

2643-1564/2024/6(3)/033102(7) 033102-1 Published by the American Physical Society

https://orcid.org/0000-0001-5880-0308
https://ror.org/00h1gc758
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033102&domain=pdf&date_stamp=2024-07-24
https://doi.org/10.1103/PhysRevResearch.6.033102
https://creativecommons.org/licenses/by/4.0/


DONG XIE AND CHUNLING XU PHYSICAL REVIEW RESEARCH 6, 033102 (2024)

the optimal measurement of the low temperature. When the
initial momentum is not fixed and the expectation value is not
equal to zero, the measurement precision proportional to T 2

can still be obtained by using the momentum measurement.
The kinetic energy measurement just happens to be the op-
timal measurement in the case that the expectation value of
the initial momentum is close to zero. Finally, we show that
the simultaneous measurement precision is proportional to T 2

when the temperatures of two gases are close to T .
This article is organized as follows. In Sec. II, we introduce

the model of the heavy impurity in the Bose gas. In Sec. III,
the momentum distribution of the heavy impurity is derived
given by the initial Gaussian distribution. In Sec. IV, the
optimal estimation precision is obtained by the Fisher infor-
mation. In Sec. V, two practical measurements are used to
obtain the temperature measurement precision. The simulta-
neous estimation of two temperatures is discussed in Sec. VI.
We make a conclusion and a discussion on the feasibility of
the experiment in Sec. VII.

II. HEAVY IMPURITY IN A BOSE GAS

We consider the system of a mobile heavy impurity in a
Bose gas composed of one-dimensional interacting bosons.
The total Hamiltonian is described by [32]

HT = HB −
∫

dx�̂† h̄2

2M
∂2

x �̂ + G
∫

dx�̂†�̂ψ̂†ψ̂, (1)

where HB denotes the Lieb-Liniger Hamiltonian of the
Bose gas

HB = −
∫

dxψ̂† h̄2

2m
∂2

x ψ̂ + g
∫

dxψ̂†ψ̂†ψ̂ψ̂, (2)

�̂(x) = �(x) [ψ (x)] denotes the bosonic field operator for
the heavy impurity with the mass M (the single boson
with the mass m), which satisfies the commutation rela-
tions [�̂(x), �̂†(x′)] = δ(x − x′) and [�̂(x), �̂(x′)] = 0 with
δ(x − x′) being the Dirac delta function. In the Bose gas, the
contact interaction between bosons are repulsive and weak,
i.e., h̄2n0/m � g > 0 with n0 being the mean density of the
bosons. In the case of the weak interaction between bosons,
the quasiparticles of the Hamiltonian HB have the Bogoli-
ubov dispersion relation [33] εP =

√
v2 p2 + p4/4m2 with the

sound velocity v = √
gn0/m, and G denotes the density-

density interaction strength between the heavy impurity and
the Bose gas.

III. DISTRIBUTION FUNCTION OF THE IMPURITY

Due to the fact that the heavy impurity collides with ther-
mally excited bosons in the Bose gas, the heavy impurity
motion is stochastic. The momentum distribution function
f (t, P) of the heavy impurity (M � m) can be characterized
by the Fokker-Planck form [34,35]

∂ f (t, P)

∂t
= ∂

∂P

[
−F f (t, P) + 1

2

∂D f (t, P)

∂P

]
, (3)

where P represents the momentum of the heavy impurity. F
denotes the friction force due to scattering f thermally excited

quasiparticles in the Bose gas, which is given by

F = − m2v2P

2π h̄MT̃

∫ ∞

0
dk

k2|r(k, G̃)|2(2 + k2)

sinh2
(
k

√
4+k2

4T̃

)√
4 + k2

, (4)

where the dimensionless parameters T̃ = T
mv2 and G̃ = G

h̄v
,

and r(k, G̃) denotes the reflection amplitude of the Bogoli-
ubov quasiparticles scattering off a heavy impurity, which
has been studied by the Bogoliubov-de Gennes theory [36].
At low temperatures, T̃ � 1 (only the low-energy quasipar-
ticles are excited), in the cases of weak coupling (G̃ � 1) or
strong coupling (G̃ � 1) the friction force F can be simplified
as [31]

