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Quantum computation with logical gates between hot systems
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We consider quantum computer architectures where interactions are mediated between hot qubits that are not
in their mechanical ground state. Such situations occur, e.g., when not cooling ideally, or when moving ions or
atoms around. We introduce quantum gates between logically encoded systems that consist of multiple physical
ones and show how the encoding can be used to make these gates resilient against such imperfections. We
demonstrate that, in this way, one can improve gate fidelities by enlarging the logical system, and counteract the
effect of unknown positions or position fluctuations of involved particles. We consider both a classical treatment
of positions, in terms of probability distributions, and a quantum treatment using mechanical eigenmodes. We
analyze different settings including a cool logical system mediating interactions between two hot systems, as well
as two logical systems consisting of hot physical systems whose positions fluctuate collectively or individually.
In all cases, assuming ideal local control to logical systems, we demonstrate a significant improvement in gate
fidelities, which provides a platform-independent tool to mitigate thermal noise in the context of trapped-particle-
based architectures.
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I. INTRODUCTION

Quantum computers offer the promise to enhance the ef-
ficiency to solve various problems, or even enlarge the class
of accessible ones. Several architectures to design large-scale
quantum computers exist [1–3]. While some approaches are
intrinsically scalable, others rely on the combination of small
modules that can be connected [4–6]. Promising platforms
include trapped ions in segmented traps, where ions are shut-
tled around to an interaction zone [7–9]. Similarly, arrays
of trapped Rydberg atoms have been realized, where atoms
can be moved using optical tweezers and interact via induced
dipole-dipole interactions [10–15]. But also other types of
segmented traps are conceivable, where, e.g., 1D or 2D arrays
of ions are manipulated by laser pulses [16,17], and where
interaction between ions in different modules takes place via
some distance-dependent coupling [18–22]. What most ap-
proaches have in common is the necessity to cool particles
to their mechanical ground state, to enable their manipulation
and gates between them with high fidelity [16,23–27]. For
different platforms, explicit approaches have been developed
to perform gates between hot systems, and avoid or at least
reduce the demand for cooling [28–30].

Here we present a novel, generic, and platform-
independent approach to deal with the influence of thermal
fluctuations and position noise in particle-trap-based architec-
tures. We consider a setting where qubit systems interact via
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some distance-dependent commuting coupling [31], which
can be, e.g., induced by laser pulses [18–20,32,33] or via
dipole-dipole interactions [10–12,14]. Obviously, such an
approach is susceptible to position noise and thermal fluctu-
ations. Rather than attempting to cool the system, we use a
logical encoding of quantum information to tailor effective
interactions and make them insensitive to particle positions.
The basic idea is to encode quantum information in multi-
ple physical systems, that form one logical qubit [34–38].
The physical systems interact, which generates an effective
interaction between a logical system and other physical ones,
or between two logical systems. By properly choosing the
encoding, we show that thermal noise can be significantly
suppressed. Increasing the size of encoding, i.e., the number
of involved physical systems, leads to larger gate fidelities that
approach unity.

We demonstrate the applicability of our approach in mul-
tiple setups, which include classical treatment of particle
positions in terms of trajectories or probability distributions,
as well as a full quantum treatment using mechanical eigen-
modes for ions trapped in a 1D Paul trap:

(a) We show that one can mediate interactions and gates
between two hot physical systems that suffer from thermal
fluctuations utilizing a cool logical system.

(b) We consider collective fluctuations, where relative po-
sitions of the individual systems in the same logical system are
fixed, while the position of each logical system is given by a
probability distribution, e.g., a Gaussian. Logical systems are
either 1D chains or 2D arrays of trapped particles.

(c) We treat two logical systems where each particle is
independently affected by classical thermal noise.

(d) We consider a fully quantized model of 1D Paul
traps and their mechanical eigenstates, demonstrating that
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FIG. 1. (a) The data qubits are moved close to the mediator
module, which mediates an effective interaction between them. The
data qubits are affected by position noise. (b)–(d) Each module
encodes a logical system and they couple with each other via the
inherent interaction between the physical systems. (b) The positions
of the physical qubit systems fluctuate collectively. (c) The position
of each physical qubit system fluctuates independently. (d) Within
each module, the position of each physical qubit system is quantized
and correlated with the others.

interactions between two logical ion strings can be made
insensitive to their temperature.

The considered setups are illustrated in Fig. 1, even though
when analyzing different cases we will restrict the position
noise to dominant directions or degrees of freedom. In all
cases, we find a significant improvement in achievable gate
fidelities. The situation of (a) is relevant when shuffling ions
or atoms around, which are heated up due to this process
[27,39]. They can be moved to some interaction zone, where
a properly cooled system consisting of several qubits is used
to mediate an interaction between the two hot particles. Simi-
larly, this can account for the heating of ions or atoms due to
measurements, or the application of multiple gates. The setup
of (b) consists of two independent 1D or 2D traps, where parti-
cles interact due to some induced, distant-dependent coupling
[18–22]. The setting considered in (c) is, e.g., concerned with
independent traps for each of the constituents, and hence in-
dependent thermal fluctuations. It may also relate to situations
where all systems are moved and hence heated up. Finally,
the fully quantized version we treat in (d) is concerned with
two independent ion strings in Paul traps, where again some
distant-dependent coupling between the ions is induced to
couple the two traps. We consider the Boltzmann distribution
of the mechanical energy eigenstates and compute resulting
gate fidelities when increasing the number of ions in each trap.

Due to the kind of encoding we use, our approach can at
the same time be used as an error correction code against
bit-flip errors. This however requires additional control and
overhead but may be useful in a quantum computation setup
that goes beyond the usage of bare qubits. In addition, we
can modify our scheme such that it also protects against
fluctuations of a constant background field, one of the main
sources of decoherence in certain ion-trap setups. Similarly,
fluctuations against background fields and noise sources with
specific spatial dependence or fixed origin can be achieved.

The paper is organized as follows. In Sec. II we describe
different quantum computation setups, as well as the general
setting and approach we consider. In Sec. III we introduce
how we model thermal noise and how we can utilize logical
encodings to mitigate the noise effects. In Secs. IV–VII we
discuss the different settings (a)–(d), and provide explicit ex-
amples that demonstrate the performance of our approach. In
Sec. VIII we briefly discuss how to achieve protection against
a noisy background field, without increasing the size of the
logical system. We summarize and conclude in Sec. IX.

