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Effects of strain-tunable valleys on charge transport in bismuth
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The manipulation of the valley degree of freedom can boost the technological development of novel functional
devices based on valleytronics. The current mainstream platform for valleytronics is to produce a monolayer
with inversion asymmetry, in which the strain-band engineering through the substrates can serve to improve
the performance of valley-based devices. However, pinpointing the effective role of strain is inevitable for the
precise design of the desired valley structure. Here, we demonstrate the charge transport under continuously
controllable external strain for bulk bismuth crystals with three equivalent electron valleys and one hole
valley. The strain response of resistance, namely elastoresistance, exhibits evolutions in both antisymmetric and
symmetric channels with decreasing temperature. The elastoresistance behaviors mainly reflect the significant
changes in valley density depending on the symmetry of induced strain, evidenced by our strain-dependent
quantum oscillation measurements and first-principles band calculations under strain. These facts suggest the
successful tuning and evaluation of the valley populations through strain-dependent charge valley transport.
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I. INTRODUCTION

Quantum degrees of freedom provide a central ingredient
for the applications of functional electronic devices. Among
them, the local conduction-band minimum, valley, is attract-
ing attention as a key element for high-profile valleytronics,
subsequently to charge for electronics and spin for spintronics
[1]. A fundamental step for exploiting the valley degrees of
freedom is the development of the methods for lifting and
monitoring the degenerated energy of valleys at different po-
sitions in momentum space. Successful valley selection has
so far been demonstrated by various strategies: strain for
2D electron-gas systems in AlAs heterostructure [2], electric
field for diamonds [3], polarized light for transition metal
dichalcogenides [4–6], and magnetic field for bismuth [7,8].
In addition, direct assessments of valleys have been reported
in sophisticated spectroscopy measurements [4–6]. For the
further development of potential valleytronic applications, it
requires simpler methods that serve as both a controller and a
barometer of valley degrees of freedom.

One of the practical approaches is to control and eval-
uate valley degrees of freedom through electrical transport.
An appropriate material for this situation is a single-element
semimetal bismuth with three equivalent electron valleys and
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one hole valley [9–11]. A strong magnetic field (B > 40 T)
can completely polarize their electron valleys depending on
the direction of the applied magnetic field. For example, under
a magnetic field along the binary direction, one electron valley
survives, whereas the other two electron valleys disappear;
this is completely opposite to the case for the field along the
bisectrix [12,13]. Furthermore, bismuth exhibits characteristic
field-angle dependent orbital magnetoresistance that can be
captured by the classical transport theory with assumed ellip-
soid shape of mobility tensors for one of the three equivalent
electron valleys and hole valley [14], respectively. Therefore,
bismuth is a good platform to describe the valley-dependent
charge transport. However, even a few Tesla of magnetic
field that is enough to induce finite valley polarization secon-
darily causes prominent quantum oscillations, which makes
it complicated beyond the scope of this classical treatment.
Alternatively, our focused strain is expected to be an effective
tool to simply lift valley degeneracy [15].

The potential roles of strain in valley materials are not
only limited to produce valley polarization, but expand to
band engineering to acquire an ideal valley structure. As
mentioned above, symmetry-breaking anisotropic strain can
directly break the degeneracy of valleys. On the other hand,
in-plane symmetric strain does not induce valley polarization
but alternatively serves as tuning the band gap that determines
the capability of potential device applications by shifting
the energy level of the valleys. In fact, enormous efforts
mainly using epitaxial strain have been directed to increasing
the band gap for valley materials, including graphene [16],
germanium [17], and transition metal dichalcogenides [18].
Thus, utilizing each symmetry channel of strain is expected
to be useful for the precise design of the valley structure,
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but no such systematic experiments have been conducted.
Here, we demonstrate simultaneous control and evaluation
of valleys in bismuth via charge valley transport under the
uniaxial stress. In order to clarify the effective role of the
induced strain depending on each symmetry channel, we
performed symmetry-resolved elastoresistance measurements
of bismuth. Since the crystal structure of bismuth has two
bilayers within the hexagonal structure [19], the demonstra-
tion of strain-engineerable valleys in bismuth can provide
the significant insights for tuning valley profiles of promising
valleytronics candidates via epitaxial strain, such as graphene
and atomically thin transition metal dichalcogenides with a
hexagonal crystal structure.

II. METHODS

Sample specimens were firstly spark-cut from the in-
got of single-crystal bismuth grown by the Czochoralski
method. Then, those specimens were cleaved and cut to
achieve suitable dimensions for elastoresistance measure-
ments, typically ∼1 mm (binary:x) × 400 µm (bisectrix :
y) × 60 µm (trigonal : z). Uniaxial stress was applied to sam-
ples attached to the rigid platform made of titanium to
achieve large strain without the destruction of the samples
[20] using the home-built piezo-driven apparatus based on
the design originally reported in Ref. [21]. To elucidate
the symmetry-resolved strain response of bismuth, we mea-
sured strain-induced changes in binary-direction resistance
�Rxx(εii ) = Rxx(εii ) − Rxx(εii = 0) (i represents x or y) under
the two different experimental geometries: the applied strain
along binary εxx in the longitudinal geometry [Fig. 1(a)] and
that along bisectrix εyy in the transverse geometry [Fig. 1(b)].
The resistive strain gauge was attached to the backside of
the platform to evaluate one main component of the induced
strain. The strain evaluated by the strain gauge corresponds to
the sample strain along binary εxx in the longitudinal geom-
etry and that along bisectrix εyy in the transverse geometry,
respectively. From these two experiments, we can obtain two
elastoresistance,