F = −
(G)PT n, (5)

where the exponent n of the temperature depends on the
relationship between T̃ and G̃. By referring to Ref. [31], we
can get the following specific classification. For 1/G̃ � T̃ �
1, n = 2 and 
(G) = 2π

3h̄Mv2 . For T̃ � 1/G̃ � 1, n = 4 and


(G) = 8π3G2

15h̄3m2Mv8 . For G̃ � 1 and T̃ � 1, n = 4 and 
(G) =
2π3G2

15h̄3m2Mv8 . D is the impurity diffusion coefficient, which is
given by

D = −2FMT/P. (6)

When the friction force F is proportional to the momentum
P as shown in Eq. (5), the Fokker-Planck form in Eq. (3)
can be solved analytically (see Appendix A). In general, the
initial momentum distribution f (0, P) is Gaussian, which is
described by

f (0, P) = 1√
π�

exp

[
− (P − P0)2

�

]
, (7)

where �/2, P0 represent the variance and the expectation
value of the initial momentum, respectively.

By analytically solving the Fokker-Planck equation in
Eq. (3), we can obtain the momentum distribution at time t
with the initial Gaussian momentum distribution as shown in
Eq. (7),

f (t, P) = 1√
2πMT (1 − e−2t/τ (1 − �′))

× exp

[
− (P − P0e−t/τ )2

2MT (1 − e−2t/τ (1 − �′))

]
, (8)

where �′ = �/(2MT ) and τ = 1/(
T n) with the abbrevia-
tion 
 ≡ 
(G) throughout the rest of this article.

IV. FISHER INFORMATION FROM GAUSSIAN
MOMENTUM DISTRIBUTION

According to the Cramér-Rao bound [37], the measure-
ment precision of the temperature can be given by

(δT )2 � 1

NF[T ]
, (9)

where N represents the total number of repeated experiments.
Since the content of our next study has nothing to do with
the number of measurements, we simply set N = 1. F[T ]
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denotes the Fisher information of the temperature T , which
is described by

F (T ) =
∫ ∞

−∞
dP

[∂T f (t, P)]2

f (t, P)
, (10)

where the partial derivative ∂T f (t, P) = ∂ f (t,P)
∂T .

The general form of the Fisher information is shown in
Appendix B. When � � MT and the measurement time t is
not infinite, we can obtain the Fisher information in the low
temperature limit T nt
 � 1 :

F (T,� � MT ) = 2(nt
)2T 2n−2
(
P2

0 + �
)

�
, (11)

where we need to emphasize that 
 and n are dependent on
the values of G̃. From the above equation, we can see that the
Fisher information can be increased by increasing the initial
expectation values of momentum. When T̃ � 1/G̃, the coeffi-
cient 
 increases by four times with the coupling strength, i.e.,

(G̃ � 1) = 4
(G̃ � 1). Namely, the Fisher information in-
crease 4 times with the coupling strength. When the coupling
strength continues to increase until G̃ � 1/T̃ , the power of
temperature goes from n = 4 to n = 2. Hence, in the case of
G̃ � 1/T̃ , the Fisher information is proportional to the square
of the temperature [F (T ) ∝ T 2], and it is independent of the
coupling strength, which shows that the measurement preci-
sion of temperature will not be improved when the coupling
strength increases to a certain extent. As the temperature T
approaches zero, the Fisher information F (T ) will approach
zero. It means that the uncertainty of the temperature T is
divergent at T = 0. More importantly, we find that Fisher
information F (T,� � MT ) increases linearly as the relevant
parameter P2

