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Waddington landscape for prototype learning in generalized Hopfield networks
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Networks in machine learning offer examples of complex high-dimensional dynamical systems inspired by
and reminiscent of biological systems. Here, we study the learning dynamics of generalized Hopfield networks,
which permit visualization of internal memories. These networks have been shown to proceed through a
“feature-to-prototype” transition, as the strength of network nonlinearity is increased, wherein the learned, or
terminal, states of internal memories transition from mixed to pure states. Focusing on the prototype learning
dynamics of the internal memories, we observe stereotypical dynamics of memories wherein similar subgroups
of memories sequentially split at well-defined saddles. The splitting order is interpretable and reproducible from
one simulation to the other. The dynamics prior to splits are robust to variations in many features of the system. To
develop a more rigorous understanding of these global dynamics, we study smaller subsystems that exhibit simi-
lar properties to the full system. Within these smaller systems, we combine analytical calculations with numerical
simulations to study the dynamics of the feature-to-prototype transition, and the emergence of saddle points in the
learning landscape. We exhibit regimes where saddles appear and disappear through saddle-node bifurcations,
qualitatively changing the distribution of learned memories as the strength of the nonlinearity is varied—allowing
us to systematically investigate the mechanisms that underlie the emergence of the learning dynamics. Several
features of the learning dynamics are reminiscent of the Waddington’s caricature of cellular differentiation, and
we attempt to make this analogy more precise. Memories can thus differentiate in a predictive and controlled
way, revealing bridges between experimental biology, dynamical systems theory, and machine learning.

DOI: 10.1103/PhysRevResearch.6.033098

*Contact author: paul.francois@umontreal.ca

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

I. INTRODUCTION

The field of machine learning offers fascinating examples
of networks with self-organizing dynamics. During learning,
network parameters change and qualitatively novel regimes
appear [1,2]. The dynamics through qualitatively distinct
learning regimes open up new possibilities for their opti-
mization and, thus, training. Task optimization in very high
dimensions is now seen as “easy” for two reasons: first, as
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the high dimensionality of the networks generally ensures that
at least one eigenvalue is negative at critical points—there is
always a direction in which the loss can be further reduced
[3] and second, local minima in very high dimensions turn out
to be very good at generalizing [3,4]. This suggests that only
saddle points (or saddles) are met during optimization driven
by gradient descent [5], so that the learning dynamics consist
of transitions between saddles (learning can be further sped
up using various standard methods). However, the quantitative
and qualitative natures of the saddles themselves might be
irreproducible, depending on details of the system. Such a
view of learning, with potentially a huge number of (ran-
dom) critical points [3], contrasts the statistical regularities
observed during the learning dynamics of neural networks. To
this end, in the limit of high dimensionality, exact results on
the biases and errors of learning dynamics have been derived
using tools inspired by random matrix theory and statistical
mechanics [6,7]. In addition, information theory based met-
rics have further highlighted the structured and reproducible
dynamics during learning [8,9].

Together, these studies suggest the emergence of po-
tentially universal, and thus, simpler, regimes of learning,
echoing what is observed in other self-organizing dynamical
systems, in particular in biological contexts [10,11]. Case
in point: The advances in high throughput quantitative data
in biology combined with mathematical modeling have es-
tablished that the dynamics of high-dimensional biological
networks can often be captured by low-dimensional repre-
sentations, at least locally, see e.g., [12] for cell mechanics
or [13] for brain decisions. An important example is cellular
differentiation [14], for which Conrad Waddington introduced
the qualitative notion of an “epigenetic landscape” to de-
scribe low-dimension dynamics. In Waddington’s picture, the
evolution of cellular states is represented by a ball rolling
down “valleys” accounting for cellular states in an abstract
space [15]. Valleys can split, leading to differentiation event,
and are “canalized”, i.e., are robust to perturbations of the
system [16]. Waddington’s landscape caricature has moti-
vated multiple experimental studies, verifying some of its
most salient features—for instance, we know now that cellu-
lar differentiation occurs through progenitor states, consistent
with Waddington’s valleys [17]. Multiple attempts have been
made to mathematically characterize such landscapes. In pio-
neering study, “classical” Hopfield networks themselves have
been used to reverse-engineer an epigenetic landscape [18],
and further revealed a 1D reaction coordinate during cellular
reprogramming [19]. The nature of binary decisions within
(biological) landscapes can be rigorously classified between
binary choice or binary flip [14], leading to predictions and
applications in specific systems [20]. While those explicit
approaches have met success, it remains unclear how and
why low dimensional dynamics emerge from the complex
interacting components that comprise a typical differentiation
network [10,21]?

Here, we provide a perspective, by characterizing hierar-
chical, low-dimensional dynamics reproducibly emerging in
a class of machine learning algorithms. We focus on gen-
eralized Hopfield networks (GHN), an architecture that has
been suggested to be capable of capturing multiple machine
learning frameworks such as large language [2] or diffu-

sion models [22]. It has been noted that GHNs can work in
two distinct regimes [23,24], characterized by two hyperpa-
rameters (n, Tr), which loosely correspond to the degree of
nonlinearity and an effective temperature, respectively. In our
present study, going beyond the trained state of the system,
we establish that for higher n the learning dynamics become
lower dimensional, with convergence of learning trajectories
to well-defined, reproducible, and interpretable saddles (in a
dynamical system sense [25]), followed by binary splitting
events leading to increased specialization/differentiation of
internal memories. We study simpler versions of such net-
works with similar properties, for which we present analytical
results that provide specificity and rigor to our claims. Taken
as a whole, despite the manifest literal differences in the
parts that make up the process, the dynamics we observe in
GHNs bear a close resemblance to Waddington’s caricature of
cellular differentiation, suggesting that they might be generic
features of self-organizing complex systems [26].

II. RESULTS

A. Generalized Hopfield networks for classification

Generalized Hopfield networks were introduced by Krotov
and Hopfield in two seminal papers [23,24]. They represent
an elaboration of the classical Hopfield model for associative
memory [1], one of the first modern neural network architec-
tures designed to perform complex tasks. In brief, generalized
Hopfield networks rely on a well-designed, spin-glass type,
energy function, allowing to (1) store and (2) recover patterns.
A generalized energy can be first defined,

H (|σ 〉) = −
∑

μ

fn

( 〈Mμ|σ 〉
T

)
. (1)

In this expression, |σ 〉 corresponds to a system configura-
tion. We use the standard ket notation to indicate a vector,
and the bra-ket 〈·|·〉 notation for dot product. The stored
internal patterns correspond to vectors |Mμ〉 that we call
“memories” where μ is the index of a memory considered.
The memories have the same dimension as the input, so for
instance, if |σ 〉 corresponds to a picture, the memories |Mμ〉
can themselves be interpreted as pictures, and corresponding
pixels take values in [−1, 1]. Dot products between pictures
and memories are divided by a “temperature”, T . T should
scale with the dimensionality of the space considered, for this
reason, we introduce a rescaled temperature Tr = T