ER|| = d�Rxx(εxx )/Rxx(εxx = 0)

dεxx
, (1)

and

ER⊥ = d�Rxx(εyy)/Rxx(εyy = 0)

dεyy
. (2)

Following the differential elastoresistance analysis, which
was originally introduced in the iron-based superconductors
[22], the symmetry-resolved elastoresistance can be decom-
posed into two parts,

ERsym = 1

(1 − νp)
(ER|| + ER⊥), (3)

and

ERanti = 1

(1 + νp)
(ER|| − ER⊥), (4)

where νp is an effective Poisson ratio of the platform di-
rectly measured by the strain gauges(νp ∼ 0.197). ERsym and
ERanti represent elastoresistance response against the isotropic

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. Two experimental geometries of elastoresistance mea-
surements in bismuth. [(a)–(c)] Strain εxx dependence of resistance
Rxx along binary (b) and temperature dependence of elastoresistance
ER|| (c) in the parallel geometry (a). Sample is glued on the platform
for applying strain. [(d)–(f)] Strain εyy dependence of resistance
(e) and temperature dependence of elastoresistance ER⊥ (f) in the
perpendicular geometry (d). #A represents the batch number of the
samples.

symmetric strain εsym = (εxx + εyy)/2 and the anisotropic
antisymmetric strain εanti = (εxx − εyy)/2, respectively. For
simplicity, we consider strain components only in the
xy plane.

For exploring the relationships between strain-controlled
valley density and elastoresistance results, we developed
the minimum classical framework that provides the phe-
nomenological understanding of how the strain-modified
valley population affects charge transport. In this model, we
assume the rigid band approximation that conductivity under
strain only changes its carrier density term. This model pro-
vides the quantitative evaluation of the valley susceptibility
χ� , which describes the controllability of the valley density
against each symmetry channel � of the applied strain: sym-
metric strain εsym and antisymmetric strain εanti. To clarify the
expected strain-modified valley density from these obtained
valley susceptibilities both experimentally and theoretically,
we have performed quantum oscillation measurements under
strain and density functional theory (DFT) calculations. Both
results are successfully explained by the valley susceptibilities
evaluated by the elastoresistance measurements.

DFT calculations were performed using BAND soft-
ware of Amsterdam Modeling Suite [23,24]. We employed
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the generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof exchange-correlation functional and
triple-zeta-polarized basis sets. The relativistic effects were
considered by the noncollinear method. It is well known
that the GGA of DFT overestimates the direct gap at the L
points [25,26]. However, it has also been shown that the GGA
yields a result qualitatively consistent with the more accurate
approximation, such as the quasiparticle self-consistent GW
calculation [26]. Therefore, the present results should qualita-
tively capture the band-structure change against the strain. We
modified the x and y components of the basic translation vec-
tor a = (ax, ay, az ) as a′

x = ax(1 + εxx ) and a′
y = ay(1 + εyy),

keeping az unchanged. For the symmetric strain, we set εxx =
εyy, while we set εxx = −εyy for the antisymmetric strain.

Quantum oscillation measurements were performed under
the in situ set-up for elastoresistance measurements in order
to directly evaluate valley density. To align the magnetic field
along binary direction in both two experimental geometries,
we used two superconducting magnets: vertical magnetic field
up to 7 T by solenoid magnet for the longitudinal geometry
and the horizontal field up to 4 T by split magnet for the
transverse geometry. Although the available magnetic field
window is limited, two of the three electron pockets reaches
the quantum limit (QL) at 1.5 T under magnetic field along
binary, owing to the smallness of the Fermi energy in bismuth,
which enable us to study the strain dependence of valley
density. We evaluated the valley susceptibilities based on the
strain-dependent QLs apart from the elastoresistance analysis.

III. RESULTS

A. Elastoresistance measurements

Response in resistance of bismuth against the applied
strain is summarized in Fig. 1. Elastoresistance of bismuth
exhibits contrasting results between two experimental geome-
tries. First, we measured longitudinal elastoresistance ER||
in the parallel geometry depicted in Fig. 1(a), where the
applied current j and induced strain εxx are along the bi-
nary (x) direction as j || εxx || binary. ER|| changes its sign
from negative to positive on cooling with a broad minimum
structure, as shown in Figs. 1(b) and 1(c). After the longi-
tudinal geometry experiment, we then measured transverse
one ER⊥ in the perpendicular geometry j ⊥ εyy || bisectrix
[Fig. 1(d)]. In contrast to ER||, ER⊥ monotonically increases
with decreasing temperature, as shown in Figs. 1(e) and 1(f).
The observed strain directional difference is consistent with
the previous comparable study above liquid nitrogen tem-
perature using thin film samples, including each sign and
amplitude [27,28], although we note there are still other previ-
ous studies that measured other elastoresistance coefficients in
different experimental geometry [29,30]. The essential differ-
ences in temperature dependence between ER|| and ER⊥ may
reflect the mixing contributions from two symmetry channels.

