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Pattern formation in odd viscoelastic fluids
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Nonreciprocal interactions fueled by local energy consumption can be found in biological and synthetic active
matter at scales where viscoelastic forces are important. Such systems can be described by “odd” viscoelas-
ticity, which assumes fewer material symmetries than traditional theories. Here we study odd viscoelasticity
analytically and using lattice Boltzmann simulations. We identify a pattern-forming instability which produces
an oscillating array of fluid vortices, and we elucidate which features govern the growth rate, wavelength, and
saturation of the vortices. Our observation of pattern formation through odd mechanical response can inform
models of biological patterning and guide engineering of odd dynamics in soft active matter systems.
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I. INTRODUCTION

A striking feature of nonequilibrium systems is their ten-
dency to undergo spatiotemporal pattern formation [1,2].
Coherent structures such as convective rolls [3], Turing pat-
terns [4], and pulsatile contractions of active gels [5] emerge
spontaneously as the active driving in a system overcomes
stabilizing dissipative forces. Pattern-forming instabilities are
biologically important since, for example, they are utilized by
growing organisms for morphogenesis [6]. In many biological
examples of soft active matter systems, patterns are driven by
the interplay of an active contribution to the local stress [7–9]
and a concentration field of chemical regulators [5,10–14].
One can ask whether pattern formation in soft active matter
systems can be reached through alternative routes which do
not rely on active stresses and gradients of chemical regula-
tors. We show here that pattern formation in a viscoelastic
fluid can occur without either of these features, provided that
the system displays odd nonequilibrium elastic responses to
mechanical deformations.

Odd elasticity, which complements the older theory of
odd viscosity [15–21], has been developed by Vitelli and
coworkers to describe elastic materials with internal energy-
consuming degrees of freedom that do not obey several of the
usual symmetries from classical elasticity theory [22–26]. It
has recently been reported that certain engineered and even
biological systems exhibit odd elasticity: crystals of spin-
ning magnetic colloids [27] and starfish embryos [28], certain
active metamaterials [29], and even muscle fibers [30] all
transduce energy from an external or chemical drive into
nonreciprocal pairwise interactions.
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Whereas the predicted phenomenology of odd elastic sys-
tems, such as odd elastic waves and negative Poisson ratios
[22,23], has been appreciably mapped out, the full implica-
tions of odd responses in viscoelastic materials remains to
be explored. Some theoretical progress has been made in
characterizing the thermodynamics and wave dispersion prop-
erties of odd viscoelastic materials [22,24,25]. These works
identified novel transport properties and suggested ways that
these properties could be experimentally detected; they also
proposed that odd dynamics could be important for describ-
ing active biological materials like the actomyosin cortex.
However, exploring this possibility for complex models which
capture the composite nature of biological active matter re-
quires advances in simulation methods to allow for tensorial
viscoelastic responses in the hydrodynamic description of
multicomponent active viscoelastic fluids.

Here, we report on hydrodynamic simulations of a three-
element active viscoelastic fluid using a recently developed
extension of the hybrid lattice Boltzmann algorithm which
can treat odd viscoelastic forces [31]. Combining these sim-
ulations with linear instability analysis, we demonstrate that
the interaction of passive viscosity and active odd elasticity
allows for the emergence of an oscillating vortex array with a
tunable characteristic wavelength and growth rate [Fig. 1(a)].
We additionally show that the initial exponential growth of
the vortices saturates if a shear-thickening nonlinearity is
included in the dynamics. Our results suggest that such dy-
namical signatures may be generic to broad classes of odd
viscoelastic systems encompassing various microscopic dy-
namics.