D , where
D is the dimension of the memory-space (e.g., for 28 × 28
pixel pictures, D = 784). Tr is a hyperparameter of the net-
work, which is fixed for one given learning simulation, and
is typically of order 1. Finally, a nonlinear function, whose
degree is determined by the magnitude of n, is applied to each
dot product

fn(x) = (ReLU (x))n =
{

xn, x � 0
0, x < 0 . (2)

In the original Hopfield picture, patterns correspond to
energy minima, and can be recovered from a more or less
noisy initial condition through gradient descent, iteratively
changing |σ 〉 to minimize the energy H . Contrasting the
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FIG. 1. Feature-prototype transition for generalized Hopfield
networks. (a) Illustrates the general architecture used. For a given
(n, Tr ), (b) shows samples of the memory final states. The memo-
ries chosen are all associated with a final label contributing highly
(� 0.99) to the class 4. The top-left memory for each (n, Tr ) is then
linearly decomposed using the pseudo-inverse of the training set and
in (c), the contribution of each training example in that memory is
plotted. These linear coefficients are symmetrically reordered such
that for each class, the maximum is at the center. In (d), the la-
bel associated to this same memory is shown. For all simulations
shown in this figure, the network size was 100 memories, a training
rate of 0.005 and random gaussian initial conditions. The training

original Hopfield network, a hyperparameter n is introduced
into the GHN, which, intuitively, is expected to “steepen” the
energy wells around “true” minima (corresponding to mem-
ories in Hopfield’s initial picture), thus possibly leading to
less spurious minima and more efficient learning/encoding.
Indeed, it is now well established that such steepening allows
for more “packing” of information in memory space, with
an explosion of memory capacity for exponential versions
of generalized Hopfield networks [27], which rationalizes the
current renewed interest in them.

In [23,24] Krotov and Hopfield proposed to modify the
generalized Hopfield framework and instead train a classifier
using a similar energy function as an intermediate layer, see
Fig. 1(a) for an illustration of the architecture. They consider
a model with a hidden layer of (internal) memories |Mμ〉 and
define the output, |o(σ )〉, of the network in response to a
sample,

|o(σ )〉 = g

( ∑
μ

|Lμ〉 fn

( 〈Mμ|σ 〉
T

))
. (3)

The output |o(σ )〉 is a vector used for classification: each
element of this vector can be understood as a score (between
−1 and 1) quantifying if |σ 〉 belongs (or not) to a given
class [there are as many possible classes as the dimension of
|o(σ )〉]. In the expression above, each internal memory |Mμ〉
is associated to a label vector |Lμ〉 of same dimensionality as
|o(σ )〉, quantifying the proximity of memory |Mμ〉 to each
predefined class—thereby performing a classification task. g
is a nonlinear function, applied elementwise, and typically
one takes g = tanh. The parameters of the networks thus
are its internal memories |Mμ〉 and their vectorized labels or
classes |Lμ〉.

To train the classifier, a cost function is encoding categor-
ical accuracy, i.e., imposing that the vector |o(σ )〉 is as close
as possible to its “true” value |t|σ 〉〉 encoding the class of |σ 〉,

C =
∑

|σ 〉∈T

∑
d

(od (|σ 〉) − td (|σ 〉))2m. (4)

In the above expression od and td correspond to the dth
coordinate of the respective vectors |o(σ )〉 and |t|σ 〉〉, and T
is the training ensemble {we can train/evaluate the model
either with minibatches/subsets or with the entire training
set without changing the qualitative results, see details in
Sec. 1.3.3 and Figs. S.5–S.8 within the Supplemental Material
(SM) [28]}. We typically use m = n like in the original study.

To be more concrete, in the specific classification task of
the MNIST dataset [29] of handwritten digits, |σ 〉 is a picture
of a digit, and |o(σ )〉 a ten-dimensional vector, corresponding
to the ten digit classes (0, 1, 2, ..., 9). So, if say |σ 〉 rep-
resents a 1, ideally the corresponding output vector should
be |o(σ )〉 = |t|σ 〉〉 = (−1,+1,−1, . . . ,−1). During learning,
parameters are changed through gradient descent of the cost
function. A rescaling condition is also imposed to make sure

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
set was identical for all runs and consisted of 200 MNIST digits
(20 of each class). The simulations vary only in the temperature
Tr = (0.51, 0.7, 0.85) and n = (3, 15, 30).
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that all of the pixels in the memories are bound between
[−1, 1]. Equations (S.16) and (S.17) (see the SM [28]) pro-
vide the actual expressions used to compute the derivatives
of the cost function with respect to parameters, including
contributions from the cost functions, the labels |Lμ〉 and the
rescaling, which is then used for gradient descent. Impor-
tantly, each internal memory |Mμ〉 is updated at each epoch
with small contributions coming from all training samples
(with individual weights depending on the cost function),
meaning that the state of internal memories, |Mμ〉, is a linear
combination of all samples in the training set. Additional
technical aspects of the model and training are presented in the
Sec. 1.3 within the SM [28]. All code used for the simulations
and for the figures is available at the GitHub repository [30].

Krotov and Hopfield tested their architecture on the
MNIST dataset [29] of handwritten digits. They studied the
hidden memories at the end of training, and visually observed
a striking change in the nature of terminal internal memories
|Mμ〉 as the hyperparameter n is increased, as illustrated in
Fig. 1. For low n, the internal memories look like overlaps
of multiple digits Fig. 1(b) top left, which suggests an en-
coding that is distributed across memories. Conversely, for
high n, the internal memories look like actual digits from the
training samples, suggesting an encoding based on proximity
to exemplar—or prototype—digits. Based on those observa-
tions, they proposed that digit classification transitions from
a “feature-based” encoding to a “prototype-based” encoding,
Figs. 1(b)–1(d). This transition in the encoding was not quan-
tified, although they also showed that the number of internal
memories contributing to the classification of a specific digit
considerably decreases with increasing n [23]. This confirms
that in the prototype regime, input samples are effectively
compared to only a few internal memories to achieve correct
classification. For this reason, prototype-based classification
is of particular interest since it is more understandable and
interpretable. Furthermore, for high n, Krotov and Hopfield
demonstrated the scheme’s robustness to adversarial pertur-
bations specifically designed to fool the classifier [24].

B. Characterizing feature-to-prototype transitions
using Moore-Penrose pseudo-inverse

Figures 1(a)–1(d) illustrate the feature-to-prototype tran-
sition in GHNs, using a small training ensemble of 200
digits, which allows us to visualize what happens. As said
above, because of the gradient descent training, each mem-
ory |M〉 can be decomposed into a linear sum of samples
used in the training set. Formally, we write for each memory
(indexed by μ)

|Mμ〉 =
∑
|i〉∈T

α
μ

|i〉 |i〉 (5)

where T defines the entire training set, |i〉 is a generic label
for the ith vector in the training set, and α

μ

|i〉 a corresponding
weight for |Mμ〉. Given a memory |Mμ〉 and a training set, we
can compute such a decomposition using the Moore-Penrose
pseudo-inverse, which can be derived from the singular value
decomposition of the matrix where line i corresponds to vector
|i〉 (see more details in Sec. 2 within the SM [28]). The
α

μ

|i〉 are not unique if the vectors in the training set are not

linearly independent; however, since MNIST has dimension
784 = 28 × 28 (pixels), we do not expect any ambiguity with
the computation of the α|i〉 if the training set has much fewer
than 784 elements (e.g., 200). We refer to Fig. S.1 within the
SM [28] for illustrations of the reconstruction.