To elucidate the origin of these strain direction-dependent
behaviors, we resolved two components of elastoresistance
by combining the results of both experimental geometries:
symmetric component ERsym and antisymmetric component
ERanti, as shown in Figs. 2(a) and 2(b). We have performed
several samples to ensure the reproducibility of the results (see

Antisymmetric strain
εAnti

e1

e2

Symmetric strain
εsym

e1

e3e2

e3

(a)

(b)

FIG. 2. Symmetry-resolved elastoresistance response of bis-
muth. (a) Symmetric components of elastoresistance for left axis.
Right axis represents the symmetric valley susceptibility based on the
relation ERsym = −χsym. To ensure the reproducibility, we shows the
results of two samples, #A and #B. Inset shows a schematic picture of
changes in valley structure induced by tensile symmetric strain. Blue
dashed and solid lines depict original and strain-decreased Brillouin
zones (BZs), respectively. We note that the change in the shape
of BZ is opposite to the strain in the real space. Green ellipsoids
and red circles represents electron and hole valleys, respectively.
(b) Antisymmetric components of elastoresistance represented by
pink circles for left axis. Purple diamonds represent valley suscepti-
bility evaluated by χanti = ERanti/γ (T ), whose scale is shown in the
right axis. Inset represents schematics of valley polarizations induced
by antisymmetric strain. Blue dashed and solid lines depict original
and strain-deformed BZs, respectively.

also Appendix A). In addition, our resolved ERsym well agrees
with relevant elastoresistance coefficients directly measured
in the early study [29] (see Appendix A), supporting the va-
lidity of our symmetry-resolved analysis. In high-temperature
regions, ERanti dominates over ERsym. The magnitude of both
ERanti and ERsym exhibits the enhancement on cooling with
opposite signs, indicating the sensitivity of bismuth to mul-
tiple symmetry channel of the strain. However, this ERanti

is saturated roughly around T ∼ 50 K, while ERsym shows
continuous enhancements. This symmetry crossover from an-
tisymmetric to symmetric response reflects a broad minimum
in ER|| with sign change, as shown in Fig. 1(c). By con-
trast, in the perpendicular geometry, both two channels of
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elastoresistance give cooperative contributions, leading to the
strong enhancements of ER⊥, as shown in Fig. 1(f).

B. Valley susceptibility

We now address the microscopic mechanism behind
this strain-sensitive charge transport. The previous magne-
tostriction results provide valuable insights into the intimate
relationships between strain and valley density [8,31–35].
The very large magnetostriction observed in bismuth can be
attributed to field-induced changes in valley density, which
can be enhanced by carrier-transfer process between multi-
valleys [35]. This fact leads us to expect the reverse case:
the external strain can cause significant changes in valley
density. To elucidate the pure effect of strain-induced changes
in valley density on transport, we start from the classical
framework introduced in Ref. [14], where the conductivity
is described by the summation of each valley contribution.
Once the mobility tensor of one electron valley and hole
valley is fixed, this basic and simple framework successfully
captures transport properties of bismuth [36,37], including
the even more puzzling field-angle dependence of magnetore-
sistance [14]. However, when we extend the scope of this
model to transport under strain, the form of conductivity under
strain become generally complicated because the application
of strain alters both carrier density and mobility. Here, for
simplicity, we propose the carrier-based model under strain
ε for each valley with only the strain-induced changes in
carrier density �ni(ε) = ni(ε) − ni(ε = 0), where ni repre-
sents the carrier density of each valley with index i. In fact,
the importance of this carrier density term for describing
elastoresistance behaviors has also been acknowledged for
WTe2 [38], which is one of the well-known semimetals with
a small carrier concentration, just like bismuth. We also add
the symmetry-dependent changes in valley density to reflect
the valley degree of freedom of bismuth, which cannot be
explored in WTe2 because of the low crystal symmetry and the
lack of valley degrees of freedom. Here, to describe �ni(ε),
we introduce symmetry-decomposed strain-valley suscepti-
bility χ i

� = (1/ni(ε = 0))dni/dε� . As described below, this
simplified model can essentially capture the elastoresistance
of bismuth.

The modification of valley structures is constrained by
the symmetry of the lattice deformation. Isotropic symmetric
strain εsym preserves the rotational symmetry underlying the
crystal lattice, leading to uniform change of valley population
without breaking the equivalence of the three electron valleys.
Adding the charge neutrality condition, the valley population
varies with symmetric strain as

�ne1 = �ne2 = �ne3 = �nhole/3 = nχsymεsym, (5)

where n represents the valley density for one electron valley
at ambient stress. In this situation, εsym only changes the total
carrier number described as χsym, and hence straightforwardly
connects with elastoresistance within the carrier-based model
neglecting the strain-induced modification of mobility (see
Appendix B) as

ERsym = −χsym. (6)

Based on this model, the observed positive sign of the sym-
metric elastoresistance ERsym indicates that a tensile strain,
which reduces the size of the Brillouin zone, decreases the
carrier density of each valley, as shown in the inset of Fig.
2(a). This behavior is consistent with the previous first prin-
ciples study reporting that the overlap of the indirect band
gap between the hole and electron becomes small by the
expansion of the trigonal plane crystal lattice [26] and our cal-
culations discussed below [see Figs. 3(a) and 3(b)]. This band
modification reflects the charge neutrality of semimetal and
becomes significant particularly at low temperatures, where
only low-energy bands near the Fermi level become relevant.
In fact, the elastoresistance of WTe2 at low temperatures is
also attributed to the charge neutral band modification [38].
Thus, ERsym clearly visualizes the temperature evolutions of
uniform energy shifts of electron and hole valleys, as shown
in Fig. 2(a).

