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Anti-Coulomb ion-ion interactions: A theoretical and computational study
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The free energy of ion solvation can be decomposed into enthalpic and entropic contributions. This helps
one to understand the connection between the dielectric properties and the underlying forces. We present a
simple linear-response model of screened charge interactions that provides an alternative understanding of
solvation barriers. Moreover, it explains the “anti-Coulomb” interactions (attraction between like-charged ions
and repulsion between opposite-charged ions) observed in both simulations and experiments. We show that this
is a universal behavior associated to the nonlocal response function of any dielectric or metallic systems.
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I. INTRODUCTION

The study of electrolyte solutions is of paramount impor-
tance to a wide variety of natural and industrial processes,
including human biology, advancements in material design,
and interfaces between solution and solid [1–6]. In principle,
solvation is controlled by simple, classical electrostatic inter-
actions [7–9]. In practice, however, simulations with small
changes in the interatomic forces and modeling methods re-
turn quantitatively and qualitatively different results [10–15],
and screening effects can lead to very counterintuitive be-
haviors in electrolyte solutions. Thus, a thorough analysis of
solvent-solute interactions is required to understand such solu-
tions. Computational and theoretical studies that can separate
the different interactions and thermodynamic quantities will
clarify these processes.

Of special interest are ion-ion and ion-solvent interactions
in water, and solvated sodium chloride has been a prototypical
subject of study. Some studies have shown counterintuitive
attractive states of same-charge ion-ion pairs. The existence
of a contact ion pair (CIP) has been predicted for Cl− – Cl−

[16–18], although with varying degrees of stability or even
with no stable state [19]. For Na+ – Na+ pairs, some lo-
cal minima were found [19], but without a stable CIP state
[16–18]. In the electric double layer of water between two
electrodes, attraction was found between divalent counterions,
but not between monovalent ones [19]. Further simulations
with better forces and computational power also showed sta-
ble states of Cl− – Cl− and Na+ – Na+ pairs in water [20].
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Reference site models have been used to characterize the
interactions and the bound states of these pairs [21,22]. Fur-
thermore, colloid suspension experiments using bright-field
optical microscopy have found that like-charged particles can
attract and oppositely charged particles can repel, and that this
can be used to drive cluster self-assembly [23]. Theoretical
studies investigating the interaction energies of spheres and
planes in dielectric media have shown that induced polar-
ization of bound charges can lead to attraction between like
charges [24]. However, for two spheres in a dielectric, this
attraction was only seen at specific ratios of the sphere charges
and radii [25–27], implying that asymmetry is required for the
attraction to exist. The polarization characteristics of the so-
lute and solvent have shown to be important factors in driving
the self-assembly of nanomaterials through these like-charge
attractions [28].

Molecular configurations for these stable states have been
proposed, often treating the water molecules as a stabilizing
bridge between two anions [29]. Neural network and exper-
imental diffraction studies have found extended effects on
water shells around solute ions [30,31], and experimental
support for the anionic bridging was also found [32]. There
are also continuous-solvent explanations of this counterintu-
itive binding. In such formalisms, an inversion of the sign
of the dielectric function (ε < 0) leads to overscreening, or
effective repulsion between unlike charges and attraction be-
tween like charges [33]. This is the same mechanism behind
phonon-mediated attractive electron-electron interaction in
metals [34,35].

Further, decomposition of the free energy into enthalpic
and entropic contributions shows counterintuitive enthalpy
barriers between oppositely charged ions [10,36]. This un-
derscores the importance of understanding solute-solvent
interactions and the free-energy landscape. In the first
part of this work, we confirm these previously mentioned,
unexpected occurrences in simulations of Na+ – Na+ and
Na+ – Cl− pairs in water. Thus, we find that transition barri-
ers between opposite-charge ions are robust across different
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simulated systems. Moreover, the presence of stable states
between same-charge ions is also validated.