In Fig. 1(b) we show a sample of memories |Mμ〉 at
the end of the training such that lμ

d=4 � 0.99, i.e., memories
contributing to classifying inputs as 4, for various n and
rescaled temperature Tr . We also show the distribution of α|i〉
in Fig. 1(c) for the nine memories highlighted in black in
Fig. 1(b) (top left corner for each n, Tr pair). The |i〉 axis
represents the 200 samples ordered per digit, and we plot
the corresponding α|i〉. To better see the distributions of α|i〉,
for each digit we reordered the |i〉 so that the distribution
looks symmetrical, which allows us to get an intuitive sense
of what happens for each memory and each digit. Figure 1(d)
illustrates the corresponding lμ

d as a function of digit category
d for the same memories.

Looking at Figs. 1(b)–1(d), we thus see that for low n,
we recover “feature”-like memories. They consist of positive
and negative linear combinations of many different digits with
relatively small weights [see e.g., top-left corner of Fig. 1(c)],
explaining their disordered appearance. Interestingly, these
features are not random, e.g., as n is increased, similar digits
(e.g., typically 4, 7, 9, see below) usually contribute sig-
nificantly positively or negatively. Labels for positive digits
typically take the maximum value of 1 while other labels
are −1 Fig. 1(d). As both n and Tr are increased, fewer in-
put samples contribute to the memories, giving more peaked
distributions of α|i〉, Fig. 1(c), until one gets a very peaked
distribution with very few inputs, associated with the same
digit. This gives rise to well-defined prototypes, e.g., bottom-
right corner in Fig. 1(b), and correspondingly only one label
is positive for larger n, Tr , Fig. 1(d).

We evaluated a few more metrics related to the α|i〉 to quan-
titatively characterize the transition. Figure 2(a), left, shows
the maximum value of α|i〉 at the end of the training, averaged
over all memories in the system. We see at least two regimes.
For smaller n, the maximum α is small, indicating that no
input sample dominates, and thus a very distributed encod-
ing. As n increases, there is a threshold in n, with possibly
a discontinuous derivative, from which the maximum α in-
creases to significantly high values, thus defining prototypes.
In Fig. 2(a), right panel, we further show the average number
of training samples necessary to reconstruct memories up to
a small tolerance (see details in Sec. 7.1 within the SM [28]).
Consistent with the behaviors on αs, we see an approximately
linear decrease for rescaled temperatures 0.57, 0.83, up to
a low plateau, where few samples define the memory. Sur-
prisingly, when the rescaled temperature gets closer to 1, we
observe an intermediate plateau for intermediate n, where on
average about 50 to 100 samples are necessary to reconstruct
a given memory. To provide an alternate visualization, and
inspired by computational biology (e.g., the analysis of single-
cell RNA seq data [31,32]), we show memory samples as well
as memory locations using a UMAP embedding [33,34] of the
MNIST dataset, Fig. 2(b) (see details on all UMAP embed-
dings used in Sec. 7.2 within the SM [28]). While for high n
the memories are well spread in each cluster of the UMAP
embedding, for smaller n and higher Tr the memories are

033098-4



WADDINGTON LANDSCAPE FOR PROTOTYPE LEARNING IN … PHYSICAL REVIEW RESEARCH 6, 033098 (2024)

FIG. 2. (a) Average of maximum α and average number of pro-
totypes needed to reconstruct each memory, as a function of n at
the end of training, for different temperatures. (b) Representation
of the learned memories for various n, Tr using a common UMAP
2D embedding, computed with the entire MNIST training database.
The training dataset is represented with points, colored according to
their class, see the colorbar on the right. The memories at the end of
training are represented by white disks, all learnt memories (100) are
shown. A small sample of memories obtained is shown above each
plot. For higher n, the memories are more spread out and completely
cover each cluster, indicating good coverage of the training set used.
Other simulation parameters are the same as Fig. 1.

typically more concentrated in the UMAP embedding, close
to the center of each cluster, indicating that there typically is
less variety in the memories.

C. Hierarchical learning dynamics in the prototype regime

The striking simplicity of the learning outcome we report
in the prototype regime motivates a more in-depth study of the
internal memories to investigate when and how memories con-
verge. We first follow and interpret the learning dynamics by

visualizing the memories as a function of training epochs. We
visualize learning using the UMAP embedding of the MNIST
dataset defined in the previous section [see Fig. 3(a) for n = 3,
feature mode; and Fig. 3(e) n = 30, prototype mode, Tr =
0.85], (see also Movies 1 and 2, as well as Figs. S.3 and S.4
within the SM [28] for other values of n). We also quantified
how memories move between UMAP clusters using transition
matrices, Figs. 3(b) and 3(f) (see Sec. 7.3 within the SM [28]).
We show samples of memories at different epochs, ordered
from 0 to 9 based on their dominant labels lμ

d at the end of
the training Figs. 3(c) and 3(g). We finally show the number
of digits correctly recognized as a function of the epochs in
Figs. 3(d) and 3(h).

The learning dynamics in simulations for n = 3 appear
rather uniform, in the sense that the memories distribute
themselves and “diffuse” simultaneously across most digits
as the number of epochs increases, Figs. 3(a)–3(d). (Notice,
however, that the UMAP embedding is difficult to interpret
for small n since memories do not necessarily correspond
to well-defined digits.) Memories change between almost all
clusters, as can be seen in both Fig. 3(a) and the transition
matrix Fig. 3(b). After an initial period where only digits of
category 1 are correctly recognized, around epoch 370 subsets
of almost every digit are correctly classified, and the number
of properly classified digits in each category simply increases
from there, Fig. 3(d).

By contrast, the training dynamics for n = 30 favour some
specific digits at different epochs of learning, with clear
sequential steps Figs. 3(e)–3(g). The transitions between clus-
ters appear to follow a well-defined tree in the UMAP space
Fig. 3(e), and the transition matrix Fig. 3(f) is sparse, indi-
cating that there are “preferred” transitions between clusters.
Figure 3(g) further illustrates the learning dynamics. All in-
ternal memories are initially similar and quickly converge
towards a memory resembling a 1. Subsequently, new digits
(and corresponding memories) are sequentially learned. The
digits 4 are initially learned around epoch 1000, then 9, 7 and
5, 6 around epoch 1300, and other digits later. The order of
appearance of memories is consistent with the order in which
digits are properly recognized, Fig. 3(h).

We show multiple other examples of training in Figs.
S.3–S.16 within the SM [28]. In particular, while there is some
variability depending on initial conditions and hyperparam-
eters (compare, e.g., Fig. 3 and Figs. S.13 and S.15 within
the SM [28]), the sequence of digits that are learned is repro-
ducible from one simulation to another as n is increased, and
pairs of digits resembling one another are learned together. In
Fig. S.17 within the SM [28], we illustrate the average order
of appearance over 100 simulations, each with 200 memories,
with the same parameters as Fig. 3(e). Typically, 1, 9 are learnt
quickly first followed by 4, 7; then 6, 5; 8, 3 and lastly 0
and 2.