II. MODULAR QUANTUM COMPUTER MODELS

The primary strategy for developing a scalable quan-
tum computer is based on modularity [4–6]. This approach
involves constructing the entire system by interconnecting
smaller, independent quantum processors that can execute
quantum operations and store quantum information. One ap-
proach to interconnecting modules relies on distant-dependent
interactions among the constituent physical systems. How-
ever, by definition, such interactions are sensitive to position
fluctuations. Hence, achieving a high-fidelity interaction re-
quires cooling down the systems to their mechanical ground
state, which is not always feasible. In this paper, we introduce
an alternative (or complementary) solution, demonstrating
how the adverse effects of mechanical thermal noise can be
mitigated by leveraging the interaction between logical sys-
tems encoded within multiple physical ones.

In a multiqubit system, one can implement a logical qubit
by restricting the state of the system into a two-dimensional
subspace. In particular, we consider the repetition encoding
where the logical computational basis is of the form |0̄〉 = |a〉
and |1̄〉 = | − a〉, where |a〉 is a state of the computational ba-
sis such that Zi|a〉 = ai|a〉. We refer to a as the logical vector
and as we show in the next section, interactions between log-
ical qubits can be made approximately position-independent
by a proper choice of a. In principle, ai ∈ {−1, 1}; however,
by performing fast flips of the individual qubits during the
evolution we can effectively obtain an arbitrary logical vector
with ai ∈ [−1, 1] (see Sec. 3.6 in Ref. [40]). Next, we describe
several modules-connected-based architectures subjected to
different kinds of thermal noise and how logical encoding can
be used to mitigate the effects of position fluctuations.

A. Interaction mediator system

The first model we consider resembles the von Neumann
architecture [41] and is based on an auxiliary system (or mod-
ule) that is used to mediate interactions between hot physical
systems [42]. We consider two kinds of modules. The data
module consists of multiple trapped physical systems, e.g.,
ions or neutral atoms, where each encodes a qubit state. We
assume the state of the qubits can be individually manipulated
but multiqubit gates cannot be directly implemented. For that,
the physical systems are individually moved into an interac-
tion zone [7–9] where they interact with an auxiliary system,
which is used to mediate interactions between the data qubits
[43]; see Fig. 1(a). For instance, the multiqubit gate eiαZ⊗n

can
be mediated on the data qubits by applying a control-Z gate
between each data qubit and the auxiliary system, and then
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measuring the auxiliary system on the appropriate basis, i.e.,

(Z⊗n)k
1...n P(k)

0 eiαX0

n∏
j=1

CZ0 j |+〉0|ψ〉1...n �→ eiαZ⊗n |ψ〉1...n, (1)

where P(k) = |k〉〈k|, and |ψ〉 is an arbitrary state. In this
model, the mediator module also consists of multiple trapped
physical systems but it is assumed to be well cooled and
fully controllable. By encoding a logical qubit in the mediator
module, we establish interactions that mitigate the effects of
thermal noise acting on the components of the data module.

In Sec. IV we analyze the fidelity of a mediated interaction
by computing the fidelity of a control gate between a noiseless
logical qubit system and a hot physical qubit system.

B. Independent classical modules

The second scheme is based on independent modules con-
sisting of multiple physical qubit systems which can be fully
controlled. The modules are coupled with each other by a
distance-dependent interaction between their physical com-
ponents. We assume the modules are affected by collective
position noise, meaning that the physical systems are well
trapped within the modules but the position of the latter is
subject to position fluctuations; see Fig. 1(b). In this case, we
implement a logical qubit within each module and make use
of their interactions. Similar to the previous scheme, logical
systems allow us to establish high-fidelity interactions. In
Sec. V we analyze how the fidelity of the interaction between
two modules can be enhanced by enlarging the size of the
modules.

C. Independent physical qubit systems

The third scheme is similar to the one considered in the
previous section, but in this case, thermal noise affects all
physical systems independently; see Fig. 1(c). This scenario
is of particular interest as the total amount of noise affecting
a module increases with its size. However, in Secs. VI and
VII B we show, both in a classical and quantized approach,
that grouping the qubits in logical systems still allows one to
arbitrarily enhance the interaction by increasing the system
size. In this case, alternative ways of coupling the qubits
within the modules should be used as the independent nature
of noise would affect the manipulation of the logical systems.

D. Independent quantum modules

The last scheme we consider is a quantized version of
independent modules. For example, each module is a 1D
quantum trap where at a certain temperature the collective
motion of the physical systems is described by the thermal
state over their mechanical eigenmodes; see Fig. 1(d). These
fluctuations lead to a noisy interaction between different traps.
In contrast to the classical model introduced in Sec. II B, the
noise impact of the whole system grows with the number of
trapped particles. However, the temperature does not affect
the physical systems independently but instead excites the
collective oscillation modes of the trap, which we take as
an advantage. In Sec. VII A, we show that by implementing
logical systems with trapped physical systems one can obtain
significant gate fidelity enhancements.

III. FROM THE PHYSICAL TO A LOGICAL LAYER

In this section, we introduce the formalism used to evaluate
the influence of thermal noise in the schemes detailed in the
previous section. First, we describe the notation, and then
we formally introduce the considered physical interaction and
how it is affected by the uncertainty of its position. We also
introduce the logical systems and show how they can be used
to minimize the effects of thermal noise.

A. Notation

Throughout the paper, we make use of stochastic and non-
stochastic variables. To clarify the usage of those, a stochastic
variable is written in Roman style, e.g., “x”, while non-
stochastic variables are in Italic style, e.g., “x”. We write
x ∼ {x, p(x)}, if x is distributed with probability p(x), and x
denotes a particular realization of the variable.

We also distinguish between different kinds of vectors. On
the one hand, we consider “spatial vectors” which are 2- or 3-
dimensional real vectors and refer to space positions. We write
spatial vectors with the standard arrow notation, i.e., “	x ”. On
the other hand, we denote any other kind of vector with a bold
symbol, i.e., x. We also use both notations to refer to a list of
spatial vectors, i.e., 	x = (	x1, . . . , 	xK ).

B. Minimal size setting: Two physical qubit systems

First, we consider the minimal size case, two physical
qubit systems, A and B, each located at a certain position,
	r and 	q, respectively. We assume an antiferromagnetic long-
range Ising interaction between the qubits; i.e., the interaction
Hamiltonian is given by

H = μ(	r, 	q) ZAZB,

where the coupling strength depends on the distance between
the two-qubit systems and it is given by μ(	r, 	q) = J|	r −
	q |−γ , where J is the coupling constant and γ ∈ N. By letting
the qubits interact for a time �t = π

4μ
, one can implement our

target entangling gate

U = e−i π
4 ZZ , (2)

which can be, e.g., transformed into a CZ or a CNOT with the
help of local operations.