In the second part of this work, we introduce a very simple
but highly counterintuitive model of electrostatic interactions
in dielectric media. This model provides a straightforward
explanation of stable states of Na+ – Na+ and Cl− – Cl− pairs,
and of a repulsive barrier of Na+ – Cl− pairs in water. These
predictions do not need the sign inversion of the dielec-
tric constant that leads to overscreening, nor does it require
asymmetry between the particles for attraction to exist. Thus,
combining theory and simulations, we offer a different per-
spective of the physics and processes of salt solvation.

II. CHARGES IN WATER: Na+ – Na+ vs Na+ – Cl−

In order to study the interaction between like-charge and
opposite-charge ions, we compute the potential of mean force
(PMF) U , as a function of the interionic separation r. It can be
succinctly stated [37] as

U (r) = −kT ln g(r),

where k is Boltzmann’s constant, T is the temperature,
and g(r) is the ion-ion radial distribution function. This, in
principle, gives us a straightforward way to calculate U (r)
from unconstrained simulations. But the solvation landscape
strongly favors specific states over others, making a converged
g(r) hard to calculate efficiently. Also, hydration shells can
be very long lasting and strongly defer convergence [38]. For
these reasons, constrained simulations are necessary in prac-
tice to force the exploration of configuration space. However,
the introduction of constraints requires additional work, such
as choices and tests of sampling methods and reaction coordi-
nate discretization, among many others, to ensure converged,
repeatable results. Recent work has reviewed these choices
and their effects in detail, to which we direct the reader [10].

A. Methodology

Due to the ease of decomposing the total potential en-
ergy into constituent pairwise contributions, our classical
molecular dynamics (MD) simulations are performed with
the GROMACS [39] software suite in the NVT ensemble. A
cubic box with a side length of 14.373 Å was filled with 96
water molecules and two ions, either Na+ – Cl− or Na+ – Na+.
To sample the PMF, harmonic restraints were placed at ref-
erence interionic distances ranging from 2.0 to 6.8 Å in
steps of 0.1 Å. Eight different random seeds were used to
generate separate dynamics during equilibration, after which
production runs with �t = 0.5 fs were run for 2 × 106 steps,
yielding 1 ns of sampling data per random seed and restraint
distance (8 ns per reference distance). Additionally, for the
same eight random seeds, a lone Na+ or Cl− ion was sim-
ulated in the same box of 96 water molecules to use as the
reference in the infinitely dilute limit.

For these classical simulations, we used a variety of water
models and ion parameters. The figures in the main body
of this paper were generated with the simple point charge
(extended) (SPC/E) [40] water model and optimized potential
for liquid simulations (all-atom) (OPLS-AA) ion parameters
[41]. In the Supplemental Material [42], we show results from

various combinations of different water models, such as the
transferable intermolecular potential with 4 points (TIP4P)
and TIP4P/2005, and a modified pair of ion parameters for
interionic constraints from 2.0 to 6.0 Å [43–45], all showing
the expected behavior to varying degrees. Furthermore, to
investigate the effects that system size and polarizability play
in these interactions, we conducted simulations in LAMMPS

[46] using varying combinations of polarizable models for
the ions and water [47,48], with systems of varying sizes and
number of ions.

B. Free-energy landscape decomposition

The PMF F was generated using the weighted histogram
analysis method (WHAM) [49], as implemented in the
WHAM program [50]. It is shown in Fig. 1(a) as a function
of interionic separation. The average enthalpy H is shown in
Fig. 1(b), and a similar average of just the Coulomb energy
of the system is shown in Fig. 2. In both figures, we see
clear validation of previous results: energetically bound states
between like-charge cations and repulsive barriers between
opposite-charge ions.

The entropic contribution to the free energy, −T �S = F −
H , is shown in Fig. 1(c). Notice that since T > 0, the changes
in �S are opposite to those shown in the figure. The bound
state of the cation pair is clearly stabilized by the electrostatic
enthalpy, despite the entropy decrease as the pair is brought
together. On the other hand, for the Na+ – Cl− pair, the contact
minimum at r � 2.5 Å is stabilized by the increase in entropy.