Looking in more detail at individual memories, the learn-
ing process at high n is characterized by the following
stereotyped sequence of events: an ensemble of memories that
are initially identical, converge to a well-defined state, then
the symmetry is broken wherein the initial ensemble divides
in two sub-groups. This explains the “tree-like” structures
observed in the UMAP embedding Fig. 3(e) and the sparse
transition matrix Fig. 3(f). More specifically, focusing on the
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FIG. 3. Illustration of the learning dynamics, for two different values of n. Panels (a)–(d) illustrate what happens for n = 3 (feature mode),
while (e)–(h) are for n = 30 (prototype mode). (a) The memories are transformed onto the UMAP latent space and plotted according to the
epoch of training (indicated at top-right corner of each subplot). Gray lines indicate transitions between clusters, defining learning trajectories.
When the same transition occurs many times, gray lines accumulate, so that gray/black levels visually correlate to the frequency of transitions
[see panel (b)] The trajectories start at epoch 100 and end at the “current epoch” of each subplot. (b) Transition rates during learning between
UMAP clusters corresponding to different digits are shown in matrix form, blue corresponds to negative fluxes and red to positive fluxes. For
instance, here many memories move from 0 cluster to 2–9 clusters, so that the 0 cluster is a central hub for all transitions. Notice there are
fluxes between almost all clusters (c) a subset of the memories through training are shown. For the simulation behind this figure, Tr = 0.85, the
training set and other parameters are similar to Fig. 1. (d) Each coloured band height is proportional to the number of digits properly recognized
as a function of the epochs, with color code indicated on the right. (e)–(g) Equivalent figures to (a)–(d) for n = 30 (prototype mode).

033098-6
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FIG. 4. UMAP embeddings of the memories, for a system with 400 memories, trained on 1000 digits Tr = 0.85, other parameters similar
to Fig. 1. (a) n = 3, for the embedding memories were sampled every 10 epochs, until epoch 1000 when memories stabilize. (b) n = 30, for
the embedding memories were sampled every 5 epochs, until epoch 2300 when memories stabilize. Colors indicate the highest ld

μ for any given
memory |Mμ〉.

first new digit appearing using the example of Figs. 3(e)–3(h),
we see that all memories start changing, identically, eventually
looking like a mixture of digits, typically 1 and 9 [Fig. 3(g),
epoch 900] and embedded as an 8 in the UMAP. Subsequently,
a symmetry breaking (or “split”) event occurs: While one
subset of memories goes back to look like 1, the other subset
of memories initially resembles a mixture of 4, 7, 9 (epoch
1250). Thus, the initial mixed state around epoch 900 appears
to be a saddle of the learning dynamics [25]: Memories first
converge toward it in one direction, then upon reaching it,
get repelled in another direction, driving the split into two
subpopulations. A rigorous demonstration of the existence of
saddles in the high n regime of a GHN would require identi-
fication and linear classification of its fixed points, which is
challenging due to the very high dimensionality. To this end,
we also notice that the system spends many epochs close to
those mixed states, consistent with the idea that only a few
unstable directions exist along which the memories split. For
now, we will call these points in memory-space “effective
saddles”, and will better characterize them for simpler cases
below.

New digits are learned when a subpopulation of memo-
ries start to resemble mixtures of yet-to-learn digits, before
splitting at an effective saddle point to acquire a new digit
identity. For instance, the memories in Fig. 3(g) eventually
differentiating into 3s and 5s are identical up to epoch 1800,
resembling each other at all prior epochs. We also demonstrate
the robustness of the dynamics and the location of effective
saddles in the presence of noise (see Figs. S.13–S.16 within

the SM [28]). It is only towards the very end of learning,
when their final identity is fixed, that memories specialize
into different prototypes and that more variability appears.
All in all, our observations strongly suggest that, despite the
high dimensionality of the system, the presence of effective
saddles in memory space confer a low-dimensionality and
reproducibility to the emergent learning dynamics of GHNs.

Finally, to provide finer-scale resolution of the learning
dynamics, we generated UMAP embeddings, by training a
larger system (400 memories, 1000 samples) and sampling the
memories at fixed epoch intervals, Fig. 4, with a color code in-
dicating the identity of the highest lμ

d for each memory |Mμ〉.
This allows us to circumvent the “jumps” in the embedding of
Figs. 3(a)–3(d) and to better visualize the branching dynamics
during learning. For n = 3, we see a complicated, branched
network of entangled memories; however, we also see that
digits with the same dominating label tend to branch from
one another. By contrast, for n = 30, a simpler tree structure
emerges, consistent with what we have described thus far. We
observe a “trunk” of memories with a 1 identity, splitting into
different branches with well defined identities, corresponding
to the sequence described below (e.g., the leftmost branch
correspond to the 4, 7, 9 memories). We also see several
sequential splits, for instance the 0 memories are splitting
from the 6 memories or the 7 memories are splitting from the
9 memories. Those splits happen sequentially as learning is
occurring in later epochs, as can be seen in Movies 3 and 4
within the SM [28]. We also compare visually the tree-like
dynamics of different simulations in Fig. S.19 within the
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SM [28], largely observing the same topological features and
groupings within common subtrees of digits learned together
(e.g., 4, 7, 9 vs 3, 5, 8).

D. Three-category systems recapitulate the phenomenology
of the dynamics

Motivated by the low-dimensional features of digit learn-
ing at high n, we then proceeded to more deeply study simpler
versions of the system, hoping to mathematically capture the
most salient features of the overall dynamics.

While the UMAP representations introduced in the pre-
vious section are useful for a qualitative understanding of
the process, there are potential problems with such methods
for quantitative analysis [34,35], in particular, the axes of
such representations are not interpretable. The α|i〉s provide
a natural coordinate system, but they are difficult to visualize
when there are too many samples. However, it turns out that
coarse-graining multiple α|i〉 corresponding to the same digit
allows for convenient representations of the dynamics close
to saddles. For each memory |Mμ〉 we thus define aggregated
ᾱ

μ

d s associated to a digit/category d ∈ [0, 9] such that

ᾱ
μ

d =
∑

|i〉∈Td

α
μ

|i〉 (6)

where Td defines all samples in the training sets labeled with
digit/category d .

The fundamental feature of sequential splitting can then be
reproduced and visualized for simulations trained with only
three categories of digits. In Fig. 5, we represent learning
trajectories of all memories for simulations where the training
samples only contain 1, 4, 7, using the same embedding as
in Fig. 3, for n = 3, 30 and Tr = 1.02. In the UMAP space,
Fig. 5(a) right, the steps in learning are virtually identical to
Fig. 3, with a first effective saddle/split localized in a 8 cluster,
and a second one in a 9 cluster. Such dynamics are all the more
remarkable since neither 8 nor 9 sample digits are included in
this reduced training set. Convergence towards those clusters
comes from the fact that the effective saddles prior to splitting
indeed resembles an 8, then 9. We also more clearly observe in
this simplified setting how similar digits are initially identical,
then eventually specialize into different prototypes, expanding
within one cluster [late epochs in Fig. 5(a)].