Uncertainty in the coupling strength leads to a noisy imple-
mentation of U which we denote as the ZZ-damping channel.
If the coupling strength is distributed as µ ∼ {μ, p(μ)}, the
evolution of an arbitrary two-qubit state ρ is given by

U (ρ) =
∫

e−i(μ�t )ZZρ ei(μ�t )ZZ p(μ) dμ.

We evaluate the performance of the interaction with the so-
called Choi fidelity of the channel U to the ideal gate U ;
i.e., the fidelity of the gate is given by F = 〈�U |�U |�U 〉,
where �U = U ⊗ 1(|�〉〈�|) is the Choi (mixed) state of U
and |�U 〉 = U ⊗ 1|�〉 is the Choi (pure) state of the target
gate U , where |�〉 = 1

2

∑1
i, j=0 |i j〉|i j〉. In the case of the ZZ-

damping channel, one can see that the fidelity is given by

F (t ) =
〈
cos2

(π

4
− µ �t

)〉
; (3)

see Appendix A for derivation.
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As μ depends on 	r and 	q, thermal noise is a source of un-
certainty. In particular, if p(	r, 	q) is the probability distribution
of 	r and 	q then the probability distribution of µ is given by

p(μ) =
∫

δ[μ − μ(	r, 	q)] p(	r, 	q) d	r d 	q,

where δ[x] is the Dirac delta function.
Note that if one is restricted to individual control, the most

natural way to enhance the interaction between two qubits is
by cooling down the physical systems, i.e., reducing uncer-
tainty in their position. In the following section, we show how
by using physical multiqubit systems to implement logical
qubits, the fidelity can be enhanced without cooling down the
system.

C. Arbitrary size setting: Two logical qubits

We consider two modules A and B consisting of NA and NB

spatially distributed physical qubit systems, respectively, i.e.,
A = {Ai, 	ri}NA

i=1 and B = {Bj, 	q j}NB
j=1, where physical qubit

system Ai (Bj ) is located at the position 	ri (	q j ). Like in the
previous setting, we assume the qubits can be individually
controlled but two-qubit gates cannot be implemented.

1. Logical interaction

The physical systems interact with a two-body long-range
interaction given by

Hzz = HA
zz + HB

zz + HAB
zz , (4)

where

HA
zz =

∑
1�i< j�NA

μ(	ri, 	r j ) ZA
i ZA

j ,

HB
zz =

∑
1�i< j�NB

μ(	qi, 	q j ) ZB
i ZB

j ,

HAB
zz =

∑
1�i�NA
1� j�NB

μ(	ri, 	q j ) ZA
i ZB

j ,

where HA(B)
zz describes interactions within module A (B),

which we refer to as the self-interactions of A (B), and HAB

describes interactions between physical systems in different
modules.

Let us now prepare (encode) each module into a logi-
cal qubit subspace span{|a〉, | − a〉} and span{|b〉, | − b〉} by
choosing the logical vectors a for A and b for B. When the
states of the modules are restricted to a logical subspace the
Hamiltonian simplifies. On the one hand, the self-interaction
terms just yield a global phase and can be ignored, i.e., HA

zz| ±
a〉 = f (a)| ± a〉 where f (a) = ∑

i< j ai a j μ(	ri, 	r j ). On the
other hand, HAB

zz is also diagonal in the logical subspace with
eigenvalues

HAB
zz |±a,±b〉 = μ̄ab(	r, 	q)|±a,±b〉,

HAB
zz |±a,∓b〉 = −μ̄ab(	r, 	q)|±a,∓b〉,

where

μ̄ab(	r, 	q) =
∑

1�i�NA
1� j�NB

ai b j μ(	ri, 	q j )

is the coupling strength between the logical qubits, 	r =
(	r1, . . . , 	rNA ) and 	q = (	q1, . . . , 	qNB ). Hence, for the logical
qubits the Hamiltonian Hzz simply reads

H̄ = μ̄ab(	r, 	q) Z̄A Z̄B,

where Z̄ = |0̄〉〈0̄| − |1̄〉〈1̄|.
Note that the interaction between the logical qubits is also

given by a ZZ coupling, but its strength can be tuned by a
suitable choice of the logical subspace, i.e., a suitable choice
of the vectors a and b.

2. Logical gate fidelity

Like in the minimal size setting, uncertainty in the position
of the qubit systems leads to a noisy implementation of the
two-logical-qubit gate. However, in contrast to the minimal
size scenario, in this case, the effective coupling, and hence
the gate fidelity with our target gate U = e−i π

4 ZZ , also depends
on the logical subspaces a and b,

F ab(�t ) =
〈
cos2

(π

4
− µ̄ab �t

)〉

=
∫

cos2
[π

4
− μ̄ab(	r, 	q) �t

]
p(	r, 	q) d	r d	q. (5)

Given a particular setting with a certain probability distribu-
tion for the position of the qubit systems, p(	r, 	q), our goal is to
find the logical subspaces (given by a and b) which maximize
the fidelity and minimize the implementation time. In order
to quantify the performance of a given setting, we compute
its optimal infidelity curve which corresponds to the optimal
infidelity for every implementation time, i.e.,

1 − F ∗(�t ) = 1 − max
a,b

F ab(�t ). (6)

In the following section, we analyze for different schemes
how the fidelity can be enhanced by increasing the system
size.