It is interesting to note that not only the electrostatic in-
teraction but also the entropy change sign when comparing
same- and opposite-charge pairs. While Fig. 1(c) shows that
as two sodium cations are brought together, the entropy de-
creases until r � 3.0 Å, in the case of the Na+ – Cl− pair
it monotonically increases with shorter interionic distances.
For Na+ – Na+, this indicates that interstitial water molecules
forming the solvation shell have larger entropy than when they
are in the liquid bulk, while the opposite applies to Na+ – Cl−.

The simulation’s electrostatic energy is shown in Fig. 2.
As the like-charge and opposite-charge ion pairs are brought
closer together, the screening effects modify the effective elec-
trostatic potential to yield an energetically favored region of
attraction and an unfavorable repulsive region, respectively.
Indeed, we see that these features persist in the enthalpy
decomposition shown in Fig. 1(b). Interestingly, for the water
model and ion parameter combination shown, the enthalpic
stability for the Na+ – Na+ pair allows for a weakly stable
state in the free-energy profile.

III. CHARGES IN A DIELECTRIC: A SIMPLE MODEL

The calculation of the interaction energy between two
charges embedded in a dielectric involves computing the
medium’s response to these charges, typically through its non-
local dielectric function ε(r, r′). We compute this interaction
from the linear response to a generic external charge density,
from which one can calculate the perturbing potential.

A. Linear response

For completeness, here we derive the standard linear-
response equations [34] that will be used to compute the
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FIG. 1. (a) Potentials of mean force for Na+ – Cl− (red) and Na+ – Na+ (blue) ions, solvated in water (with the SPC/E model), as a function
of interionic distance. (b) Mean potential energies, giving the enthalpic contribution to the free energy. (c) Entropic contribution to the free
energy, taken as −T �S = F − H . The zeros for F and H were taken as their average for r > 5.5 Å.

interaction between charged particles embedded in a dielectric
medium. The Poisson equation for an externally perturbing
potential is

−∇2φext (r) = 4πρext (r),

where ρext is the density of the perturbing particle, placed at
the origin. Another Poisson equation is satisfied by the total
potential φ and density ρ,

−∇2φ(r) = 4πρ(r),

where ρ = ρext + ρind is the total charge density of both the
perturbing particle and the induced screening density.

One assumes a linear medium, such that the external po-
tential and total potential are linearly related through

φext (r) =
∫

dr′ε(r, r′)φ(r′),

FIG. 2. Average Coulomb energy as a function of interionic dis-
tance. A barrier between oppositely charged ions (Na+ – Cl−, red)
is clearly visible as the ions are brought together. On the other
hand, there is a strong attraction between the two like-charged ions
(Na+ – Na+, blue). The zero value was taken as the average beyond
5.5 Å.

where spatial homogeneity implies that ε(r, r′) = ε(r − r′).
This further implies diagonality in reciprocal space,

φext (q) = ε(q)φ(q) ↔ φ(q) = 1

ε(q)
φext (q). (1)

However, it can be more natural to work directly with the
charge density induced in the dielectric medium (ρind) by
the external potential. If ρind and φ are also linearly related
(as should be the case for a weak enough φ), their Fourier
transforms are also linearly related through χ ,

ρind(q) = χ (q)φ(q), (2)

where χ is the susceptibility of the material.
To relate ε to χ , we Fourier transform the Poisson equa-

tions above and, letting q = |q|, we find

q2φext (q) = 4πρext (q), q2φ(q) = 4πρ(q),

which, together with the linear-response relations, give

q2

4π
[φ(q) − φext (q)] = χ (q)φ(q) ↔ φ(q) = φext (q)

1 − 4π
q2 χ (q)

,

yielding

ε(q) = 1 − 4π

q2
χ (q). (3)

Equipped with Eqs. (1)–(3), one just needs to specify an exact
or approximate dielectric function ε to compute the effective
interaction between charges in the dielectric.

B. Dressed potentials

The net effect of the screening, whether quantum mechan-
ical (exchange and correlation) or electrostatic in origin, is to
induce a surrounding charge around the perturbation source.
When the perturbing source is a point charge, it is natural to
define a “dressed particle” as a quasiparticle charged with the
sum of the original and screening charge densities. A diagram
depicting this scenario is given in Fig. 3, showing the various
densities and potentials at play when considering interactions
between pairs of these dressed or bare particles.