On the other hand, symmetry-breaking antisymmetric
strain εanti can make a difference in the valley polarization in
one valley e1 and the other two valleys e2/e3,

�ne1 = nχantiεanti, (7)

�ne2/e3 = −nχantiεanti/2. (8)

Now, χanti represents the valley susceptibility that evalu-
ates the sensitivity of the valley polarization against applied
symmetry-breaking antisymmetric strain, which corresponds
to so-called nematic susceptibility applied to various iron-
based superconductors [39–42]. In contrast to the case of
χsym, the relationships between χanti and ERanti depend on the
anisotropy of valley mobility γ ,

ERanti = γχanti. (9)

The detailed derivation of this relation is provided in the Ap-
pendix B. The relevant anisotropic factor in this experimental
geometry is evaluated as γ ∼ −0.35 at low temperatures
based on the previous studies [14,36]. The negative sign of
γ comes from the fact that valley e1 has higher mobility
along binary than the other electron valleys e2/e3, leading
to the conductivity improvements by positive antisymmetric
strain-induced increases of the e1 valley density. Figure 2(b)
depicts the overall temperature dependence of χanti, which
incorporates the temperature dependence of γ [14,36,37] (see
also Appendix B). The estimated χanti is comparable to or even
larger than χsym, suggesting the strain sensitivity in the valley
densities against both symmetric and antisymmetric strains.

There are no guarantees for the quantitative accuracy of
the valley susceptibilities that we introduced in this classical
model within the rigid band approximation. Therefore, it is
important to justify how strain controls valley density. To ad-
dress these points, we directly explored the strain tunability of
valleys using both theoretical and experimental approaches in-
dependent from this model: first principles calculations under
strain and strain-dependent quantum oscillation measure-
ments. As described below, valley susceptibilities obtained
from both methods result in the same signs and comparable
magnitudes with ones from our carrier-based transport model,
suggesting that our introduced approximations are sufficient
to describe the valley transport of bismuth under strain.
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FIG. 3. DFT band calculation results under strain. (Upper panel) The schematic images of the applied strain-induced changes in the trigonal
plane crystal lattice: symmetric strain (a) and antisymmetric strain (c). (Lower panel) Band structure near the electron (L1, L2, L3) and hole
(T) pockets under symmetric strain εxx = εyy = 0.01 (a) and antisymmetric strain εxx = −εyy = 0.01 (c). The dashed lines indicate the band
structures for zero strain εxx = εyy = 0. Energy of the bottom of the electron and the top of the hole bands as a function of symmetric (b) and
antisymmetric strains (d).

C. DFT calculation under strain

These strain-modified valley structures are successfully vi-
sualized by our density functional theory (DFT) calculations
under strain, as shown in Fig. 3. Three electron valleys e1, e2,
e3, and hole valley are located at three equivalent L points
labeled as L1, L2, L3, and T point, respectively. Under a
tensile symmetric strain, all electron valleys equivalently shift
upward while hole valley does downward as shown in Fig.
3(a), leading to the uniform reduction of each valley density.
As shown in Fig. 3(b), the symmetric strain linearly shifts
each valley within the calculated region εsym ± 1%, justifying
the strain-linear response analysis of valley density. On the
other hand, the antisymmetric strain induces electron valley
polarization as expected from χanti: for instance, the positive
antisymmetric strain increases e1 valley density but decreases
e2/e3 valley densities, as shown in Fig. 3(c). The detailed
strain dependence of valleys shown in Fig. 3(d) clearly de-
picts the switch of the valley polarization across εanti = 0. The
carrier number of isotropic hole valley should change equally
under ±εanti, but anisotropic shifts of electron valleys result in
asymmetric even-functional strain dependence of hole valley

through the charge neutrality of semimetals. The hole valley
changes little under the perturbative small strain used in the
elastoresistance study, implying the transport under εanti dom-
inated by electron valleys. These strain-induced changes in
valley density are caused by the simple energy shifts of the
valleys with keeping their band shapes. This fact suggests
the validity of the rigid band approximation; thus, charge
transport under strain should be dominated by strain-induced
changes in valley density since the Fermi velocity is nearly
unchanged. These DFT calculation results are essentially con-
sistent with the changes in valley density elucidated by the
elastoresistance signal based on the simple carrier-based clas-
sical transport analysis (see also Appendix E), supporting the
successful strain tuning of valleys and evaluation of its effect
on transport.

D. Quantum oscillation measurements under strain

To further strengthen our discussions, we try to directly
evaluate the strain-induced changes in valley populations
through strain-dependent quantum oscillations of bismuth
at the lowest temperature measured. A magnetic field is
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e1

e2 e3
B

+0.64 T/%

-1.7 T/%

binary

bisectrix

QL for e2/e3 

QL for e2/e3 

(a)

(b)

(c)

(d)

FIG. 4. Strain-dependent quantum oscillations of sample #B along B || binary under two experimental geometries. Shubnikov-de Haas
oscillations under the parallel (a) and perpendicular geometries (b). The black arrow indicates quantum limit (QL) for electron valleys e2/e3
at zero strain point. (c) Schematic illustration of the Fermi surface area originating from the quantum oscillations indicated by yellow lines on
the valleys e2/e3. (d) Both εxx- and εyy-dependent shifts of QLs of electron valleys e2/e3.