IV. COLD MEDIATING SYSTEM

First, we look at the scheme detailed in Sec. II A where a
fully controllable cold system is used to mediate an effective
interaction between two-qubit systems affected by thermal
noise. If we consider the gate sequence shown in Eq. (1), the
fidelity of the mediated interaction is given by F12 = F01F02

where F0i is the fidelity of a control gate U between the ith
qubit and the auxiliary system (see Appendix. B for deriva-
tion). Therefore, for our purposes, it suffices to analyze the
implementation of U = e−i π

4 ZZ between a logical and a hot
and a single qubit affected by position noise.

The scheme we consider is inspired by 1D traps where
particles are strongly bounded in the y direction but weakly
in the x direction. Module A contains NA perfectly trapped
physical qubit systems, meaning their positions are well
defined. In turn, B consists of a single physical qubit sys-
tem, NB = 1, with a noisy position, i.e., 	q = 	q1 and b =
(b1). In this case, the logical coupling strength is given
by μ̄ab1 (	r, 	q1) = b1

∑NA
i=1 ai μ(	ri, 	q1). We consider the setting

shown in Fig. 2(a). Module A is a 1D chain aligned with the
x axis. System B is at a fixed distance �y of the chain, but its
position along the x is a normally distributed random variable,
i.e., 	q1 = (q1x,�y) where q1x ∼ N[0, σ 2].
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(b) (c)

(e)

(a)

(d) (f)

FIG. 2. (a) Module A is fixed and it consists of a 1D chain oriented along the x axis, i.e., 	ri = (i�x, 0). Module B consists of a single qubit
system located at 	q1 = (q1x, �y) where q1x ∼ N [(NA − 1)�x/2, σ 2]. (d) Each module, A and B, consists of a 1D chain oriented along the x
axis, i.e., 	ri = (i�x + rx, 0) and 	r j = ( j�x + rx,�y) where rx and qx are i.i.d. ∼N [0, σ 2]. (b), (e) Logical coupling strength as a function of
qx and rx − qx for the settings described in (a) and in (d), respectively. Each curve is multiplied by a constant c such that the difference in shape
can be appreciated. Solid lines correspond to the trivial encoding, i.e., a = b = 1, while dotted lines to the optimal encoding for t = 0.9 and
0.5, respectively. (c), (f) Infidelity of the implementation of U = e−i π

4 ZZ as a function of the implementation time �t for different system sizes
for the setting described in (a) and in (d), respectively, with J = 1, γ = 1, �x = �y = 1, and σ = 3. “t.t.b.” means “top to bottom.”

As shown in the previous section, the logical coupling
strength μ̄ab1 (	r, 	q1) can be modified by changing the logical
vector a. Ideally, we would like to establish a logical cou-
pling which is independent of the position of the physical
qubit system 	q1, making the interaction insensitive to thermal
fluctuations. However, this is not possible due to the inherent
form of the physical qubit-qubit interaction. Nevertheless,
we can establish a μ̄ab1 (	r, 	q1) that approximates a constant
function within the region of space where qubit B is most
likely to be found. In Fig. 2(b) we plot the logical coupling
strength as a function of q1x. Observe how with the trivial
encoding increasing the size of A, i.e., a = 1 = (1, . . . , 1),
μ̄ab1 (	r, 	q1) becomes flatter for q1x ∈ [−σ, σ ]. We can increase
this effect even further by optimising the logical subspace,
see in Appendix. F the optimal a for different system sizes.
Note that the optimal logical subspace already amplifies the
interaction. Still, the maximum coupling strength is obtained
with the trivial encoding, i.e., maxa,b1 μ̄ab1 = μ̄11.

In Fig. 2(c) we plot the infidelity curve Eq. (6) for dif-
ferent values of NA; i.e., for each implementation time �t
we show the best infidelity we can reach by establishing a
logical subspace a for all �t . If �t is small, the fidelity is
given by F ab(�t ) = 1

2 + 〈µ̄ab〉�t , and hence, in this regime,
the trivial encoding, i.e., a = (1, . . . , 1), is optimal because
it maximizes µ̄ab. At a certain value of �t , the trivial en-
coding is no longer optimal, as it is better to establish a
weaker but flatter coupling function μ̄ab1 (	r, 	q1). This trade-
off gradually changes with �t until eventually the optimal
shape μ̄ab1 (	r, 	q1) can be established, as the drop in interaction
strength can be compensated by the longer interaction time.

Then the infidelity saturates because one always can “slow
down” the interaction by scaling the optimal logical encoding,
i.e., F ab(�t ) = F a′b(�t/c) where a′ = c a. In the figure, we
show the best fidelity that can be achieved with the trivial
encoding (solid lines) and the enhancement (dashed liens)
that an optimization of a provides. Observe that the larger
the size of A the bigger the enhancement in terms of fidelity
and implementation time. To compute the optimal infidelity
curve, we discretize �t , and for each �t we used the Wolfram
Mathematica function NMaximize to find the optimal logical
encoding. To avoid local minima we used the solution of the
previous time step as a starting point for the next optimiza-
tion. In Appendix C we show the optimal infidelity for a 2D
example. This behavior is observed in all examples computed
in the article and the same discussion applies to all of them.

V. COLLECTIVE POSITION NOISE

In this section, we analyze the scheme introduced in
Sec. II B. We consider modules A and B to be affected by
collective noise. The position of the physical qubit systems
is well defined within the modules, whose “center of mass”
position is subject to noise. Formally, this means that we can
parametrize the position of the physical qubit systems of each
module as

	r = 	r 0 + (	r,	r, . . . ,	r), 	q = 	q 0 + (	q, 	q, . . . , 	q),

where 	r and 	q are two independent stochastic variables, and 	r 0

and 	q 0 are the positions of the physical qubit systems in the
module reference frame, which are fixed.

033101-5



RIERA-SÀBAT, SEKATSKI, AND DÜR PHYSICAL REVIEW RESEARCH 6, 033101 (2024)

Here we consider each module to be arranged in a 1D
chain along the x axis; see Fig. 2(d). Similarly to the example
considered in Sec. IV, their position on the y axis is fixed
but not on the x axis, i.e., 	r = (rx, ry) and 	q = (qx, qy), while
rx and qx are independent and identically distributed (i.i.d.)
∼N [0, σ 2]. In Fig. 2(e) we plot the logical coupling strength
as a function of the distance between the two modules, i.e.,
μ̄ab(rx − qx ). We obtain similar behavior as in the previous
setting. In this case, the optimal subspaces lead to an ap-
proximate logical coupling strength for a significantly larger
region, as the total number of physical qubit systems (and
hence tunable parameters) is larger than the one in Fig. 2(b). In
Fig. 2(f), we show the optimal infidelity curve with our target
gate U for different system sizes. The results are similar to the
ones obtained in Sec. IV. However, in this case, for each curve
we increase the size of both modules, leading to a quadratic
enhancement in the coupling strength.

Similar results are obtained when considering a 2D exam-
ple; see Appendix D for details.

VI. INDEPENDENT NOISE

We now consider the model detailed in Sec. II C,
where the position of each physical qubit system is
an independent stochastic discrete variable, i.e., p(	r, 	q) =
p(	r1) p(	q1) · · · p(	rNA ) p(	qNB ). In this case, the fidelity is given
by

F ab(t ) =
∑
	r,	q

p(	r, 	q) cos2
[π

4
− μ̄ab(	r, 	q) �t

]
.