In the interacting electron gas, this dressing is sim-
ply n[g(r) − 1], where g(r) is the electron-electron pair-
correlation function and n is the average electronic density,
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FIG. 3. (a) A bare ion test charge q1 to measure δVind induced
by q2 in a dielectric medium, where we take the external perturbing
potential to be the Coulomb potential of q2. Its induced potential is
schematically shown as the cloud around q2. We call the perturb-
ing ion and its induced potential a “dressed ion.” Connecting lines
indicate additive potentials. (b) Two bare ions with their first-order
induced potentials. In the dressed-dressed interaction, the Coulomb
potential is supplemented by each induced potential surrounding the
constituent ion.

n = 3e/(4πr3
s ), with rs being the Wigner-Seitz radius. Over-

hauser originally showed that this distribution can be com-
puted by solving the two-electron scattering problem with
an effective screened Coulomb repulsion, with later studies
extending his analysis [51–53]. In this model, an electron
scatters with the screened Coulomb potential generated by the
other electron. The effective interaction used by Overhauser
is what we refer to here as the “bare-dressed” interaction.
Later, Corona et al. proposed an alternative “dressed-dressed”
effective interaction to solve the same problem [54]. In
such a description, the scattering occurs between two neutral
particles—each electron dressed by their corresponding ex-
change and correlation hole.

Here we argue that the interaction between two charges
embedded in a dielectric medium corresponds to the inter-
action between two of such “dressed quasiparticles,” i.e., the
Coulomb interactions between two charges and their respec-
tive dressings. We describe here how we define the problem
and obtain the interparticle energies as a function of their
separation. In addition, this formulation of the problem can be
readily adapted to the evaluation of intercharge interactions
in water (or other dielectric liquids), given that the pair-
correlation functions are directly obtained from molecular
dynamics simulations.

Formalism. With charge density sources S1(r1) and S2(r2)
interacting through the Coulomb kernel

K (r, r′) = αC

|r − r′| ,

where αC is the proportionality constant for the Coulomb
interaction, the interactions can be described by the integral

E [r1, r2] =
∫

d3rd3r′S1(r − r1)K (r, r′)S2(r′ − r2). (4)

For an isotropic medium, E [r1, r2] = E [r1 − r2] = E [r].
These convolutions can be easily calculated in reciprocal
space and Fourier transformed back into real space. Indeed,
without access to a closed form of ρind(r), it is necessary to
use the k-space linear-response relations in order to calculate
the interactions involving the induced screening charge.

Bare-bare interaction. For two point-charge sources,

Si = Qiδ(r − ri ),

the integral in Eq. (4) reduces to the regular Coulomb
interaction,

EBB[r1, r2] = αC · Q1Q2

|r1 − r2| . (5)

Bare-dressed interaction. Here, one source is still an un-
screened point charge (which we can think of as a test charge
with which to measure the potential of the screened charge).
The dressed charge will have a source term of the form

Si(r − ri ) = Qiδ(r − ri ) + ρind,i(r − ri ),

where ρind,i is the induced screening charge from the medium.
With these forms of source terms, we find, in this case, that

Eint[r1, r2] = EBB[r1, r2] + EB2D1 [r1, r2],

where

EBiD j [r1, r2] = αCQi

∫
d3r

ρind, j (r − r j )

|r − ri| (6)

is the interaction energy between the undressed point charge
and the screening charge induced around the other point.

Dressed-dressed interaction. Now, with each source hav-
ing its own dressing, one finds upon expanding the terms in
Eq. (4) that

Eint[r1, r2] = EBB[r1, r2] + EB1D2 [r1, r2] + EB2D1 [r1, r2]

+ ED1D2 [r1, r2],

where

ED1D2 [r1, r2] = αC

∫
d3rd3r′ ρind,1(r − r1)ρind,2(r′ − r2)

|r − r′| .