II. ODD VISCOELASTIC FLUID MODEL

Our model for odd viscoelasticity in this paper is an odd
Jeffrey fluid. The usual Jeffrey fluid consists of a solvent phase
in which a viscoelastic Maxwell material is immersed [32,33],
and it has recently been identified as a model with minimally
sufficient complexity to quantitatively describe biological ma-
terials like the cytoplasm [34,35]. In our case, while we treat
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FIG. 1. Odd viscoelastic fluids. (a) Schematic illustration of the pattern formation instability observed in odd viscoelastic fluids. (b) A
three-element mechanical circuit, comprising a viscous solvent in parallel with an odd Maxwell element, represents a minimal model for an
odd composite viscoelastic fluid. (c) Two candidate systems which may display odd viscoelastic phenomenology.

the viscosities of the solvent and viscoelastic phases as scalar,
we treat the elastic contribution to the fluid stress using the
theory of odd elasticity. The mechanical circuit describing
this viscoelastic model is depicted in Fig. 1(b). It can be
shown that this model can map directly onto the other three-
element viscoelastic fluid models, such as one in which the
solvent viscosity acts in series with a Kelvin-Voigt element;
see Refs. [32,35]. We expect that an odd Jeffrey fluid could
be physically realized in at least two types of systems: one in
which active spinners are linked together through a polymer
network [36], and one in which attractive interactions between
the active spinners cause them to form a dense suspension
through viscoelastic phase separation [37,38] [Fig. 1(c)]. A
key feature of these systems is that the spinners are not con-
fined to a crystalline order, which would require description
as an odd elastic or viscoelastic solid, rather than a fluid
[22,27,28,39].

The dynamical equations governing the evolution of the
odd Jeffrey fluid are

∂tρ = −∂i(ρvi ), (1)

p = c2
s ρ, (2)

ρDtvi = −∂i p + 2ηs∂k�ik + ∂kσ
p
ik + fi, (3)

Dtσ
p
i j = Ci jkl∂kvl − η−1

p Ci jklσ
p
kl + Dp∂kkσ

p
i j . (4)

Here, ρ is the fluid density, v is its velocity, p is its pressure, cs

is the speed of sound in the fluid, ηs is the solvent’s dynamic
viscosity, �i j ≡ (∂iv j + ∂ jvi )/2 is the symmetric strain rate
tensor, and σp is the viscoelastic contribution to the stress
tensor. The isothermal equation of state, Eq. (2), implies
that the fluid is weakly compressible [40]; see Ref. [41] for
recent work on the interplay of weak compressibility and
odd viscous forces. The term f in the Navier-Stokes equa-
tion is an optional external force field. C is a rank four odd
elasticity modulus tensor, ηp is the dynamic viscosity of the

viscoelastic phase (assumed to be scalar here), and Dp is the
viscoelastic stress diffusion constant [42]. Odd tensorial vis-
cosity of the viscoelastic phase could be straightforwardly
incorporated in this model by generalizing the coefficient
η−1

p Ci jkl in Eq. (4) as a rank four relaxation tensor Ri jkl [24].
This would not affect the functional form of the model, so
we omit this for simplicity. Further, ∂t is the partial derivative
with respect to time, Dt ≡ ∂t + vk∂k is the material deriva-
tive, and Dt Xi j ≡ Dt Xi j + �ikXk j − Xik�k j is the corotational
derivative of the tensor X, with the vorticity tensor defined as
�i j ≡ (∂iv j − ∂ jvi )/2. If the upper convected derivative were
used instead of the corotational derivative in Eq. (4), we would
have the Oldroyd-B model. In the subsequent linear instability
calculation, however, these two derivatives are equivalent be-
cause they both reduce to ∂t to linear order, and our analytical
results thus hold for the Oldroyd-B model as well.

In this work we consider an isotropic odd elastic modulus
tensor Ci jkl , whose form was derived in Ref. [22]:

Ci jkl = Bδi jδkl + μ(δilδ jk + δikδ jl − δi jδkl )