Note that in this case, if each physical qubit system can be in
κ different positions the total number of configurations and
possible couplings μ̄ab(	r, 	q) is given by κNA+NB . Unlike in
the previous examples, in this case, increasing the size of the
modules A and B the sample space of the logical coupling
strength μ̄ also increases. However, we show that this does not
prevent our setting from providing improvements in fidelity.

In this case, we again consider each module as a 1D chain
oriented in the x axis. However, in order to avoid spatial
overlap between the physical qubit systems while having sig-
nificantly large position fluctuations, in this case, we assume
fluctuations along the y axis; see Fig. 3(a). Figure 3(b) shows
that the optimal infidelity is significantly improved for any
value of �t when increasing the size of A and B. However, in
this case, due to computational limitations, we are restricted
to considering small system sizes. As a result, we are unable
to observe a notable improvement in fidelity from optimizing
the encoding.

VII. POSITION QUANTIZATION

In this last section, we look at fully quantized scenar-
ios where the positions of the physical systems, 	r and 	q,
are described by quantum operators. In general, knowing
the mechanical properties of the physical systems and the
trapping potential used to confine them one can define the
“mechanical” Hamiltonian Hm that governs their motion. This
Hamiltonian can be diagonalized

Hm =
∞∑

k=0

Ek|Ek〉〈Ek|, (7)

(a)

(b)

FIG. 3. (a) The setting consists of two 1D chains oriented along
the x axis, where each system A and B corresponds to one of
the chains. The positions of qubits Ai and Bj are given by 	ri =
(i�x, �y + riy ) and 	qj = ( j�x, qy j ), respectively, where rxi and
qy j ∈ {−δy, 0, δy}, with p(±δy) = 1/4 and p(0) = 1/2. (b) Optimal
infidelity of the implementation of U = e−i π

4 ZZ as a function of the
implementation time �t for different systems sizes for the setting
described in (a), with �x = 2, �y = 4, δy = 1, γ = 1, and J = 1.

to define the mechanical eigenmodes

|Ek〉 =
∫

�k (	r, 	q)|	r, 	q〉d	r d	q,

associated to the wave function �k (	r, 	q) and energy Ek . The
full Hamiltonian is now given by the sum of the two terms,

H = 1Q ⊗ Hm + Hzz, (8)

where Hm does not act on the internal (qubit) degrees of
freedom, and Hzz is still given by Eq. (4) but with the posi-
tions 	ri and 	q j which are operators [e.g., HA

zz = ∑
i, j ZA

i ZA
j ⊗

μ(	ri, 	r j )].
When we restrict A and B into logical subspaces and use the

basis {|Ek〉} for the mechanical dof, we can write the different
terms of H̄zz as

H̄A
zz + H̄B

zz =
∞∑

k,l=0

[(
μ̄a

kl + μ̄b
kl

)|Ek〉〈El |
]
,

H̄AB
zz =

∞∑
k,l=0

μ̄ab
kl Z̄A Z̄B ⊗ |Ek〉〈El |,

(9)
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where

μ̄a
kl =

∑
1�i< j�NA

ai a j〈Ek|μ(	ri, 	r j )|El〉,

μ̄b
kl =

∑
1�i< j�NB

bi b j〈Ek|μ(	qi, 	q j )|El〉,

μ̄ab
kl =

∑
1�i�NA
1� j�NB

ai b j〈Ek|μ(	ri, 	q j )|El〉.

Note that the self-interaction terms act trivially on the
logical qubits; nevertheless, they induce transitions between
mechanical eigenmodes contributing to the noise.

For simplicity, we assume the system is initialized in a state
of the form ρm ⊗ ρ̄, where ρ̄ is an arbitrary state of the two
logical qubits and

ρm =
∞∑

k=0

pk|Ek〉〈Ek|

is an arbitrary density operator commuting with Hm. Then the
evolution of the logical qubits is given by

U (ρ̄) = trm[e−i�t H (ρm ⊗ ρ̄)ei�t H ]. (10)

A. Nondegenerate case

First, we discuss the case where Hm is nondegenerate,
and assume that there is a clear scale separation between
the mechanical and the logical qubit interaction energies, i.e.,
|Ek − El | � |μ̄ab|. We can then go to the interaction picture
H ′ = iẆW † + W HW † where W = e−iHmt and perform the
rotating wave approximation. This results in neglecting the
hopping between mechanical eigenstates induced by the inter-
action between logical qubits, i.e., the terms μ̄ab

kl with k �= l ,
and leads to the following Hamiltonian,

H ′ =
∞∑

k=0

[(
μ̄a

k + μ̄b
k + μ̄ab

k Z̄AZ̄B
) ⊗ |Ek〉〈Ek|

]
,

where μ̄k = μ̄kk .
Note that if we let the system evolve the logical qubits

interact with a logical coupling strength that is a discrete
stochastic variable distributed as µ̄ab ∼ {μ̄ab

k , pk}; i.e., Eq. (10)
becomes

U (ρ̄) =
∞∑

k=1

pk e−i(μ̄ab
k �t )ZZ ρ̄ ei(μ̄ab

k �t )ZZ .

Therefore, the fidelity is given by

F ab(�t ) =
∞∑

k=0

pk cos2
(π

4
− μ̄ab

k �t
)
.

Observe that in this case, the logical qubits are also insensitive
to the self-interactions.

Hot 1D Paul trap

We now consider a particular example where the physical
qubit systems are ions in a 1D Paul trap. The ions are assumed
to be strongly bounded in the y and z directions but weakly
trapped in a harmonic potential along the x axis. The ions

also interact with each other with a Coulomb interaction that
leads to collective dynamics within the trap. A treatment of
the mechanical motion of the ions, which allows us to derive
the mechanical eigenstates, can be found in Ref. [44] (see also
Appendix E). In addition, we assume the system is in contact
with a thermal bath at temperature T , and ρm is given by a
thermal state, i.e.,

pk = e−Ek/T∑ξ

l=0 e−El /T
,

where ideally one should consider ξ → ∞. However, due to
computation limitations, we are forced to consider a finite
ξ , and pk = 0 for k > ξ . In particular, given 0 < ε < 1, we
define ξ as

ξ = arg min
ξ ′

ξ ′∑
k=0

e−Ek/T > (1 − ε)
∞∑

l=0

e−El /T .

Note that ξ depends on T but also on {Ek}. In general, given
a fixed ε, ξ increases with the total number of ions NA + NB,
meaning that the amount of noise increases with the system
size.