(7)
With the above formulas, all that remains is to find a relation
between the external perturbing charge sources and their in-
duced charge densities via linear response. To avoid numerical
problems with the r−1 singularity of the Coulomb potential,
and its k−2 behavior in reciprocal space, we substitute the
external point charges by narrow Gaussians (of 0.25 Å width),
what has a negligible effect at the relevant interionic distances.

This approximation assumes that each dressing charge is
independent of the presence of the other charge, i.e., the
response of the medium is linear with the perturbation. We
call this the independent hole approximation (IHA). We will
evaluate the validity of the IHA calculating (i) the exact in-
teraction of two test charges in a real metal using density
functional theory (DFT), and (ii) the exact interaction between
two charges in a dielectric liquid (Na+ and Cl− ions in water).

C. Model results

Figure 4 shows the model’s bare-dressed and dressed-
dressed interactions, as well as the induced screening charges
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FIG. 4. Bare-dressed (red) and dressed-dressed (blue) interaction energies (left y axis) and induced densities (green, right y axis) for
the Thomas-Fermi approximation (left), RPA approximation (middle), and Inkson’s dielectric function with εk→0 = 80 (right). All plots are
generated with kF = k0 = 1, using external Gaussian charge densities of width σext = 0.25 Å.

given by Eq. (2). We use three dielectric functions: the
Thomas-Fermi (TF) approximation, the Lindhard or ran-
dom phase approximation (RPA), and Inkson’s interpolating
dielectric function with εk→0 = 80 [55]. An analytical deriva-
tion of the TF interaction potential is provided in the
Supplemental Material [42]. As can be seen for the three
approximations, the screened interaction between two like
charges is attractive at short distances. On the other hand, as
it should be due to charge inversion, the same interaction will
be repulsive for opposite charges.

The strength (depth of the potential well) of the
attractive/repulsive interaction depends on the screening
length of the dielectric medium in question. This can be easily
analyzed using the TF model, which allows one to control the
screening length through the parameter k0 = 1/λ. The longer
this length, the less the charges are screened, and the depth of
the potential well goes to zero linearly as λ → ∞. This behav-
ior is shown in Fig. 5, where the bound-state depth is plotted
versus the location of the potential’s minimum. The points
are colored by the screening parameter k0. The stronger the
screening, the deeper the bound state becomes. Conversely,
as the screening strength decreases, the bound-state depth
approaches zero and its position shifts to shorter separations.
Additionally, as the screening strength increases, the mini-
mum shifts to shorter interionic separations, indicative of the
stronger localization of the screening charge.

IV. ANALYSIS AND DISCUSSION

A. Charges in water

As we have seen, the results presented in Figs. 1(a), 1(b)
and 2 agree qualitatively with the model predictions shown in
Fig. 4. This model assumes that the response of the dielectric
medium is linear and that therefore the screening of two
charges is the sum of that of the separated charges. We can
evaluate the validity of this approximation in realistic systems
by computing the exact interaction between charges in a self-
consistent response of the medium. We do this for simulations
of a pair of sodium cations and for sodium chloride in liquid

water. Our simulations add to previous ones since the free
energy of solvation of sodium chloride has been well studied
[10,36,56–60].

We simulate each lone ion, as well as different pairs of
ions, in a box of water. Using the TRAVIS [61] program, we
generate the ion-oxygen and ion-hydrogen spatial distribution
function (SDF), defined as gi,X (r) = 〈nX (r)〉/nX , where nX is
the number density of particle X in the system and 〈nX (r)〉 is
the average number density at a separation r away from the
ion. Then, the charge density of particle X around the ion i is
ρi,X (r) = QX · nX · gi,X (r), and the charge induced around an
ion can be constructed as

ρi,ind(r) = ρi,O(r) + ρi,H (r). (8)

FIG. 5. The bound-state depth for dressed-dressed interactions
in the TF approximation as a function of its location, colored by
the screening parameter k0. The bound-state depth gets weaker with
increasing screening length, and the position of the minimum shifts
to farther separations. The numerical results agree well with the ana-
lytical expressions derived from Eq. (S3) (see Supplemental Material
[42]) until small values of k0.
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FIG. 6. The modeled interaction energy using the induced densi-
ties around the ions as defined in Eq. (8).