+ KoEi jkl − Aεi jδkl , (5)

where δi j is the Kronecker delta, εi j is the Levi-Civita ten-
sor, and Ei jkl ≡ (εikδ jl + εilδ jk + ε jkδil + ε jlδik )/2. The bulk
(B) and shear (μ) moduli are found in classical elasticity
theory, but the modulus A, which transforms a dilatational
deformation into torque (but not vice versa), and Ko, which
antisymmetrically couples the two shear modes, are the active
“odd” moduli. Equation (4) is a phenomenological gener-
alization of a standard Maxwell material to include odd
elastic coefficients. It does not correspond to a specific mi-
croscopic system, instead serving as a general model to
explore the repercussions of nonreciprocity in a composite
viscoelastic material. In the Supplemental Material [43], how-
ever, we illustrate how one can coarse grain a microscopic
“nonreciprocal elastic dumbbell” model to yield continuum
equations with emergent odd coefficients like Ko.
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FIG. 2. Dispersion relations. To reduce the number of free parameters, all quantities in this figure are nondimensionalized using the
following physical scales: pressure P = μ, length L = ηs/

√
ρsμ, and flow speed V = √

μ/ρs where ρs is the density of the fluid in the uniform
state. The default parameters are given in the Supplemental Material [43] . (a) The real part of one of the nine branches νn is shown as Ko is
varied. (b) Two branches are shown as cs is varied. The boxed region is blown up and displayed as an inset to allow easier visualization. The
dashed arrow indicates that as the system becomes less compressible with increasing cs, the compressibility-dependent branch of the unstable
region decreases to zero. (c) Three-dimensional heatmap of the maximum real part of the growth rate ωmax in the incompressible limit.

III. RESULTS

The stability of the homogeneous state of the odd Jeffrey
fluid is controlled by an intricate balance between stabilizing
and destabilizing forces, the relative magnitudes of which
depend on the parameters entering Eqs. (1)–(5). In Sec. IIA
of the Supplemental Material [43], we derive the dispersion
relation ν(k) for the growth of plane wave perturbations using
the ansatz eν(k)t eik·r for the pattern forming fields. Linear
instabilities occur when ω(k) > 0 for some wave number k,
where ω(k) ≡ maxnRe[νn(k)] is the largest of the real parts of
nine branches of the dispersion relation ν(k). The dispersion
relation is complicated but reduces to the linear form derived
in Ref. [44] in the special case ηs = 0, ηp → ∞, Dp = 0,
and A = 0. Although the stabilizing forces in this composite
viscoelastic fluid are more complex than those in a one-
component viscoelastic solid as considered in Ref. [22], the
intuition provided there of odd work cycles driving active
waves also applies to the instabilities found in our model.

We studied how the various parameters control the sys-
tem’s stability by plotting for each parameter the dispersion
relation ωmax ≡ maxkω(k) over a range of parameter values
[Fig. 2(a); see Fig. 1 in the Supplemental Material [43] for
several other parameters]. Key drivers of the instability in-
clude the odd moduli A and Ko: when their values lie outside a
threshold set by the remaining parameters, the homogeneous
state is unstable. Furthermore, Ko alone is sufficient to cause
instability, while A cannot cause instability if Ko = 0. The
two parameters work cooperatively if their signs agree, such
that if Ko > 0 then the instability growth rate increases as
A increases, but if Ko < 0 the growth rate increases as A
decreases (Fig. 2 in the Supplemental Material [43]). We
also find that the value of the fastest growing wave num-
ber kmax ≡ argmaxkω(k) increases with Ko [Fig. 2(a), and
Fig. 4(a) in the Supplemental Material [43]] and either in-
creases or decreases with A depending on the relative signs
of Ko and A.

The nature of the instability threshold qualitatively changes
in the incompressible limit cs → ∞ (where dilatational
deformations disappear, i.e., ∂kvk = 0). First, as one might
expect, the instability no longer depends on the moduli A or
B which couple dilatational deformations to, respectively, a
torque and an isotropic stress. Additionally, in the compress-
ible case we typically observe two branches of the dispersion
relation νn(k) which can take on real positive values for some
k. However, in the incompressible limit one of these branches
shrinks below zero and remains stable for all k [Fig. 2(b)].