0 /� increases. In other words, the smaller
√

�/P0

is, the higher the measurement precision of the temperature.
When � � MRT with R = e2T n
t − 1 and t is a nonzero

finite value (t > 0), the Fisher information in the low temper-
ature limit T nt
 � 1 is given by

F (T,� � MRT ) =
[

(1 + n)2

2T 2
+ n2P2

0 T n−3
t

2M

]
(1 − ξ/2)

− n(1 + n)
tT n−2ξ + O(ξ 2), (12)

where the small quantity ξ = �
MRT and O(ξ 2) represents

infinitesimally small quantities of the second order. We em-
phasize that one can not take the t → 0 limit, as for small
values of t, the above formula becomes invalid (the condition
� � MRT becomes invalid).

When T is close to zero (n = 4), we obtain the Fisher in-
formation F (T ) ≈ 25

2T 2 � 25
2 ( 2M
t

�
)2/5. The achievable Fisher

information is bounded from above, and the bound depends
on how small � is. At close to a fixed initial momentum, i.e.,
� → 0, the uncertainty of T will be close to zero as T is close
to zero, which avoids the divergence of measurement uncer-
tainties at extremely low temperatures. A simple summary is
that when the uncertainty of the initial momentum distribution
is close to zero, the measurement precision of the tempera-
ture changes from infinity to zero at the temperature T → 0.
This result tells us that reducing the uncertainty of the initial
momentum distribution can effectively further improve the
measurement precision of the temperature when � � MRT .

FIG. 1. Evolution diagram of the ratio of the Fisher information
at different low temperatures. Here, γ denotes the ratio of the Fisher
information F (T ) at time t and the Fisher information Fτ (� → 0)
at the characteristic time τ . The dimensionless parameters chosen are
given by P0 = 1, M = 1, n = 4, and 
 = 1.

It is consistent with the previous trend in Eq. (11), except that
P2

0 /� is not a relevant parameter in Eq. (12).
Next, we consider that the measurement time t can be arbi-

trarily large. By optimizing the measurement time to obtain a
better measurement precision, we consider that the measure-
ment time is the characteristic time of the distribution function
f (t, P), i.e., t = τ = 1/(
T n). When T is close to zero and
� � MT , the Fisher information is given by

Fτ (� � MT ) = 2n2
(
P2

0 + �
)

T 2�
. (13)

The above equation recovers the scaling in Ref. [13]. Contrary
to the result in Eq. (11), we find that Fτ (� � MT ) becomes
larger and larger as the temperature T decreases. The essential
reason is that the measurement precision of temperature close
to zero is improved by using the time resource tending to be
infinite. The Fisher information Fτ (� � MT ) also increases
linearly with the relevant parameter P2

0 /�, which is the same
as the previous result.

When T is close to zero, � � MT and P0 �= 0, the Fisher
information is given by

Fτ (� � MT ) = n2P2
0

MT 3(e2 − 1)

(
1 − ξ ′

2e2 − 2

)
+ O(ξ ′2),

(14)

where ξ ′ = �
MT .

As shown in Fig. 1, we can see that the maximum ratio γ =
F (T )/Fτ (� → 0) approaches one. It means that Fτ (� → 0)
is close to the optimal Fisher information. When � → 0, the
characteristic time τ is close to the optimal measurement time
at low temperature. Comparing Eqs. (12) and (14), the Fisher
information changes from being proportional to 1/T 2 to 1/T 3

in the case of P0 �= 0. This is also due to the use of time
resources that tend to be infinite.

When the initial momentum P0 is zero, the Fisher informa-
tion at the characteristic time τ is given by

Fτ (� → 0, P0 = 0) = (2n + e2 − 1)2

2T 2(e2 − 1)2
. (15)
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This result shows that the initial nonzero momentum (P0) can
help to effectively use the time resources, and thus improve
the measurement precision of the temperature.

V. TEMPERATURE MEASUREMENT WITH MOMENTUM

In the previous section, we give the optimal measurement
precision for a given probability distribution by the Fisher
information. Then we will use the error propagation formula
to show whether the specific measurement can approach the
optimal measurement result.