Using this charge in Eq. (7), the dressed-dressed
interactions for the Na+ – Na+, Cl− – Cl−, and Na+ – Cl− ion
pairs are presented in Fig. 6. Comparison with Figs. 1(b) and 2
shows a general qualitative agreement, with similar minima/
maxima locations and depths. There are also some quantita-
tive discrepancies, part of which may be due to the IHA.

To examine the various effects that the polarizability, sys-
tem size, and solution concentration have on our results, we
conducted studies to ensure the convergence of these induced
charge densities. Figure S8 (see Supplemental Material [42])
shows the effect that different combinations of nonpolarizable
[44,45] and polarizable [47,48] ion and water models have
on the modeled dressed-dressed interaction energy. Here, we
see that the polarizability of the ions has little effect on the
structure of the surrounding induced charge; the choice of the
water model, however, has a large influence on the resulting
induced charge density, thus having a greater effect in the
modeled interaction. This is to be expected, as the choice of
water model determines the dielectric environment into which
the ions are placed. Figures S9 and S10 (see Supplemental
Material [42]) show the results of increasing the bulk sys-
tem size (i.e., the number of solvent water molecules) and
the solution concentration (i.e., the number of solute ions),
respectively. In each case, we find minimal differences in the
resulting induced charge structure around the ions, leading to
similar predicted dressed-dressed interaction energies.

We note, however, that our model considers the ions as
point charges, ignoring the Pauli repulsion due to the over-
lap of the ion cores. This repulsion is determined by the
σi j parameter in the Lennard-Jones potential, which controls
at which point the repulsion dominates. With the OPLS-AA
force field, this is 1.8 Å for the sodium ion pair and 2.8 Å for
the sodium chloride pair. It must further be noted that in our
model, there is no structural information of the solvent besides
the approximation for its dielectric function. In contrast, in the
simulations, all this structural information is included in the
gi,X (r) correlation functions.

We can evaluate the error in the IHA by comparing
the exact ρind(r) (calculated from a MD simulation of the

FIG. 7. The error as defined in Eq. (9) for the densities induced
around the Na+ – Na+ pairs, as a function of their interionic sepa-
ration r. The error increases drastically when the two individual ion
SDFs start to overlap.

ions constrained to be at distance r) with the superposi-
tion of two copies of the SDF generated via simulation of
the lone ion. This decomposition is shown in Fig. S13 (see
Supplemental Material [42]) for ion separations of 2.8 and
6.8 Å. For each separation constraint r, ρind(r′; r) is generated
as the cylindrically averaged SDF of the water atoms around
the ions. Then, the SDF from a lone-ion simulation is copied
and superposed with itself, with the copies separated by the
same separation r, giving us ρind,IHA(r′; r). The difference is
taken between ρind(r′; r) and ρind,IHA(r′; r), and the error is
found by integrating across the SDF via

E (r) =
∫

dr′ · √
[ρind(r′; r) − ρind,IHA(r′; r)]2∫

dr′√ρind(r′; r)2
. (9)

This error metric for the induced densities around each sodium
ion is shown in Fig. 7. We see that at r ∼ 3 Å, the error
reaches a maximum, arising from the superposed lone-ion
SDFs generating charge density in between the two ions,
which does not occur in the molecular dynamics simulations
with the ion pairs. The error then steadily decreases as the ions
are separated.

B. Charges in metals

Our model is very general and it relies on dielectric
functions that are appropriate for the free electron gas. It
is then interesting to compare its predictions with realistic
simulations of charges in metals. The simplest case is a pair
of hydrogen atoms, which are fully or partially ionized in
metals [62]. The metals can be well approximated in the RPA
regime, whose dielectric function is that of the Thomas-Fermi
approximation modified by the Lindhard function F (q/2kF ),
with standard Fermi wave vectors for each metal [34]. Here
we examine the proton-proton interactions in aluminum (with
a face-centered-cubic structure), as well as in sodium and
lithium (both body centered cubic). We compare the results
of our simple model, in the RPA approximation, to those of
ab initio simulations using density functional theory (DFT).
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FIG. 8. Comparison between our model predictions (solid) and
DFT binding curves (dashed) for two hydrogen atoms in aluminum,
sodium, and lithium (top to bottom).