applied along the binary direction in both strain geometries,
as shown in Figs. 4(a) and 4(b). Three clear peaks are ob-
served in the second field derivative of resistivity derived
from Shubnikov-de Haas (SdH) oscillations of electron val-
leys e2/e3, determined by the well-defined Landau spectrum
of bismuth [11,43] [see also Fig. 4(c)]. These peaks exhibit
strain sensitivity; for the parallel geometry, positive strain
εxx shifts the peak position to a lower field side, as shown
in Fig. 4(a), evidencing the shrink of the electron valleys
e2/e3; by contrast, each peak exhibits shifts toward higher
field region under positive strain εyy for the perpendicular
geometry, as shown in Fig. 4(b). Here, because of the small
number of observable peaks, we focus on the QLs to estimate
the strain dependence of the valley density instead of using
the conventional fast Fourier transformation (FFT) analysis.
Both strain εxx- and εyy-dependent QLs for valleys e2/e3
are shown in Fig. 4(d). Combing these two results of the
strain-controlled QLs gives another evaluation of valley sus-
ceptibility: χQO

sym ∼ −100 and χ
QO
anti ∼ 280 (see Appendix C).

These values are qualitatively consistent with the evaluations
by elastoresistance around the same low temperatures, includ-
ing each magnitude and sign [see Figs. 2(a) and 2(c)].

IV. DISCUSSION

As described above, quantum oscillation measurements
demonstrate that strain-induced valley density change

coincides with valley susceptibility described by elastore-
sistance, supporting the validity of our proposed simple
carrier-based transport model under strain. Furthermore, it
is worth noting that the evaluation of χ also agrees with
our analysis based on the deformation potentials [44] within
the framework introduced in the early magnetostriction study
[35] (see Appendix D). These facts strongly suggest that the
sensitivity of valley density against strain is very high enough
for bismuth to justify the simple phenomenological treatments
between valley density and strain at least at low temperatures.
Returning to our original motivation, antisymmetric strain
successfully tunes electron valley degeneracy, which can be
evaluated by χanti. In addition, χanti develops with cooling,
suggesting the manipulation capability of valley degrees of
freedom especially at low temperatures. Furthermore, large
χsym suggests that a tensile symmetric strain efficiently sup-
presses the indirect gap of bismuth, which contributes to
enhance another aspect of valley capability.

Finally, we discuss the possibility of the nematic aspects of
bismuth with three equivalent electron valleys. The nematic
state of bismuth are described as valley polarized states, which
can be classified into the novel Z3 nematicity recently dis-
cussed in various materials such as magnetism [45], charge
density wave [46], and nematic superconductivity [47]. In
fact, the possibility of valley nematic states in bismuth has
been discussed in low-temperature regions under magnetic
field in both bulk [7,14] and surface states [48], although the
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(a) (b)

j || xx || Binary

Bisectrix

j⊥ yy

Binary

Bisectrix

(c) (d)

FIG. 5. Two experimental geometries of elastoresistance measurements [(a),(b)] and symmetry-decomposed elastoresistance [(c),(d)] in
bismuth for several samples. As for a reference, another type of symmetric elastoresistance −ERzz,zz [29] is also plotted in (c).

former results are recently attributed to the extrinsic effects
because of the boundary conductance [49]. In that sense,
the direct evaluation of valley density in the present study
may demonstrate the effective role of strain in controlling
these Z3 orders. Increasing χanti at low temperatures seems
not to deny the putative nematic state in bismuth. In fact,
iron-based superconductors are the representative metals that
exhibit such a large ERanti comparable to bismuth, owing
to the critical divergence of nematic susceptibilities [39–42].
However, such an enhancement in iron-based superconductors
generally occurs in only one symmetry channel since ordinary
nematic materials are sensitive to only the specific direction of
strain that couples with the symmetry of their own nematicity.
Therefore, the evolution of χsym, which reaches a comparable
magnitude to χanti, clearly demarcates bismuth from simple
nematic materials. The observed χanti of bismuth does not nec-
essarily pinpoint rotational symmetry breaking field. Rather,
simultaneous large χsym and χanti describe the sensitivity to
any external perturbative stress field; this strain sensitivity
over multiple symmetry channels possibly originates from
the nature of semimetal with the smallness of Fermi energy
and charge neutrality. The mixing ratio of induced symmetric
strain to antisymmetric strain by applied uniaxial pressure can
change through the aspect ratio of the crystal, and as a result
the fabrication of sample dimension can be one tool to tune
the desirable valley profiles.
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APPENDIX A: REPRODUCIBILITY OF
ELASTORESISTANCE

One of the difficulties in quantitative analysis is that the
induced strain practically depends on the experimental con-
ditions; for example, the sample dimensions greatly affects
the strain transmission rate [20,40]. Therefore, we measured
several samples to check the reproducibility. We measured
five samples for the parallel geometry j||εxx||binary [Fig.
5(a)] and three samples for the perpendicular geometry j ⊥
εyy||bisectrix [Fig. 5(b)]. For samples #A and #B, we first
measured ER||. Next, we removed the samples #A and #B
from the platform and re-glued them on the platform for the
ER⊥ measurements. There are some quantitative variations in
elastoresistance, but all measured samples qualitatively repro-
duce the essential properties; ER|| shows crossover behaviors
with a broad minimum around 80 K, whereas ER⊥ exhibits
monotonic enhancements on cooling. The same assurance can
be provided for symmetry-decomposed elastoresistance, as
shown in Figs. 5(c) and 5(d).
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In this study, we resolved the symmetric and antisymmetric
responses in elastoresistance by combining the results from
two different experimental geometries. The antisymmetric
component cannot be directly measurable unless this com-
bined analysis is performed, but the symmetric component
can be directly evaluated by using only one experimental
geometry, where the changes in resistivity along the trigonal
(z) direction (�ρ/ρ)zz are measured under the longitudinal
strain along the trigonal direction εzz. Since in-plane symmet-
ric strain εsym = 1