First, we obtain the information of the temperature T by the
measurement of the momentum P. Given by the momentum
distribution in Eq. (2), we achieve the expectation value P̄ and
the variance δ2P = P̄2 − P̄2, which are described by

P̄ = P0e−t/τ , (16)

δ2P = MT [1 − e−2t/τ (1 − �′)]. (17)

The uncertainty of the temperature T can be derived by the
error propagation formula [38]

δ2T = δ2P

|∂T P̄|2 = MT (1 − e−2t/τ (1 − �′))
(P0nt
)2T 2n−2e−2t/τ

. (18)

From the above equation, we can derive that the optimal
measurement time can be close to the characteristic time τ .
At time τ , the corresponding measurement precision of the
temperature T obtained by the measurement of momentum
can be given by

δ2T |t=τ = MT (1 − e−2(1 − �′))
(P0n)2T −2e−2

(19)

≈ (e2 − 1)MT 3 + T 2�

(P0n)2
. (20)

When P0 �= 0 and � → 0, we can find that δ2T |t=τ =
1/Fτ (� → 0). It shows that the momentum measurement is
the optimal measurement of the low temperature in the case
that the initial momentum is close to being fixed (� → 0)
and not equal to zero (P0 �= 0). When the initial momentum
is not fixed (� > 0) and the expectation value is not equal to
zero (P0 �= 0), the measurement precision proportional to T 2

can still be obtained by using the momentum measurement.
This means that the momentum measurement is close to the
optimal measurement as T tends to zero in the case of P0 �= 0
and � > 0.

However, when P0 = 0, one can obtain that the uncertainty
δ2T |t=τ → ∞. It shows that the measurement of momentum
is the worst measurement, which can not obtain any informa-
tion of the temperature T in the case of P0 = 0.

A. Temperature measurement with kinetic energy

In order to deal with the case of P0 = 0, we try to use the
kinetic energy measurement P2/(2M ). The expectation value
and the variance of P2 are given by

P̄2 = MT [1 − e−2t/τ (1 − �′)], (21)

δ2P2 = 2M2T 2[1 − e−2t/τ (1 − �′)]2. (22)

By substituting the above equations into the error propaga-
tion formula, the measurement precision of the temperature is
derived

δ2T = T 2[2(e2t/τ − 1)MT + �]2

2[MT (e2t/τ − 1) + nt (2MT − �)/τ ]2
. (23)

For the infinite measurement time t → ∞, the measurement
precision of the low temperature obtained by the kinetic en-
ergy measurement is δ2T = 2T 2, which is consistent with
the results obtained by the Fisher information in the previous
section. For t = τ and � → 0, the measurement precision of
the low temperature is δ2T = 2(e2−1)2T 2

(e2−1+2n)2 , which is consistent
with the result as shown in Eq. (15). For � > 0, the measure-
ment precision of the low temperature is δ2T = T 2

2n2 , which
is also consistent with the result by the Fisher information
in Eq. (13). Therefore, in the case of P0 = 0, the temper-
ature measurement with the kinetic energy is the optimal
measurement.

VI. SIMULTANEOUS MEASUREMENT
OF TWO TEMPERATURES

We consider that the heavy impurity passes through the
first Bose gas with temperature T1 and the second Bose gas
with temperature T2. Given the initial Gaussian momentum
distribution of the Heavy impurity as shown in Eq. (7), the
momentum distribution at time t1 + t2 is described by

f (t1 + t2, P) = 1√
2πMT2

[
1 − e−2t2/τ2

(
1 − �1

2MT2

)]

× exp

[
− (P − P0e−t1/τ1−t2/τ2 )2

2MT2
[
1 − e−2t2/τ2

(
1 − �1

2MT2

)]
]
,

(24)

where t1 (t2) is the interaction time between the heavy
impurity and the first (second) Bose gas, �1 = 2MT1[1 −
e−2t1/τ1 (1 − �

2MT1
)], and the characteristic time of the ith Bose

gas is τi = 1/(
iT n
i ) for i = {1, 2}.