In the ᾱi space, Fig. 5(a) left, one observes a first conver-
gence towards an effective saddle, then a split around ᾱ1 =
0.5, sequentially followed by a second one around ᾱ7 = ᾱ4 =
0.5, indicating that effective saddles are indeed mixtures of
digits. In between these two splits, the trajectories are local-
ized along the plane ᾱ1 + 2̄α4 ∼ ᾱ1 + 2̄α7 ∼ 1. We contrast
this behavior with what happens for low n in the feature
regime, Fig. 5(b), where the trajectories in the UMAP space
do not correspond to clear steps and are not interpretable. In
the ᾱi coordinates, Fig. 5(b) left, there is only one global split
in a location where all ᾱ7 and ᾱ4s are small and the trajectories
after the splits are spread out. Such behaviors are generic and
do not depend on the digits used: For instance, in Fig. S.20
within the SM [28] we further illustrate what happens for a
different set of digits, 1, 7, 9, with very similar properties.

E. Properties of the two-memory system

The splitting of memories at effective saddles thus appears
to fundamentally drive the dynamics of learning in the large
n regime. We hypothesized and checked that such splitting
could be observed for systems with only two memories and
two digit categories. Given that the memories all behave iden-
tically before the split and in each branch after the split, and
that learning, globally, occurs through sequences of splits, we
now choose to focus on the study of one single split. To do
so, we further reduced the system to two memories and only
two input digits to discriminate, which allows for an analyti-
cal description of the system, and in particular demonstrates
rigorously that the location of the splits are indeed saddles of
the dynamics.

Before the split, calling |A〉 , |B〉 the two vectors corre-
sponding to the two digits to discriminate, the (identical)
memories can always be written as a linear combination of
the two digits, defining

|M〉 = α|A〉 |A〉 + α|B〉 |B〉 (7)

for the (common) memory before splitting. In Sec. 3.1.1 and
Figs. S.21 and S.22 within the SM [28], we show that the
labels are getting quickly correlated so that all labels get to
−1 except the two labels corresponding to digits A, B such
that lA = −lB, subsequently called �. The learning dynamics
act on the αs and �.

Memories are normalized at each learning epoch such that

|α|A〉| + |α|B〉| � 1; (8)

however, one can demonstrate that the dynamics quickly drive
the system to the boundary,

|α|A〉| + |α|B〉| = 1, (9)

where the sign of each term in this equation depends on the
sign of � (see Sec. 3.1, and Figs. S.21 and S.22 within the
SM [28]). In Sec. 3.1.8 [28], we show that all fixed points of
the system are in this bidimensional boundary, e.g., we can
eliminate α|B〉 to carry out a nullcline analysis for � and α|A〉 =
α. We can write two effective equations for α and �, formally

dα

dt
= A(α, �), (10)

dl

dt
= L(α, �). (11)

The full expressions for functions A,L are rather complex
and given in the SM [28], Eqs. (S.65) and (S.72). Equating
them to zero defines two nullclines, respectively called “mem-
ory” [A(α, �) = 0] and “label” nullclines [L(α, �) = 0], see
Fig. 6. The dynamics of learning converge towards the 2D
curves defined by those nullclines, Fig. 6(a), Movie 5 and
Fig. S.23 within the SM [28]. Two-memory systems initially
converge towards the points at the intersection of those two
nullclines A(α, �) = L(α, �) = 0, indicating they are criti-
cal points of the full dynamics Fig. 6(b). Importantly, those
critical points are the invariant vectors of normalization, i.e.,
such that |�M〉 = �α|A〉 |A〉 + �α|B〉 |B〉 is proportional to the
initial memory |M〉.
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FIG. 5. Splitting dynamics for high and low n. Here the 100-memory system is trained on only three categories - 1, 4, 7 - with 20 training
samples per class, and Tr = 1.02. We visualize trajectories in the similar UMAP embedding as in Fig. 3 and display samples of the memories
on the bottom row. We also display on the left the memory trajectory projected on the α coordinate, computed with the Moore-Penrose pseudo
inverse. Trajectories are colored according to the dominating α at the end of the learning (a) n = 30. Two successive splits are clearly visible
separating 1 from 7, 4 (around epoch 2360 as seen on the UMAP embedding), then 7 from 4. (b) n = 3. The splits all happen around the same
epoch (300). Notice how there are many more connections between final memories in the UMAP embedding, and how the final memories look
like mixtures of digits.
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FIG. 6. Bifurcation and dynamics for the two-memory system. In (a), the fixed points as a function of n are illustrated with the nullclines
(memory: purple, label: orange). Note that in the presence of 3 fixed points, the “center” point is unstable. (b) Examples of the splitting
dynamics for the two-memory system for n = 20 in higher dimension. On the left, one displays the dynamics of two pairs of memories in the
α, δα, � space, in shades of red and blue. Initial conditions are indicated by circles, blue and red arrows on the trajectories indicate the direction
of the dynamics. Nullclines corresponding to (a) are also indicated. We see how the memories first converge to the nullclines, before splitting at
the saddles in the δα direction. On the right, we show the corresponding cost functions as a function of α, δα, while � and δ� are parameterized
by their α counterparts; �(α) is defined using the label nullcline, while δ�(δα) is defined using the typical splitting trajectory (see Sec. 7.5
within the SM [28]). We clearly see the saddle shapes close to the green fixed points of (a). In (c), we show the bifurcation diagram of a
two-memory system with two identical memories, using n as a control parameter, and α and � to show the fixed points. The center plot of (a) is
the complete 3D bifurcation diagram of this system, the left and right plots show projections on planes of constant α and � respectively. All
simulations in this figure are for a two-memory system with Tr = 0.89, for training data with two sample digits 1, 4 corresponding to |A〉 , |B〉
with 〈A |A〉 = 753, 〈A| B〉 = 494 and 〈B| B〉 = 719.

F. Bifurcation diagram define three different regimes
for critical points

The two nullclines are sigmoidal, and one observes
three qualitatively different regimes going from bistability to

monostability to again bistability as n is increased, see e.g.,
Fig. 6(c) using digits 1, 4 as examples. Multistability in this
context means there can be multiple critical points for the
learning dynamics. We will label those critical points based
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on the stability of the system where the two memories are
forced to be identical, i.e., the dynamics driven by the memory
and label nullclines Eqs. (10) and (11). Stable fixed points
for the system Eqs. (10) and (11) are saddles for the full
dynamics, since the dynamics are initially driven to those
critical points, while the unstable fixed points are not saddles
because they are not visited by the full dynamics. When there
is more than one critical point, the location of the saddles thus
depends on the initial conditions of the system. The critical
points themselves appear like digits for low n (first bistable
region), then like a mixture of digits in the monostable phase
for intermediate n, and again gradually look like single digits
in the second bistable region as n is further increased.