In Fig. 4 we show different settings based on the described
trap. In Fig. 4(a), we assume that module A consists of the first
�K/2� ions of the chain while the rest constitute module B. In
Fig. 4(b), we consider each module to be in an independent
trap. Module A is of an arbitrary size system, while B consists
of a single ion. Such setting corresponds to the quantum
analog of the cold mediating system described in Sec. IV,
as the trap frequency (which characterizes the strength of the
trapping potential) of A is chosen to be one hundred times
larger than the frequency of trap B. Finally, in Fig. 4(c) we
consider both modules to be of the same size and each of them
is within an independent trap. In Figs. 4(d), 4(e), and 4(f),
we plot the optimal infidelity for the mentioned setting for
different system sizes. For all cases, we obtain that increasing
the number of ions within the traps leads to an enhancement
of optimal fidelity for any time �t . However, similarly to
the case analyzed in Sec. VI, for two independent traps to
optimize the logical subspaces does not further enhance the
fidelity significantly.

B. General case

In this section, we analyze a more general scenario where
H cannot be approximated as diagonal in the basis {|Ek〉 ⊗
|ī j̄〉}. In this case, the position of the physical systems en-
tangles with the logical qubits, which prevents one from
interpreting the logical coupling strength as a stochastic vari-
able. Instead, we need to explicitly compute the coherent
evolution of the whole system; see Eq. (10).

We analyze a particular example of a 2D lattice where
each physical system is trapped in an independent harmonic
potential, i.e., Hm = K + V, where K is the kinetic energy of
the physical systems and

V = ω2

2

N∑
i=1

(∣∣	ri − 	r 0
i

∣∣2 + ∣∣	qi − 	q 0
i

∣∣2)
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(a) (b) (c)

(d) (e) (f)

FIG. 4. (a)–(c) Different settings consisting of 1D Paul traps. (d)–(f) Optimal infidelity of the implementation of U = e−i π
4 ZZ as a function

of the implementation time � for different system sizes, NA and NB, with γ = 3 and J = 1 for each of the settings. “t.t.b.” means “top to
bottom.” (a), (d) A 1D chain of ions in a harmonic potential with a Coulomb interaction can be written in terms of the normal modes. System
A consists of the first half of the chain and system B of the rest of the ions, with ω = 1, L = 4.78, T = 1.3, and ε = 0.07. (b), (e) Systems A
and B are in parallel independent traps with NB = 1, ωA = 100 ωB = 1, �y = 20, L = 15.97, T = 0.1, and ε = 0.05. (c), (f) Systems A and B
are in parallel independent traps with NA = NB, ωA = 3 ωB = 1, LA = LB = 8.31, �y = 2, T = 0.2, and ε = 0.01.

is the potential energy where 	r 0
i = (0, i�y) and 	q 0

i =
(�x, i�y) are the equilibrium positions of the physical sys-
tems and N = NA,B; see Fig. 5(a). This is a good model for the
trapping of neutral atoms, which are not subject to the strong
Coulomb interaction.

(b)

(a)

FIG. 5. (a) The physical qubit systems are arranged in a 2D lat-
tice. (b) Infidelity of the implementation of U = e−i π

4 ZZ as a function
of time for different system sizes, of the setting shown in (a) with
ω = 30, �x = �y = 2, γ = 3, J = 5, and ρm = 1/32N .

Due to computational limitations, we cannot consider the
infinite spectrum of Hm. Instead, we consider the mechan-
ical degree of freedom of each particle to be a three-level
system spanned by the ground and the first two excited
states, i.e., the Hilbert space of the physical qubit sys-
tems positions is given by

⊗N
k=1 HAk

m ⊗ HBk
m where Hk

m =
span{|0k, 0k〉, |0k, 1k〉, |1k, 0k〉} and |mk nk〉 is the state of the
kth particle at the m(n)th excited state in the x(y) direction,
i.e.,

〈 	ri | mAi nAi〉 = �ω
m

(
rxi − r0

xi

)
�ω

n

(
ryi − r0

yi

)
,

〈 	q j | mBj nBj 〉 = �ω
m

(
qx j − q0

x j

)
�ω

n

(
qy j − q0

y j

)
,

where �ω
n (x) is the wave function of the nth excited state of a

quantum harmonic oscillator of frequency ω.
Figure 5(b) shows the infidelity for different system sizes

using the trivial encoding, given by a = b = 1, and if we
initialize the mechanical degree of freedom of the system
in the maximally mixed state ρm = 1/9N . Due to numeric
limitations, we cannot compute the optimal infidelity curve.
However, we show that the trivial encoding already signifi-
cantly enhances the reachable fidelity and implementation.

VIII. BACKGROUND NOISE

We now show that on top of the error mitigation capabili-
ties against thermal fluctuations, one can also make the system
insensitive to a noisy background field. So we consider an
extra term in the Hamiltonian of the form

Hext =
K∑

k=1

hk Zk,

where hk is the intensity of the external field at the position of
the kth physical qubit system. If hk is unknown, Hext yields to
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a phase damping channel acting on each qubit
⊗K

i=k Dk where

Dk (ρ) =
∫

e−iθZk ρ eiθZk p(θ ) dθ,

where if p(θ ) = N[0, σ 2], it is equivalent to a phase flip
channel; see Ref. [45].

However, we can easily make the system insensitive to
such noise at a certain time τ by flipping all qubits at τ/2,
i.e.,

X ⊗K e−i(Hzz+Hext )τ/2 X ⊗K e−i(Hzz+Hext )τ/2 = e−iHzzτ ,

where we used that X1X2 eiθZ1Z2 X1X2 = eiθZ1Z2 and
X1X2 ei(h1Z1+h2Z2 )X1X2 = e−i(h1Z1+h2Z2 ). In this way, we can
generate the required evolution e−iHzz . Then evolving the
system under e−iHzz while performing fast flips at a specific
time we can effectively generate the evolution with noninteger
spin values, as we explain in former work in Ref. [40],
Sec. 3.6.

IX. CONCLUSION AND OUTLOOK

In this article, we introduced a technique to perform high-
fidelity logical two-qubit gates where the constituents of the
logical system are affected by thermal noise. In particular, we
detailed alternative quantum computing architectures based
on interconnected modules. We assume full control over the
individual modules is given, but joint control between mod-
ules is not. To connect the modules one would use the physical
interaction between their constituting qubits, which makes the
scheme vulnerable to thermal noise. We considered different
settings where position noise affects in different manners,
including collective and individual noise or classical and fully
quantized qubit position treatments. Due to computational
restrictions, we have been forced to simplify the models.
However, even with these simplifications our models still re-
semble realistic setups and we compensate them by the large
variety of treated examples. We showed that our method could
make the schemes position-noise resilient by encoding logical
qubits in the physical ones and using the logical encoding
to mitigate the effects of position fluctuations. In particular,
we show the fidelity of two-qubit gates can be enhanced by
increasing the size of the logical systems. In addition, using
logical qubits one can obtain enlarged interaction couplings
that reduce the implementation time.