At time t = t1 + t2, the two temperatures can be si-
multaneously measured by the momentum distribution. The
estimation precision of (T1, T2) is governed by its covariance
matrix Cov(T1, T2), which is lower bounded via the multipa-
rameter Cramér-Rao bound [39]

Cov(T1, T2) � 1

χ
, (25)

where χ is the Fisher information matrix, which is derived by

χ jk =
∫ ∞

−∞
dP

∂Tj f (t, P)∂Tk f (t, P)

f (t, P)
, (26)

where j, k = {1, 2}. The total simultaneous uncertainty of the
two temperatures is achieved by

(δ2T1 + δ2T2)|sim = tr[Cov(T1, T2)] (27)

� χ11 + χ22

χ11χ22 − |χ12|2 . (28)

The simultaneous uncertainty of the two temperatures can
be analytically derived by the above equation. Especially,
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when � → 0, P0 �= 0, T1 = T2 = T, and t j = τ j , the simul-
taneous estimation precision of the two low temperatures is
given by

(δ2T1 + δ2T2)|sim � 6.89625T 2. (29)

This result shows that the simultaneous estimation of the two
temperatures can also obtain very high measurement preci-
sion, which is proportional to T 2 when both temperatures are
close to T . However, the scaling T 3 can not be obtained like
the measurement precision of a single temperature. This is
mainly due to the fact that the variance of the momentum
distribution, �1/2, after passing through the first Bose gas is
not zero. Therefore, by controlling the initial momentum dis-
tribution, the measurement precision obtained by two separate
temperature measurements is higher than that obtained by the
simultaneous two-temperature measurement.

VII. CONCLUSION

In this article, we have proposed that the temperature of the
Bose gas can be measured by the mobile heavy impurity. Due
to the scattering off thermally excited quasiparticles in the
Bose gas, the momentum distribution of the heavy impurity
will carry the information about the temperature of the Bose
gas. Based on the Fisher information from the momentum
distribution of the heavy impurity, the optimal measurement
precision can be analytically derived. Due to the fact that
the momentum is continuous, the Landau bound to precision
δ2T ∝ T 2 can be obtained in the general case. When the
initial momentum of the heavy impurity is close to be fixed
and nonzero, we obtain the measurement precision beyond
the Landau bound to be δ2T ∝ T 3. Enhancing the expecta-
tion value of the initial momentum can help to improve the
measurement precision. Reducing the uncertainty of the initial
momentum distribution can further improve the measurement
precision of the temperature. More importantly, when � �
MT ,

√
�/P0 is the relevant parameter, the smallness of which

helps improve the thermometric precision of the probe. In
addition, we show that the momentum measurement is the
optimal measurement when the initial momentum is close to
be fixed and not equal to zero. The kinetic energy measure-
ment just happens to be the optimal measurement when the
expectation value of the initial momentum is equal to zero.
Finally, we find that the simultaneous measurement precision
of the temperatures of the two Bose gases can also reach the
Landau bound. However, the scaling T 3 can not be obtained
like the measurement precision of a single temperature.

Our scheme can be performed in the setup with cold atoms,
such as a one-dimensional quantum liquid of 4He atoms con-
fined within a porous material [40], and an ultracold Rb gas
with single neutral Cs impurity atoms [20]. The interaction
strength between the impurity and host atoms is tunable by the
Feshbach resonances, and powerful measurement techniques
have been developed [23,41].
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APPENDIX A: THE SOLUTION OF THE
FOKKER-PLANCK FORM

The Fokker-Planck form can be rewritten as

∂ f (t, P)

∂t
= − 1

τ
H f (t, P), (A1)

where τ = |P/F | = (
T n)−1 and the operator H is described
by

H = −MT
∂2

∂P2
− ∂

∂P
P. (A2)