Figure 6(a) illustrates nullclines for various values of n.
For low n, both nullclines are almost vertical, parallel to the α

axis, defining a critical valley at a fixed value of �, but where
future splits between memories are very sensitive to noise
and initial conditions. This is consistent with the stochasticity
observed in the full system (see Movie 1 within the SM [28]).
Intuitively, vertical nullclines (close to � = 0) mean that the
system is unable to label the internal memories properly:
all labels stay close to 0 [as can be seen on the bifurcation
diagram, Fig. 6(a) right panel, low n] and there are only weak
biases in one direction or the other depending on the fixed
point.

As n is increased Fig. 6(a), n = 20, the slope of the mem-
ory nullcline decreases first, so the system has three critical
points. Interestingly, because the label nullcline stays rela-
tively vertical, they correspond to relatively high and low
values for α parameters, meaning that the critical points look
very much like one of the initial digits but with some back-
ground of the other one. Notice, however, that the � stay low,
meaning that while the memories are relatively well defined,
their labels are not.

As n is further increased, Fig. 6(a), n = 30, the stable crit-
ical points disappear through a saddle-node bifurcation (see
Fig. S.25 within the SM [28]), and remarkably, only the fixed
point close to α = 0.5, � = 0 survives. Intuitively, the system
gets more selective in its recognition of proper digits, so that
any mixture of digits can (and should) not be categorized as
either category. The perfect mixture gets an ambiguous � = 0
label, which is the only fixed point surviving. In Fig. S.26
within the SM [28], we show that the system is close to a
pitchfork bifurcation, due to the fact that most pixels in the
initial pictures take values close to 1 or −1, so that 〈A| A〉 ∼
〈B| B〉.

As n is further increased, a new saddle-node bifurcation
occurs, where � values initially become significantly higher
than 0. This comes from the fact that the memory nullclines
become increasingly horizontal, close to α = 0.5. This is the
more intuitive regime in the generalized Hopfield energy land-
scape: as n is increased, the “energy” of the saddle point gets
very frustrated between the two digits, so that the only critical
point for the one memory system should be exactly a superpo-
sition of both digits corresponding to α ∼ 0.5. However, there
is a slight bias in the loss function due to the label, so one gets
two stable fixed points, in which one digit slightly dominates
the other in the memory, but with an unambiguous categorical
label �. As n is further increased, those biases on the labels
allow for further symmetry breaking between the two fixed

points, which eventually look increasingly like “pure” digits.
See Fig. S.27 within the SM [28] for additional n values.

G. Saddle dynamics

The full two-memory system is four-dimensional, with two
alpha coordinates and two label coordinates. As said above
and illustrated in Figs. S.21 and S.22 within the SM [28], the
system quickly reduces to two dimensions α, �, but to study
the full dynamics we can also define two deviations δα, δ�,
initially extremely small and symmetrical {see Eqs. (S.85)–
(S.87) and Eq. (S.88) within the SM [28]}. Examples of the
dynamics of two memories are shown in Fig. 6(b) in the
α, �, δα space. As mentioned earlier, after a transient phase,
δα is essentially 0, meaning that the dynamics are initially
structured by the α, � nullclines, Eqs. (10) and (11). Both
memories converge to the (closest) critical point defined by
the α, � nullclines. There, they split, so that both δα, δ�

rapidly increase Fig. 6(b), left. In Fig. 6(b), right, we represent
the corresponding cost functions as a function of α, δα and
examples of trajectories followed. We see that the landscape
is shaped as a saddle, thus confirming that the critical points
are saddle points, and explaining the corresponding split.

In Figs. S.29 and S.30 within the SM [28], we further com-
pare the simulated trajectories with analytical computations of
the small deviations δα, δ� close to the saddle, with excellent
agreement.

H. Feature-to-prototype transition for the two-memory system

While the bifurcation diagram described in Fig. 6(c) above
depends on n, it relates to saddles in the learning dynamics,
but does not inform on the feature-to-prototype transitions,
which relates to the fixed points. Such fixed points can, how-
ever, be computed analytically for the two-digit/two-memory
system. Figure 7 illustrates final memories for different val-
ues of n, Tr for two cases: one where digits are of the same
category (so having the same �), Figs. 7(a), 7(c), and 7(e), and
the other where digits are of different categories (so opposite
�), Figs. 7(b), 7(d), and 7(e). We illustrate how the αs of the
fixed points are changing as a function of n, Tr for both cases.
Clearly, as both parameters are increased, the final states
change from a mixture of both digits (looking like features), to
a more defined digit (looking like a prototype). Consistently,
one goes from fixed points with one positive and one negative
α, to fixed points where only one α dominates [from top left
to bottom right in Figs. 7(c), 7(e), and Figs. 7(d), 7(f)].

It is also possible to analytically compute the transition
line where a single digit yields the same cost as a perfect
mixture of digits, presumably corresponding to the feature-
to-prototype transition (see Sec. 6.1 within the SM [28]). We
compare it to actual simulations, with excellent agreement
[white line in Figs. 7(e) and 7(f)].

For the intradigit classification (i.e., same category), one
gets pure prototypes for high n, Tr , in the sense that the α

contribution from one of the digits completely vanishes. Also,
there is a clear threshold in n from which one α suddenly in-
creases above 0.5, thus defining two regimes, and reminiscent
of the behavior of the maximum of α displayed in Fig. 2(a).
However, for the interdigit discrimination (i.e., different
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FIG. 7. Two-memory system recapitulates a feature-to-prototype
transition. (a) Training set used to study the one-memory intradigit
system; (b) the training set for the two-memory inter-digit system.
(c), (e), (g) Intradigit specification. We show the final state of the
memory as a function of n, Tr (c), the corresponding α4 (e), and
curves of α4 as a function of n for three high temperatures (g). The
white line on (e) indicates when the score of a perfectly mixed digit is
the same as the score of either digit in (a), coinciding with the feature-
to-prototype transition. (d), (f), (h) Interdigit specification. We show
the final state of memory 1 (left) and 2 (right) as a function of n, Tr

(d), the corresponding α9 of memory 1 (left) and α4 of memory 2
(right) (f), and curves of α9 (left) and α4 (right) as a function of n
for 3 high temperatures (h). The white line on (f) indicates when the
score of a perfectly mixed digit is the same as the score of either digit
in (b), coinciding with the feature-to-prototype transition.

categories), the behavior of both αs is smooth and we do
not see a clear separation between two regimes. Furthermore,
even for big n, Tr , one still sees a small but nonzero contribu-
tion of both digits in the fixed point. So one never gets to a
“pure” digit representation as expected from a true prototype:
rather the fixed points look like some mixed saddles in the
high and low n limit in Fig. 5.

We thus conclude that two-memory systems recapitulate
some of the salient aspects of the feature-to-prototype transi-
tion observed in the full system, suggesting it is not an aspect
of the learning that is due to the high number of memories
in the system but that, surprisingly, the different “phases” in
α are more visible for intradigit categories than for interdigit
categories. This is, however, consistent with the observation
made on the full system that initially similar memories dif-
ferentiate into prototypes late in the training : it is likely only
when two memories have the same label that the intra-digit
split is happening, placing almost all αs to 0 and thus defining
a proper prototype.