The shear modulus μ, the viscosities ηs and ηp, and the
stress diffusion constant Dp have predominantly stabilizing
effects, causing ω(k) to decrease as their values increase
[Fig. 2(c), and Fig. 1 in the Supplemental Material [43]]. We
note that ηs is a key parameter which suppresses the linear
relationship ω(k) ∝ k at large k (Fig. 3 in the Supplemental
Material [43]). This allows for a finite kmax and thus a finite
length scale of the instability. In previous work [24] ηs was
set to zero, precluding the observation of pattern formation
since all wavelengths are unstable if ω(k) ∝ k.

We next sought to study the growth of the instability in
the compressible case using lattice Boltzmann simulations. To
simulate an odd Jeffrey fluid, we apply a recently developed
implementation of the hybrid lattice Boltzmann algorithm
[31]. To excite the instability in simulation we apply a short,
periodic, random force f (r) (see Sec. IIB in the Supplemental
Material [43]) and then evolve the system. As a readout of the
instability, we use the total absolute vorticity in the system
W ≡ ∫ |�(r)|dr, where � ≡ ∂xvy − ∂yvx = 2�xy. Above the
instability threshold, W oscillates and grows exponentially
in time [Fig. 3(a)]. If the growth rate is fast enough that W
exceeds the value it attained during the initial perturbation in
0.2 s, we conclude that the fluid is unstable. In Fig. 3(b) we
show that the conditions of Ko and μ which are predicted to
be unstable from the linear instability calculation are matched
by those which produce a detected instability in simulation.
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FIG. 3. Numerical validation of instability threshold. (a) For
Ko = 5 Pa, trajectories of W for two values of μ. See the movies
in the Supplemental Material [43] for videos of these simulations.
(b) A heatmap of max{0, ωmax}, with a contour at ωmax = 0 drawn in
black. When ωmax > 0, the homogeneous state of the system is un-
stable. The symbols are simulation data, with red stars representing
a detected instability for that condition and blue circles representing
a lack of detected instability.

In Fig. 4(b) of the Supplemental Material [43], we also show
that the fastest growing wavelength of the instability matches
the characteristic wavelength detected in simulation. As odd
active work cycles require more than one spatial dimension
[22], we find that under sufficient lateral confinement of the
system, the instability is suppressed (Fig. 5 in the Supplemen-
tal Material [43]).

The spatial structure of the pattern is a regular periodic
array of vortices with alternating handedness. The vorticity
at a given point oscillates and grows exponentially in time, as
shown in Figs. 4(a) and 4(b), where the vorticity at a point is
fit to the functional form

�(t ) = a exp(bt ) cos(ct + d ). (6)

In Fig. 6 of the Supplemental Material [43], we show that
the detected growth rate b and oscillation frequency c from
simulations match those determined from the real and imag-
inary parts of the dispersion relationship. We observe both
checkerboard and striped patterns which oscillate and grow
in time. At later times the patterns are dominantly composed
of oscillating stripes of alternating handedness; see Figs. 4(c)
and 4(d), and Fig. 7 and movies in the Supplemental Ma-
terial [43]. The periodic patterns do not travel but instead
resemble standing waves. This instability falls in type Io of
the classification of Cross and Hohenberg [1], being periodic
in space and oscillatory in time. Although we have focused
on the vorticity �(r) as the pattern-forming field, we note
that patterning appears for other fields as well, including the
divergence, density, and torque, as shown in Fig. 8 in the
Supplemental Material [43].

The initial exponential growth of the instability can in
principle saturate due to various nonlinearities. The advec-
tive term in the Navier-Stokes equation, which is neglected
for unsteady Stokes flows at low Reynolds number, is one
possibility. We account for this term in our simulations, but
we typically observe that the lattice Boltzmann algorithm
becomes numerically unstable due to large fluid velocities be-
fore saturation from this term occurs. Another possible source
is the nonlinear correction to the elastic forces experienced
for large deformations, which we neglect here. Treating odd
effects in the framework of finite elasticity requires additional
theoretical development. Instead, we study here saturation
caused by a shear-thickening nonlinearity which can result,
for instance, from flocculation of dilatant viscoelastic suspen-
sions like blood [45,46]. We consider a Carreau form [47]
ηp(�i j ) = η0