2 (εxx + εyy) is compatible with out-of-plane
strain with the opposite sign −εzz, this elastoresistance re-
sponse ERzz,zz = d(�ρ/ρ)zz

dεzz
is essentially the same with our

resolved symmetric elastoresistance −ERsym. For compari-
son, the results of ERzz,zz reported by the early study [29] are
also plotted in Fig. 5(c). Both ERsym and –ERzz,zz exhibit the
essentially same enhancement with decreasing temperatures,
suggesting the validity of our symmetry-resolved analysis.

APPENDIX B: SIMPLE CARRIER MODEL
FOR TRANSPORT UNDER STRAIN

The transport model for the valley material bismuth has
been established in the previous study describing the field
angle dependence of magnetoresistance [14,50]. The essential
point of this theory is introducing mobility tensors for each
ellipsoidal valley of bismuth. For the electron valley e1, the
mobility tensor is given as

μ̂e1 =
⎡
⎣μ1 0 0

0 μ2 μ4

0 μ4 μ3

⎤
⎦.

Off-diagonal component μ4 comes from the slight tilts of the
electron valley in the trigonal direction. We refer each ten-
sor component as μe1

i j (i, j = x, y, z): for example, μe1
xx = μ1.

Threefold rotational symmetry of bismuth gives equivalence
among each electron valley under 2π/3 rotation. Once the
rotation matrix R̂θ for a rotation around the trigonal axis is
introduced, the mobility tensors for the other two electron
valleys can be expressed as

μ̂e2 = R̂−1
2π/3 · μ̂e1 · R̂2π/3,

μ̂e3 = R̂−1
−2π/3 · μ̂e1 · R̂−2π/3.

On the other hand, the hole valley mobility tensor is given as

ν̂h =
⎡
⎣ν1 0 0

0 ν1 0
0 0 ν3

⎤
⎦.

Since hole valley has an ellipsoidal shape with the major
axis precisely along the trigonal direction, there are no off-
diagonal components, unlike electron valleys. By using these
mobility tensors, the conductivity of bismuth is formalized as

σ̂ =
∑

i=1,2,3

neieμ̂ei + nheν̂h.

Here, e represents elementary charge. Threefold rotational
symmetry guarantees the equivalence among three electron
valleys as n = ne1 = ne2 = ne3. In addition, the charge neu-
trality condition of semimetal set the constraints on the

number of electrons and holes as 3n = nh. In Ref. [14], a
magnetic field tensor is incorporated as a magnetic field effect
to describe magnetoresistance in accordance with Aubrey’s
study [50]. In contrast to this, the strain effect focused on here
is generally introduced as the change in both carrier numbers
and mobility for each valley. For the case of electron valley
e1, the conductivity tensor component σ e1

xx under strain is the
following first-order approximation,

σ e1
xx (ε) = ne1(ε = 0) e μe1

xx (ε = 0)

×
(

1 + 1

μe1
xx(ε = 0)

dμe1
xx

dε
ε + 1

ne1(ε = 0)

dne1

dε
ε

)
.

Our DFT results reveal that strain shifts only the valleys
with keeping their band shapes. This fact suggest that the
mobility of the each valley changes little under strain, sup-
porting this rigid band approximation. Therefore, we adopted
the carrier-based model without the strain-induced mobility
changes, namely the rigid band approximation against the
applied strain.

Strain-induced changes in charge carrier number are de-
scribed by introducing the valley susceptibility defined as
χ = 1

ne1(ε=0)
dne1
dε

. The conductivity tensor under strain and val-
ley susceptibility for other valleys can be expressed in the
same manner. As discussed in the main text, strain responses
of carrier density change depending on the symmetry of the
introduced strain. Therefore, two kinds of valley susceptibility
can be introduced: symmetric valley susceptibility χsym and
antisymmetric valley susceptibility χanti. In the following, we
discuss the relationships between elastoresistance and each
valley susceptibility.

Symmetric strain εsym = 1
2 (εxx + εyy) preserves the sym-

metry underlying lattice and uniformly changes three electron
valleys: �ne1 = �ne2 = �ne3 = nχsymεsym, where �nei rep-
resents strain-induced changes in each valley density as
�nei = nei(ε) − n and we introduce common valley den-
sity n among electron valleys at ambient stress. Charge
neutrality conditions constrain the changes in hole valley
density as �nh = ∑

i=1,2,3 �nei = 3nχsymεsym. Using these
modifications of carrier density, the conductivity tensor under
symmetric strain is given as

σ̂ (εsym ) = ne(1 + χsymεsym )(μ̂e1 + μ̂e2 + μ̂e3 + 3ν̂).