Details of these simulations are provided in the Appendix.
The model and DFT results are compared in Fig. 8 (and
in the middle plot of Fig. 4 for kF = 1 Å). Our model has
good qualitative agreement with the ab initio results, with
the minima locations closely aligned and with the same order
of magnitude of depth. Differences are due to the IHA and
to the incomplete ionization of hydrogen atoms, as shown in
Fig. S14 (see Supplemental Material [42]), where we fit our
model to the ab initio binding energies using the charge’s
magnitude and extent as free parameters. As expected, we
find best fits with incompletely, but mostly ionized hydrogen
atoms.

V. CONCLUSIONS

The results above are striking. They show that oppositely
charged particles repel, while particles with the same charge
attract when embedded in a dielectric with sufficient screening
strength, without the need for sign inversion of the dielectric
function for the medium that causes overscreening. Instead,
it is simply a consequence of the balance of Coulomb in-
teractions between the screening charges and the perturbing
sources. In principle, this behavior is general and, indeed, it
was already obtained by Corona et al. for antiparallel-spin
electron-electron interaction in a high-density homogeneous
electron gas [54]. We have reproduced their result, finding
that the electron-electron interaction has an attractive well,
although too weak and short ranged to produce a bound state
of the electron pairs.

In this work, we have shown that a simple electrostatic
model based on linear response very nicely reproduces the
behavior of classical charges in a dielectric medium. Using

this model, we can explain the origin of the various solvation
states in the potential of mean force between ions in solution.
The decomposition of the PMF further illuminates the role of
entropy in the solvate’s attraction and repulsion.

Even more, this simple model nicely reproduces the pairing
of protons in metals as obtained from ab initio DFT simula-
tions. It is tempting at this point to make connections with
electron pairing mechanisms that lead to superconductivity,
such as Cooper pairs. As explained above, the observation of
an attractive dressed-dressed electron-electron interaction is
not new, although the attractive region of the potential was
not highlighted [54] and an attractive well does not imply the
existence of a bound quantum state. However, what this work
has shown is that it is possible to achieve an attractive effective
interaction and that this interaction will depend only on the
spatial distribution of the electronic exchange and correlation
hole.

Independently of its possible quantitative importance in a
variety of systems, we have shown a general and counterintu-
itive physical effect that is not generally recognized. There is
no need to invoke overscreening to explain an attractive inter-
action between like charges [33,35], and hence this should be
taken into account when asserting the structural and dynami-
cal properties of ions and charges in solution or at interfaces,
including at the electrochemical interface. This also highlights
the necessity to have very accurate charged models for the
solvent, given that the structural properties resulting from the
model parameters will have a profound impact on the behavior
of the screening.
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APPENDIX: ION-ION SCREENING IN METALS

Ab initio energy calculations were done using the den-
sity functional theory (DFT) code SIESTA with the Dion,
Rydberg, Schröder, Langreth, and Lundqvist (DRSLL) van
der Waals exchange correlation functional (vdW-DRSLL).
Pseudopotentials were used for all core electrons and a triple-
zeta polarized (TZP) basis set was used for all valence
electrons.

Two H atoms were added to three different 5 × 5 × 5
metallic supercells. The aluminum lattice is fcc with a unit
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cell lattice constant of 4.05 Å. The sodium and lithium lattices
are bcc with unit cell lattice constants of 4.29 Å and 3.51 Å,
respectively. The placement of the atoms was made to ensure
that they would not come into contact with any aluminum
nuclei. The plots shown in Fig. S1 (see Supplemental Material
[42]) are obtained after convoluting the H-H distance along

the [001] direction, in order to remove the influence of the
crystal potential on the results. The two atoms were separated
by distances between 0.25 Å and 6rs at intervals of 0.25 Å,
while maintaining the same midpoint position. The energies
were adjusted so that 0 eV corresponds to the asymptote for
large atomic separations.
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