We also show that the setup can be totally protected from
other kinds of noise such as background radiation without any
extra cost in fidelity or resources.

The central ingredient enabling our approach is fixed
distant-dependent Ising-type interactions between physical
qubit systems. While such interactions are present to some ex-
tent in various systems [10–12,14,18–20,32,33], the question
of whether they can be used to realize the proposed methods
in given setups is left for future work.
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APPENDIX A: FIDELITY OF THE ZZ-DAMPING
CHANNEL

Here, we derive Eq. (3) for the fidelity of the ZZ-damping
channel. So on the one hand we consider the unitary entan-
gling gate

U = e−i π
4 ZZ ,

and on the other hand the ZZ-damping channel

U (•) =
∫

e−iθZZ • eiθZZ p(θ ) dθ, (A1)

where p(θ ) is the probability function of θ.
The Choi fidelity of U with respect to U is given by F =

〈�U |�U |�U 〉, where

|�U 〉 = 1

2

1∑
i, j=0

|i j〉 ⊗ U |i j〉,

�U = 1

4

1∑
i, j,k,l=0

|i j〉〈kl| ⊗ U (|i j〉〈kl|)

= 1

4

∫
|�θ 〉〈�θ |p(θ ) dθ,

and

|�θ 〉 = 1

2

1∑
i, j=0

|i j〉 ⊗ e−iθZZ |i j〉.

Note that computing

〈�U |�θ 〉 = 1

4

1∑
i, j=0

〈i j|ei( π
4 −θ )ZZ |i j〉

= 1

4

1∑
i, j=0

ei(−1)i+ j ( π
4 −θ )

= 1

2
[ei( π

4 −θ ) + e−i( π
4 −θ )]

= cos
(π

4
− θ

)
,

the fidelity can be written as

F =
∫

|〈�U |�θ 〉|2 p(θ ) dθ

=
∫

cos2
(π

4
− θ

)
p(θ ) dθ

=
〈
cos2

(π

4
− θ

)〉
.

Note that in the main text, we consider θ = μ�t .

APPENDIX B: COLD MEDIATING SYSTEM
FINAL FIDELITY

We consider the following sequence of gates such that it
mediates an interaction between the first and the second qubit,

(Z1Z2)k P(k)
0 eiαX0 CZ01CZ02|+〉0|ψ〉12 �→ eiαZZ |ψ〉12, (B1)

where P(k) = |k〉〈k|, and |ψ〉 is an arbitrary state.
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Then if we use the noisy interaction to implement the CZ
gates, the channel describing the process is given by

S (•) =
∫

Sαβ (•) p(α) p(β ) dα dβ,

where

Sαβ (•) =
1∑

k=0

M (k)
012 U (α)

01 U (β )
01 (•)U (α) †

01 U (β ) †
01 M (k) †

012 ,

with U (α) = e−iαZZ and M (k) = (Z1Z2)k〈k|0e−i π
4 X0

ei π
4 (2Z0+Z1+Z2 ).
The fidelity for fixed but arbitrary angles α and β

Fαβ = 〈�U |�αβ |�U 〉 = cos2
(π

4
− α

)
cos2

(π

4
− β

)
,

where �αβ is the Choi state of Sαβ . Therefore the fidelity of
S is given by the expected value of Fαβ , i.e.,

F =
∫

Fαβ p(α) p(β ) dα dβ

=
∫

cos2
(π

4
− α

)
cos2

(π

4
− β

)
p(α) p(β ) dα dβ

=
〈
cos2

(π

4
− α

)〉〈
cos2

(π

4
− β

)〉
= F2 F3,

where Fj is the fidelity of the noisy control gate between the
jth hot qubit and the auxiliary system.

APPENDIX C: COLD MEDIATING SYSTEM: 2D

Here we describe a direct 2D extension of the example
analyzed in Sec. IV. We assume the positions of the qubits
in A are given by

	r1 = (�x,�y, 0), 	r6 = (2�x, 2�y, 0),

	r2 = (2�x,�y, 0), 	r7 = (0, 0, 0),

	r3 = (�x, 2�y, 0), 	r8 = (0, 2�y, 0),

	r4 = (0,�y, 0), 	r9 = (2�x, 0, 0),

	r5 = (�x, 0, 0),

(C1)

and the position of the qubit in B is a stochastic variable
given by 	q = (q1x, q1y, q1z ) where q1x ∼ N[�x, σ 2], q1y ∼
N[�y, σ 2] and q1z = �z.

In Fig. 6(a), we plot the infidelity as a function of time
for different system sizes. We obtain a behavior similar to the
1D case. However, in this case, the physical qubit systems are
not located in a symmetric way leading to asymmetric fidelity
improvement with the system size.

APPENDIX D: COLLECTIVE POSITION NOISE: 2D

Here we describe a direct 2D extension of the example
analyzed in Sec. V. We assume the position of the physical
qubit system is given by

	r = 	r 0 + (	r,	r, . . . ,	r),
	q = 	q 0 + (	q, 	q, . . . , 	q),

(a)

(b)

FIG. 6. (a) Optimal infidelity as a function of time for different
values of NA, with NB = 1, γ = 1, �x = �y = �z = 1, and σ = 1.
(b) Optimal infidelity as a function of time for different values of NA

and NB, with γ = 1, �x = �z = 1, and σ = 2.

where 	r and 	q ∼ N[0, σ 2], and where in this particular exam-
ple 	r 0 is given by

	r 0
1 = (0, 0,�z), 	r 0

5 = (�x,�y,�z),

	r 0
2 = (�x, 0,�z), 	r 0

6 = (2�x,�y,�z),

	r 0
3 = (2�x, 0,�z), 	r 0

7 = (0, 2�y,�z),

	r 0
4 = (0,�y,�z), 	r 0

8 = (�x, 2�y,�z)

(D1)

and 	q 0 by

	q 0
1 = (0, 0, 0), 	q 0

5 = (�x,�y, 0),

	q 0
2 = (�x, 0, 0), 	q 0

6 = (2�x,�y, 0),

	q 0
3 = (2�x, 0, 0), 	q 0

7 = (0, 2�y, 0),

	q 0
4 = (0,�y, 0), 	q 0

8 = (�x, 2�y, 0).