I. Learning and final memory statistics in the expanded system
are structured by bifurcations

We have thus identified two aspects of the two-memory
system: a bifurcation diagram structuring the saddles visited
during learning, and a feature-to-prototype transition on the
final states of the two-memory system. Importantly, while
those two aspects are correlated (because they both depend
on n, Tr), they are independent in the sense that one does not
need the knowledge of the bifurcation diagram of the saddles
to compute the final states of the memories. We know that the
feature-to-prototype transition generalizes from systems with
few memories to bigger ones, but it is not clear if the number
or nature of saddles matter in any way for bigger systems. We
thus now re-expand the number of memories and samples to
study how/if these properties exhibited for the two-memory
system generalize.

Because of the combinatorial explosions of possible mem-
ories and saddles, we move back to numerical explorations to
study the influence of saddles on learning. We first restrict
ourselves to a system with 100 memories, three categories
(1, 7, 8) and 20 samples per category. To explore different
learning trajectories, possibly corresponding to different sad-
dles, we initialized the memories close to different digits, then
performed learning for different temperatures Fig. 8(a)–8(c)
and focus on the 1 vs 7 discrimination. We first recovered
multiple saddles (see Sec. 3.2 within the SM [28]) in learning:
we observe again at least three regimes for high temperature
Tr ∼ 1, with at least two bistability regions for low and high
n, and an intermediate region where the system converges
towards a single saddle.

Thus, a similar bifurcation diagram to the two-memory
case is also observed for systems with many more memories.
Importantly, we also observe that the proportion of final mem-
ories of a given identity depends on initial conditions, and thus
on the saddle first visited Figs. 8(a)–8(c), a property that can
not be observed on systems with two memories since each
memory stabilizes to either fixed point. Consistent with this,
the proportion of 1 and 7 in the final memories is correlated
to the respective values of α1 and α7 at the saddle visited. For
instance, for Tr ∼ 1 when there are more saddles (small/big
n), when the system is initialized close to 1 (resp 7), the
proportion of 1 (resp 7) in the final memories is very high
for most parameters, while it is very low if the system is
initialized close to 7 (resp 1), Fig. 8(c). Only for intermediate
n, when only one saddle is visited irrespective of the initial
conditions, do we observe a balance between 1s and 7s in the
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FIG. 8. Bifurcation of saddles correlates to changes of propor-
tions. We show results of simulations respectively initialized close
to a 1 sample digit (orange dots) and close to a 7 sample digit (grey
dots). From left to right, we show examples of saddles reached in
the left panel, α1 coordinates of the saddles in the middle panel,
and the relative proportion of 1 vs 7 in the right panel as a func-
tion of n. (a) Tr = 0.7. (b) Tr = 0.96. (c) Tr = 1.02. All networks
contain 100-memories, and are trained on the same training set of
60 digits (evenly composed of 1s, 7s and 8s) with a training rate
of 0.01.

final memories, when the (unique) saddle is a mixture of 1
and 7. The final state reached after learning thus appears path
dependent, and the number and nature of saddles are relevant
for the final statistics of the memories learned.

Importantly, we also see a clear Tr dependency on both
the bifurcation diagram and the proportion of memories,
Figs. 8(a)–8(c). We examined what happens for the full sys-
tem as we vary Tr , in a range of n where we expect few saddles
{typically n ∈ [20, 30] according to Figs. 8(b) and 8(c)}. In
Fig. 9, we show samples and the number of memories for each
category after training, as a function of temperature (using
trained labels as a proxy, see Movies 6–8 within the SM [28]).
For lower Tr � 0.85, all digits are represented in the mem-
ories. However, as Tr increases, some memories disappear
and instead start looking like the typical first saddle observed
during training Fig. 9(a). Remarkably, as Tr is increased, there
is a clear order in the disappearance of memories: first 0 and
2, then 3, 8; 5, 6, and 4, 7, 9, leaving only 1 in the end
when Tr > 1. This order essentially is the inverted order of
digits learned during one instance of successful training of
the system, compare, e.g., Fig. 3(h). This suggests that as Tr

is increased, the system is no longer able to split in some
directions. Instead, it remains stuck at saddles close to the root
of the tree displayed in Fig. 3(e) as Tr is increased.

FIG. 9. Training for varying temperature for n = 25. As the
temperature increases, some categories are no longer properly rec-
ognized. (a) Samples of final memories for different temperatures.
(b) Population for each memory (as inferred from their label) as a
function of Temperature after training. The network size was of 100
memories, with gaussian random initial conditions, and a training
rate of 0.005. The training set used was the same as in Fig. 1,
containing 200 digits (20 of each class).

III. DISCUSSION

Artificial neural networks offer examples of nontrivial self-
organizing dynamics, and as such constitute easy-to-simulate
comparison points to real-life complex networks. In this pa-
per, we studied the learning dynamics of generalized Hopfield
networks trained to classify MNIST, previously known to
exist in two broadly defined regimes (feature and prototype
based) as a function of hyper parameters characterizing the
non-linearity of the energy landscape.

We visualized and studied the learning dynamics of such
networks. We especially focused on the prototype dynamics
(for higher n) where learning is most low-dimensional and
reproducible: Memories localize first at saddles, correspond-
ing to mixtures of digits. Subsequently memories split, before
reaching either a new saddle or specializing into an actual
digit. Memories with the same eventual digit identity largely
follow the same path in memory space during learning and
only specialize into different prototypes in terminal epochs of
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learning. The order in which memories are learned is repro-
ducible across simulations for large n.

We explore the dynamics of this complex learning scheme
through simpler versions of the systems with fewer memories,
establishing the local low dimensionality of the processes, and
allowing us to better characterize the most salient properties
of the learning dynamics. We reveal that the number and
nature of possible saddles of the dynamics depends on n, Tr ,
in particular, we see for intermediate n and higher temperature
a regime where there are a smaller number of saddles in the
dynamics of learning, which themselves appear and disap-
pear via saddle-node bifurcations at both lower and higher n,
respectively.

Our results suggest the following view of the learning
dynamics in the prototype regime: for lower n, Tr , there are
multiple saddles, and thus as shown in Fig. 3, we generically
observe more path dependency and randomness in learning,
leading to different proportions of memories with a given digit
identity. However, for mid range n (typically n ∈ [20, 30] for
Tr ∼ 0.89), the system is in a regime where fewer saddles
exist, most likely due to the first saddle-node bifurcation
[Fig. 6(b), n ∼ 30]. This is consistent with the plateau ob-
served in Fig. 2(a) right for higher temperatures: Memories
are “trapped” at various saddles, as visible in the UMAP plot
in Fig. 2(b) where memories do not distribute well within one
digit cluster. It is then only for even bigger n (n > 30) that
more saddles appear again. Importantly, these saddles corre-
spond to mixtures of digits, but “biased” towards one digit.
This allows the learning to have more path dependency, but
locally (i.e., within a digit category), giving rise to many more
prototypes as final states. This provides a rationale as to why
the memories in the UMAP plot in Fig. 2(b) are spread out for
larger n. Manifestly, the location and nature of saddles influ-
ence the proportion of final memories in a given digit category.
Interestingly, as we increase Tr , the system gets increasingly
stuck in saddles, following the pathway of learning. This is
consistent with the observation that the learning dynamics
of a digit category is low dimensional, with the detrimen-
tal effect that it is also “easy” to sequentially block those
directions during learning. This does suggest that there is a
“sweet spot” to ensure a desirable prototype distribution over
all digits: A low number of saddles between digit categories
is needed to have a good number of memories corresponding
to all digits, but if the temperature is too high learning can
get stuck at those saddles (which then become stable fixed
points).