By using this equation, the strain-induced changes in the
binary-direction resistivity ρxx is given as

�ρxx(εsym )/ρxx(εsym = 0)

= (
σ−1

xx (εsym ) − σ−1
xx (εsym = 0)

)
/σ−1

xx (εsym = 0)

= − χsymεsym

χsymεsym + 1
.

At this time, the elastoresistivity is expressed as

ERsym = lim
εsym→0

�ρxx(εsym )/ρxx(εsym = 0)

εsym

= − lim
εsym→0

χsym

χsymεsym + 1

= −χsym.
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FIG. 6. Temperature dependence of the mobility tensor
anisotropy γ estimated from the previous studies [14,36,37].
In the main text, χanti are evaluated by using the extracted
temperature-dependent γ values indicated by the red dashed line.

Thus, a very simple result is obtained: ERsym = −χsym.
Within the rigid band approximation, ERsym purely reflects
the strain-induced changes in carrier density.

Next, we discuss the case of antisymmetric strain 1
2 (εxx −

εyy). The symmetry-breaking antisymmetric strain lifts the
valley degeneracy and distinguishes one valley from the other
two ones: �ne1 = nχantiεanti and �ne2/e3 = −nχantiεanti/2.
This type of change in valley density is derived from the
threefold symmetry of the system. This electron valley po-
larization does not change the total carrier number of electron
valleys, and hence hole valley density is unaffected owing to
the charge neutral conditions. In this case, the conductivity
tensor under antisymmetric strain can be expressed as

σ̂ (εanti ) = ne(μ̂e1 + μ̂e2 + μ̂e3 + 3ν̂

+ [μ̂e1 − μ̂e2/2 − μ̂e3/2]χantiεanti ).

Following the same procedure as the case of symmetric sus-
ceptibility, the elastoresistivity in antisymmetric symmetry is
given as

ERanti = lim
εanti→0

�ρxx(εanti )/ρxx(εanti = 0)

εanti

= − μe1
xx − μe2

xx/2 − μe3
xx/2

μe1
xx + μe2

xx + μe3
xx + 3νxx

χanti

= γχanti.

Here, coefficient γ represents the anisotropy of mobility,
and thus ERanti in the rigid band approximation is determined
by the multiplications of strain-induced valley polarization
with original valley anisotropy. Figure 6 represents the tem-
perature dependence of γ evaluated by several previous
studies for elucidating mobility tensors [14,36,37]. In the
present experimental geometry, we measured the resistivity
along abinary direction; therefore, the electron valley e1 has
much larger mobility along this direction than those of elec-
tron valleys e2/e3, which results in a negative sign of γ . For
the valley susceptibility analysis, we extracted the tempera-
ture dependence of γ from the previous studies, as shown in
Fig. 6.

FIG. 7. Strain-dependent Shubnikov-de Haas measurements un-
der a field along binary for sample #A. Quantum oscillation
measurements are conducted at the base temperature of each cryostat
we used: T ∼ 1.7 K for the parallel geometry under εxx and T ∼ 2 K
for the perpendicular geometry under εyy.

APPENDIX C: EVALUATIONS OF VALLEY
SUSCEPTIBILITIES THROUGH QUANTUM

OSCILLATION MEASUREMENTS

This simple carrier-based model allows us to evaluate the
valley susceptibilities χsym and χanti from elastoresistance as
demonstrated in the main text. Quantum oscillation provides
a direct method for the evaluation of strain-induced changes
in valley density. We measured Shubnikov-de Haas oscilla-
tions under a magnetic field along the binary direction for
two samples #A and #B. Electron valleys e2/e3 reach the
quantum limit at a field of ∼1.5 T along the binary direction.
Positive strain εxx in the parallel geometry shifts oscillation
peaks toward the lower field side, while positive strain εyy

does them toward the opposite field side. This behavior is
well reproduced in both samples; the results of sample #A are
shown in Fig. 7 and those of #B are shown in the main text.

In order to estimate the valley susceptibilities χsym and χanti

from quantum oscillation results, we use the relation between
the magnetic field at quantum limit BQL and carrier density
n described as BQL ∝ n. Thus, the strain derivatives of BQL

for e2/e3 valleys give direct evaluations of changes in carrier
densities of e2/e3 valleys against εxx and εyy, respectively,

1

ne2/e3(εxx = 0)

dne2/e3

dεxx
= 1

Be2/e3
QL (εxx = 0)

dBe2/e3
QL

dεxx
,

1

ne2/e3(εyy = 0)

dne2/e3

dεyy
= 1

Be2/e3
QL (εyy = 0)

dBe2/e3
QL

dεyy
.

Here, we assume that the transverse strain direction is
determined by the Poisson ratio of the platform νp, which
determines the amount of induced symmetric and antisym-
metric strains, respectively. In this case, the observed changes
in valley density of e2/e3 valleys are described by valley
susceptibilities as follows:

1

ne2/3(εxx = 0)

dne2/e3

dεxx

= (1 − νp)χsymεsym/2 − (1 + νp)(χanti/2)εanti/2,
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TABLE I. Approximate evaluations of valley susceptibilities in
low temperatures by two different methods for sample #A and #B.
χER is deduced from the value of elastoresistance at 2.5 K, and χQO

is evaluated from quantum oscillations at around 2 K.

Sample χER
sym χQO

sym χER
anti χ

QO
anti

# A –70 –100 85 250
# B –95 –110 190 280

1

ne2/e3(εyy = 0)

dne2/e3

dεyy

= (1 − νp)χsymεsym/2 + (1 + νp)(χanti/2)εanti/2.