The general form of the solution can de described as

f (t, P) = e−Ht/τ f (0, P). (A3)

Defining ỹ = P/
√

2MT and p̃ = −i ∂
∂P , the operator H is

rewritten as

H = 1
2 ( p̃ − iỹ)2 + 1

2 ỹ2 − 1
2 . (A4)

Then, let us make a transformation to get an operator H̃, which
is similar with the Hamiltonian of a harmonic oscillator

H̃ = exp(ỹ2/2)H exp(−ỹ2/2) = 1
2 p̃2 + 1

2 ỹ2 − 1
2 . (A5)

The eigenvalues (En) and eigenvectors [φn(ỹ)] of the oper-
ator H̃ can be given by

En = n, φn(ỹ) = (−1)n

(
1√

π2nn!

)1/2

ey2/2 dn

dyn
e−y2

. (A6)

Setting f (t, P) = e−ỹ2/2 f̃ (t, P), we can obtain that

∂ f̃ (t, ỹ)

∂t
= − 1

τ
H̃ f̃ (t, ỹ). (A7)

The solution of theabove equation can be achieved by

f̃ (t, ỹ) = e−H̃t/τ f̃ (0, ỹ) (A8)

=
∑

n

e−H̃t/τ Anφ(ỹ) (A9)

=
∑

n

e−nt/τ Anφ(ỹ), (A10)

where the coefficient An is derived by

An =
∫ ∞

−∞
f̃ (0, P)φ∗(ỹ)dy. (A11)

We consider that the initial momentum distribution is
Gaussian, which is described by

f (0, P) = 1√
π�

exp

[
− (P − P0)2

�

]
. (A12)

The corresponding momentum distribution f (0, ỹ) is given by

f (0, ỹ) = 1√
π�′ exp

[
− (ỹ − P′

0)2

�′

]
, (A13)
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where �′ = �
2MT and P′

0 = P0/
√

2MT . Next, the initial mo-
mentum distribution after the transformation is given by

f̃ (0, ỹ) = 1√
π�′ exp

[
− (ỹ − P′

0)2

�′ + ỹ2

2

]
. (A14)

Expanding it with the eigenvectors of the harmonic oscillator
operator H̃, the expansion coefficient can be obtained

An =
∫ ∞

−∞

1√
π�′ exp

[
− (ỹ − P′

0)2

�′ + ỹ2

2

]
φ∗(ỹ)dy (A15)

=
∫ ∞

−∞
dω

(iω)n exp
[ − ω2

4 − �′ω2+4iP′
0ω−4P′

0
2

4(1−�′ )

]
√

4π
√

π2nn!(1 − �′)
, (A16)

where we have utilized the following formulas:

e−ỹ2 = 1

2
√

π

∫ ∞

−∞
dωeiωỹ−ω2/4. (A17)

dn

dỹn
(e−ỹ2

) = 1

2
√

π

∫ ∞

−∞
dω(iω)neiωỹ−ω2/4. (A18)

Substituting the above equations into Eq. (A10) and mak-
ing an inverse transformation, we can obtain the solution of
the Fokker-Planck formula in Eq. (A1):

f (t, P) = 1√
2πMT (1 − e−2t/τ (1 − �′))

× exp

[
− (P − P0e−t/τ )2

2MT (1 − e−2t/τ (1 − �′))

]
. (A19)

APPENDIX B: GENERAL FORM OF FISHER
INFORMATION

For the general initial Gaussian momentum distribution,
the general form of the Fisher information can be analytically
achieved by substituting Eq. (8) into Eq. (10):

F (T ) = 2
2[T (2RMT + �)]−2
{
n2t2T 2n

[(
P2

0 − 4MT
)
�

+ 2MT
(
RP2

0 + 2MT
) + �2] + (RMT/
)2

+ 2nMRtT n+1(2MT − �)/

}
, (B1)

where R = e2t
T n − 1.
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