p(1 + 2β2�i j�i j )(n−1)/2 which we use in Eq. (4).
The parameter β sets the scale at which the shear flow �i j

begins to alter the viscosity, and the exponent n determines

FIG. 4. Simulations of pattern formation. The default parameters are given in the Supplemental Material [43]. (a) The vorticity over time
at the point (−5 μm,−5 μm) is shown as black symbols for A = −20 Pa. The red curve is the fit of Eq. (6) to these data points. The fitting
parameters b and c are 9 s−1 and 490 s−1. (b) The same as panel (a), but for A = 20 Pa. The fitting parameters b and c are 51 s−1 and 473 s−1.
(c) A simulation snapshot at t = 0.13 s for the condition A = −20 Pa. Color represents vorticity � and the streamlines range from black to
white as the represented velocity increases. (d) The same as panel (c), but for A = 20 Pa. See movies in the Supplemental Material [43] for
videos of these simulations.
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FIG. 5. Saturation of growth by a shear-thickening nonlinearity.
The total absolute vorticity W is plotted against time as the pa-
rameter β of the Carreau form for shear thickening is varied. The
same random seed was used for the initial perturbation in each of
these simulations. Here η0

p = 0.1 Pa s and Nx = Ny = 250, and the
remaining parameters are given in the Supplemental Material [43].

if the system is shear thinning (n < 1) or thickening (n > 1);
here we use n = 1.5. In Fig. 5 we display the trajectory W (t )
for several values of β, showing that this nonlinearity can
significantly tune the flow rate in the pattern forming state of
an odd viscoelastic fluid.

IV. CONCLUSION

We have shown that “odd” moduli can provide a mech-
anism for pattern formation in nonequilibrium viscoelastic
fluids. Whereas in typical soft active matter systems pattern
formation is driven by active stresses and chemical regulators
[5,8–13], here it is driven by active elastic response to me-
chanical deformations. Given that pattern formation and wave
propagation due to active stresses can template developmental
processes [6], our discovery of another mechanism for pat-
tern formation may have biological implications. Odd elastic
forces could also interact with active stresses and chemical
regulators. This may introduce new features to current models
of traveling waves, pulsatile motions, and other dynamical
patterns known to occur in biological or bioinspired materials
like actomyosin sheets [5,10,14,48].

Collectives of rollers [49–52], bacterial suspensions
[53,54], as well as both reconstituted and in vivo cytoskele-
tal systems [55,56] exhibit chiral and vortical flows similar

to those reported here. While models for these systems are
not currently framed using the theory of odd viscoelasticity,
it should be possible to construct emergent, coarse-grained
descriptions of their dynamics in terms of odd coefficients.
In the Supplemental Material [43] we provide an example of
this type of coarse graining for a microscopic “nonreciprocal
elastic dumbbell” model; this derivation recapitulates the key
coefficient Ko driving instabilities in our phenomenological
dynamical equations. A complementary coarse-graining ap-
proach to derive continuum odd viscoelasticity was recently
presented in Ref. [57]. We note that coarse-graining cytoskse-
letal systems poses a challenge because the constituent force
dipoles are anisotropic, in contrast with the current isotropic
model of odd elasticity.

We focused here on the linear instability of an odd Jeffrey
fluid, but future work could clarify more of its rheological and
dynamical properties. Detectable signatures of odd dynamics
should be present even below the instability threshold. To
experimentally distinguish an active flow as being due to odd
viscoelaticity, we expect that one can exploit the following
features: it does not rely on spatial gradients of chemical
activators, it comprises strong vortical components, and it
requires more than one spatial dimension. We expect that
in canonical setups such as Couette or Pouseille flow of a
compressible odd Jeffrey fluid, one may find transverse com-
ponents of the flow analogous to the Hall effect. A recent
theoretical study clarifies the expected dynamics experienced
by a probe particle immersed in an odd viscoelastic fluid [58].
It would also be worth exploring whether features of pattern
formation in other active systems such as screening by sub-
strate friction [59], wavelength selection by confinement [60],
and transitions to turbulence [61–63] occur in odd viscoelastic
fluids.
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