By using these relations, the valley susceptibilities χQO

estimated from quantum oscillation are obtained (results sum-
marized in Table I). These values qualitatively agree with χER

evaluated by the simple carrier model, including their signs
and magnitudes, which suggests that our proposed simple car-
rier transport model successfully captures the essential nature
of transport under strain in bismuth.

APPENDIX D: VALLEY SUSCEPTIBILITY EVALUATED
BY DEFORMATION POTENTIALS

The relationships between valley density and strain have
been also discussed in a magnetostriction study [35]. Here,
we developed a different method for evaluating the valley
susceptibility as χMR in accordance with the deformation
potential-based framework introduced for describing previous
magnetostriction results [35]. Our analyzed χMR gives consis-
tent results with our elastoresistance and quantum oscillation
results. The detailed derivation of χMR is described as follows.

The magnetostrictive strain can be described by the field-
induced change in the carrier densities [35]. To describe the
proportional relations between strain εi j and energy shift of
the band-edges We,h for electron and hole valleys, the defor-
mation potential constants are introduced as below:

We = Li jεi j,

Wh = Ti jεi j,

where the Li j are the components of the deformation potential
tensor for the e1 electron valley and Ti j are those for the hole
valley. The values of these deformation potential constants
determined by both experiment and theoretical calculations
were reported in Ref. [44,51]. According to Ref. [35], we can
calculate the band shifts for electron valleys in general form

We1 = L11ε11 + L22ε22 + L33ε33 + 2L23ε23,

We2/e3 = 1

4
(L11 + 3L22)ε11 + 1

4
(3L11 + L22)ε22 + L33ε33

±
√

3

2
(L11 − L22)ε12 ±

√
3L23ε13 − L23ε23,

where the upper/lower sign refers to e2/3 valley, respectively.
Once we apply static stress along binary or bisectrix direction,
4 strain tensor components ε11, ε22, ε33, ε23 are active [52],

and band shifts of electron valleys are given by

We1 = L11ε11 + L22ε22 + L33ε33 + 2L23ε23,

We2/e3 = 1
4 (L11 + 3L22)ε11 + 1

4 (3L11 + L22)ε22

+ L33ε33 − L23ε23.

When stress is applied along the binary or bisectrix direction
just like in our study, there are no shear strain components ε12

and ε13, and thus there are no differences in band energy shift
between e2 and e3 valleys. When longitudinal strain ε along
binary is induced, we can compute the energy shifts of bands,

W σ ||binary
e1 = L11ε − L22ν12ε − L33ν13ε + 2L23ν14ε,

W σ ||binary
e2/e3 = 1

4 (L11 + 3L22)ε − 1
4 (3L11 + L22)ν12ε

− L33ν13ε − L23ν14ε.

Here, ν12, ν13, ν14 are the relevant Poisson ratios of bismuth,
respectively. On the other hand, these band shifts can be de-
scribed when the same amount of strain ε is induced by the
stress along bisectrix,

W σ ||bisectrix
e1 = − L11ν12ε + L22ε − L33ν13ε − 2L23ν14ε,

W σ ||bisectrix
e2/e3 = − 1

4 (L11 + 3L22)ν12ε + 1
4 (3L11 + L22)ε

− L33ν13ε + L23ν14ε.

To compare with our quantum oscillation results of e2/e3
valleys, we calculate the valley susceptibilities from W σ ||binary

e2/e3

and W σ ||bisectrix
e2/e3 ,

χMR
sym ∼ − 1

εe

dW σ ||binary
e2/e3 + W σ ||bisectrix

e2/e3

dε

= − 1

εe
[(L11 + L22)(1 − ν12) − 2L33ν13],

χMR
anti ∼ − 1

εe

dW σ ||binary
e2/e3 − W σ ||bisectrix

e2/e3

dε

= − 1

εe

[−1

2
(L11 − L22)(1 + ν12) − 2L23ν14

]
,

where εe represents the Fermi energy of the original elec-
tron valleys (typically εe ∼ 27 meV) [25]. Poisson ratios
ν12, ν13, ν14 can be calculated from elastic constants Ci j .
Combining deformation potential constants [44] and elastic
constants at 4 K [53], we can compute valley suscepti-
bilities as χMR

sym ∼ −155 and χMR
anti ∼ 280, which are again

consistent with our results shown in Table I. There facts fur-
ther strengthen our conclusion on the strain-controlled valley
density.

APPENDIX E: CONSISTENCY WITH DFT RESULTS

As discussed in the main text, the strain-induced energy
shifts of each valleys with rigid band nature are qualitatively
consistent with our evaluated valley susceptibilities. In gen-
eral, the GGA approximation is not enough to reproduce
quantitative band structure such as band gap, as mentioned
in the main text. Nevertheless, our results may quantita-
tively explain the results of χsym and χanti. For example,
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antisymmetric strain εanti ∼ 0.5% is enough to induce com-
plete valley polarization emptying e1 or e2/e3 valleys,
which is consistent with the experimental results χanti > 200.
On the other hand, it requires over εsym ∼ 1% to induce

metal-insulator transition. This difference is consistent with
the fact that the χanti exceeds χsym. Our DFT calculations gives
valley susceptibilities as χDFT

sym ∼ −95 and χDFT
anti ∼ 460, which

are in reasonable agreement with experimental results.
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