(D2)

In Fig. 6(b) we plot the infidelity as a function of time for
different system sizes. Like in the previous section, here we
obtain a similar behavior to the 1D case. However, in this
case, the physical qubit systems are also not located in a
symmetric way leading to asymmetric fidelity improvement
with the system size.

033101-10



QUANTUM COMPUTATION WITH LOGICAL GATES … PHYSICAL REVIEW RESEARCH 6, 033101 (2024)

APPENDIX E: TRAP MODES

We consider a chain of K ions in a 1D trap as described in
Ref. [44]. The ions are assumed to be strongly bound in the y
and z directions but weakly bound in a harmonic potential in
the x direction. The motion of each ion will be influenced by
an overall harmonic potential due to the trap electrodes and by
the Coulomb force exerted by all of the other ions. Hence, the
physical qubit systems are subjected to the potential

V = ω2

2

K∑
m=1

x2
m +

∑
1�i< j�K

χ

|xi − x j | ,

where ω is the trap frequency, and χ > 0 is a constant related
to the Coulomb interaction and the ionization of the ions.

The equilibrium positions, x0 = (x0
1, . . . , x0

K ), are such that
fulfill (

∂V

∂xi

)
x0

= 0, (E1)

for 1 � i � K . Note if one writes Eq. (E1) in terms of the
dimensionless position coordinates given by x̄i = xi/L where
L3 = χ/ω2, then in Eq. (E1) the only parameter left is K ; e.g.,
for K = 3 one obtains

x̄0
1 = −

(
5

4

)1/3

, x̄0
2 = 0, x̄0

3 =
(

5

4

)1/3

.

Therefore, given any ω and χ we can find the equilibrium
positions as x0

i = L x̄0
i .

If the ions are cold enough to assume small displacements
around the equilibrium positions, one can perform a Taylor
expansion of the potential around x0 up to the second order
and obtain the following approximation of the Hamiltonian,

Hm ≈ 1
2 (|ẋ|2 + ω2 δx · V′′ · δx),

where δx = x − x0
i collects the displacement from the equi-

librium position of the ions and V′′ = 1
ω2 [∂2V/(∂xi∂x j )]x0 is

a parameter-independent matrix, i.e., independent of ω and
χ . Note V ′′ is symmetric, and hence its eigenvectors form an
orthonormal basis; i.e., there exists a set of vectors {v(m)} such
that V′′ · v(m) = λmv(m) and v(m) · v(n) = δmn. Therefore, one
can write δx as a linear combination of the eigenvectors, i.e.,

δx =
K∑

m=1

umv(m),

where um = v(m) · δx, and write the Hamiltonian in the fol-
lowing coordinates:

Hm ≈
K∑

m=1

1

2

(
u̇2

m + ω2 λm u2
m

)
.

Therefore, in the new coordinates {um}K
m=1, e.g., for K = 3

u1(δx) = 1√
3

(δx1 + δx2 + δx3),

u2(δx) = 1√
2

(δx1 − δx3),

u3(δx) = 1√
6

(δx1 − 2δx2 + δx3),

(a)

(b)

FIG. 7. (a) Optimal logical subspace a for t = 0.9, for the
scheme details in Fig. 2(a) in the main text. The ith bar of the his-
togram corresponds to the value of ai. (b) Optimal logical subspace
a for t = 0.5, for the scheme details in Fig. 2(d) in the main text. The
ith bar of the histogram corresponds to the value of ai.

the Hamiltonian decouples in K independent harmonic oscil-
lators of frequency νm = √

λm ω where λ1 = 1, λ2 = 3, and
λ3 = 29/5.
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Therefore, the eigensystem of Hm is given by {Em, |m〉},
where |m〉 = ⊗K

i=1 |mi〉 contains mk excitations or phonons
on the kth mode. In other words,

|mi〉 =
∫

�νi
mi

(ui )|ui〉dui,

where

�ν
n (x) = 1√

2nn!

( ν

π

)1/4
e−νx2/2 Hn(

√
ν x)

is the wave function of the mth excited state of a quantum
harmonic oscillator of frequency ν and Hm(x) are the Hermite
polynomials, and hence

Em =
K∑

i=1

νi

(
mi + 1

2

)
.

In Sec. VII A of the main text we consider different settings
based on 1D Paul traps. Here, we provide more detail on the
considered setting:

(i) One single Paul trap. We consider modules A and
B within the same 1D Paul trap; see Fig. 4(a). Module A
consist of the first NA = �K/2� physical qubit systems, i.e.,
	ri = (xi, 0), while the rest NB = �K/2� constitute module B,
i.e., 	q j = (xNA+ j, 0). Therefore, the wave function of the |m〉
is given by

�m(r, q) =
NA+NB∏

i=1

�νi
mi

[ui(δr, δq)].

(ii) Two independent 1D Paul traps. We then consider each
module in an independent trap; see Figs. 4(d) and 4(f). The
two traps are oriented in the same direction and separated
by a distance �y. Each trap has a certain frequency ωA and
ωB. In addition, we consider the ions in each trap to have a
different ionization χA and χB such that both traps have the
same equilibrium positions, i.e., r0

xi = q0
xi. This is achieved by

tuning the ionization of the ions to such that it is fulfilled that
LA = LB.

Therefore, in this case, the mechanical Hamiltonian is the
sum of the Hamiltonian of each trap, i.e., Hm = HA

m + HB
m, and

the eigenstates are given by |m〉A|n〉B. The wave functions of
the eigenstates depend on the equilibrium positions and the
natural frequencies of each trap, ωA and ωB. If νm = √

λm ωA

and ν̃m = √
λm ωB then

�mn(r, q) =
NA∏
i=1

�νi
mi

[ui(δr)]
NB∏
j=1

�
ν̃ j
n j [u j (δq)].

APPENDIX F: OPTIMAL LOGICAL SUBSPACES

We find in this section the optimal values of a and b for the
scenarios analyzed in Secs. IV and V; see Figs. 7(a) and 7(b),
respectively. A systematic observation is that the effective
spin values are symmetric along the chain due to the setting
symmetry. A second observation is that the “extremal” qubits
(i.e., those farther away from the center) have the larger spin
value. The intuition behind this is that this leads to a “flatter”
potential, which is less sensitive to position noise.
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