We wish to highlight that the feature-to-prototype tran-
sition is not restricted to systems with a large number of
memories and, importantly, the pure prototype regime where
only a single digit (α) dominates appears to come from in-
tradigit classification, rather than interdigit classification. This
is consistent with the fact that memories with the same even-
tual label largely appear to change together, as can be seen
in Fig. 3(g) and Movies 1 and 2 within the SM [28]. It is
only when memories have the same final label that intradigit
interaction ensues and that they become pure prototypes.

How general are our results? Of note, generalized Hop-
field networks have been related to both diffusion models
[22] and transformers [2], the architecture at the core of the
success of current Large Language Models, such as chat-

GPT. In particular, Ramsauer et al. [2] use an explicit energy
with an exponential for the function f defined in Eq. (2),
thus do not have the equivalent of a hyperparameter n, but
include an inverse temperature β (which, as seen here, can
have similar effects as n). They did not study the dynamics
of learning and instead focused on the types of attractors,
observing both single patterns (corresponding to prototypes)
and mixtures of “close” patterns, which within our framework
would likely correspond to saddles. However, they did not
explore the anticipated bifurcations. It is unclear if there is any
way those saddles would split into well-defined prototypes
like in our case. Interestingly, they relate their dynamical
updates to self-attention in transformers, which linearly com-
bines input samples and would thus correspond to changes
in α, in our context. They also observed the distribution of
activation patterns in layers of actual transformers (similar
to distribution of αs), and observe changes reminiscent of
what we observed here when n is increased, e.g., with some
mid-late layers activated by very few patterns, while many
patterns broadly activate early layers. This suggests that a
feature-to-prototype transition might be a generic property
happening within different layers of neural networks, which
provides further motivation for case studies of more tractable
systems as we have explored here.

The tension between the high dimensions of the sample
space and low dimension of the dynamics is very reminis-
cent of what happens in complex (biological) systems, a
primary motivation for the present study. In the prototype
regime, memories with the same terminal identity differen-
tiate sequentially, moving from one saddle to the next, before
splitting. This resembles the classical model of landscape
exploration during the time course of a differentiating cell
proposed by Waddington. We summarize Waddington’s qual-
itative view with four properties:

(1) valleys can “split”, corresponding to binary decisions,
(2) those splits are localized, corresponding to well-

defined points in the possible space of cellular states,
(3) between splits, the dynamics are robust or “canalized”

along the valleys,
(4) the overall dynamics are self-organized, and modu-

lated by slowly changing underlying weights of unknown
nature.

The learning dynamics in the prototype regime present
similar properties, that we more precisely quantified. As
we establish here, internal memories split (property 1) at
well-defined saddles (property 2). Numerical and analytical
calculations (two-memory section, Fig. 6) reveal that the tra-
jectories of identical memories between splits are attracted
to one-dimensional manifolds (property 3). The dynamics of
memories are also self-organized, congruent with the dynam-
ics of the labels (property 4).

Waddington’s landscape’s ideas also lead to biological pre-
dictions, that we can relate to the learning dynamics we see.
For instance, a nontrivial consequence of property 2 is the
existence of a well-defined hierarchy of states, with interme-
diate progenitor or stem fates. Indeed, one can experimentally
maintain cells in stem fates with exposure to proper mor-
phogens [17], thus suggesting 1. they are indeed saddles of
the differentiation dynamics, and 2. the few corresponding
unstable directions can be stabilized through external means.
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We observed the exact same properties with the tuning of
hyperparameters n, Tr : the system precisely stays stuck in the
saddles normally visited during learning (Figs. 2 and 9), at
different levels of the hierarchy depending on the values of
Tr . All in all, the congruence of the aforementioned proper-
ties lead us to propose a useful analogy, if not equivalence,
between prototype learning and Waddingtonian dynamics for
cellular differentiation.

What are the implications of this connection? On the the-
oretical side, our results are consistent with the idea that
learning dynamics are structured by a sequence of hierarchi-
cally organized saddles, a problem recently formalized for
cellular differentiation [14]. Extending such theory could help
in understanding more broadly how both machine learning
and differentiation work. In particular, it is not clear how
self-organization occurs in both cases. Are the saddles of the
dynamics fixed points, with a slow variation of self-organized
control parameters that drive bifurcations leading to splits
[36]? Coming back to biology, Matsushita et al. [10,11] have
proposed a model for self-organized cell differentiation where
interacting transcriptional states slowly regulate epigenetic
states. They observed that, for random networks, progenitor
states display oscillations before “localizing” their dynamics
towards multiple steady states, through bifurcations controlled
by the slow varying epigenetic states. This two-layer organi-
zation, with induced bifurcations, is very reminiscent of the
two-level architecture studied here with memories and labels,
and also consistent with Waddington’s view of separating the
landscapes from weights controlling them. Other aspects of
the feature-to-prototype transition, or the multiple regimes
of learning that we observe, might also apply to differenti-
ation biology. One could imagine that more random routes
to (de)differentiation might exist, e.g., in a context where
chromatin states are less well defined, possibly correspond-
ing to the low n regime, with the appearance of spurious
attractors [18,19].

Hopfield networks offer robust ways to encode discrete
states [24], and have been already used to model the mul-
tiplicity of cellular states and their transitions [18,19,37].
Connecting such frameworks with our simulations, one nat-

ural question is if/how the dynamics of pattern selection
or transition can relate to the dynamics of learning those
patterns. In biology, this is a well-defined question relating
differentiation or reprogramming routes observed today to the
evolution of those cellular states, which we know little about
[38]. As described here, the motions in generalized Hopfield
landscapes during learning are reproducible and locally low
dimensional, which fits Waddington’s picture for differenti-
ation. The simplest explanation of such similarity between
both dynamics would be that differentiation represents an
instance of ontogeny (the trajectory within the space of cel-
lular states) reflecting phylogeny (the evolutionary pathways
leading to those states). For some cell types, there is evi-
dence of such concordance [39]. More generally, alignment
between the directions of evolution and cellular dynamics
have been recently observed in multiple contexts [21,36,
40–42]. In this view, Waddingtonian landscape dynamics ob-
served today for differentiation could be a spandrel [43] of an
evolutionary dynamics analogous to the Waddingtonian learn-
ing that we see here. Evolutionary statements of those sorts
are extremely challenging to prove experimentally. Quanti-
fying the emergence of hierarchical landscapes in tractable
models of complex systems might thus provide indications of
such universal aspects across fields from machine learning to
biology.
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