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Symmetric conformity functions make decision-making processes independent
of the distribution of learning strategies
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Two main procedures characterize the way in which social actors evaluate the qualities of the options in
decision-making processes: they either seek to evaluate their intrinsic qualities (individual learners), or they
rely on the opinion of the others (social learners). For the latter, social experiments have suggested that the
mathematical form of the probability of adopting an option, called the conformity function, is symmetric in the
adoption rate. However, the literature on decision-making includes models where social learners employ either
symmetric or nonsymmetric conformity functions. We generalize a particular case studied in a previous work,
and we show analytically that if the conformity function is symmetric, the details of the probability distribution
of the propensity of the agents to behave as a social or an individual learner do not matter, only its expected value
influences the determination of the steady state. We also show that in this case, the same steady state is reached for
two extreme dynamical processes: one that considers propensities as idiosyncratic properties of the agents (each
agent being an individual learner always with the same probability), and the opposite one, which allows them to
change their propensity during the dynamics. This is not the case if the conformity function is nonsymmetric.
This fact can inspire experiments that could shed light on the debate about mathematical properties of conformity
functions.
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I. INTRODUCTION

Decision making is an individual task that benefits from
detailed knowledge about the possible options. The vast lit-
erature addressing the way in which different species of
animals, and in particular humans, acquire this knowledge is
pluri-disciplinary and targets different aspects of the prob-
lem [1–3]. Social actors are usually classified according to
their learning strategies as individual learners, those who
search to identify the intrinsic merits of the options without
suffering any peer pressure, or social learners, those who
simply follow their peers’ choice. However, this is a rough
classification as each class entails a variety of cognitive pro-
cesses that are very difficult to disentangle experimentally.
Early studies on decision-making were challenged by new
experimental techniques [4,5]. A question that raised strong
debates concerns the transmission of learning abilities in
light of natural selection. As social learning (in any of its
forms) is considered less costly than individual learning, it is
supposed to enhance individual fitness and then prevail [6].
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However, Rogers showed that this may not be the case if
the environment is subject to changes. In this case, if social
learners are selected, their proportion in society increases,
and the probability that they obtain wrong information about
the environment by copying other social learners with “old”
information increases, and therefore their fitness diminishes.
This is known as Rogers’ paradox [7]. Rogers’ paradox does
not mean that social learning—thus culture—prevents social
agents from adapting to the environment, it just points out
that a model that only evaluates the cost-benefit of the cho-
sen strategies is not enough to account for the observations.
Rogers himself had suggested to introduce some biases in
the social learning, like copying preferentially high fitness
individuals, or as proposed by Boyd and Richerson, copying
only individual learners. None of them lifted the paradox, as
the fitness of the group decreases with generations because the
strategy of social learners is frequency-dependent while that
of individual learners is not [8]. Other modifications introduce
the possibility for the strategies of an individual to evolve
according to different situations (cost of individual learning,
changing environment, fitness of the neighbors, etc.). These
modifications may lift Rogers’ paradox or not depending on
the details of the parameters [9,10]. All this shows that the
problem of how learning strategies are transmitted goes be-
yond a cost-benefit problem and that flexibility in the learning
strategies is essential in order to maintain a high fitness of the
population.

Another aspect of the problem would be to ask how a given
generation composed of individual and social learners reaches
a collective decision. In this case, the particular ways in which
both social and individual learners acquire new knowledge are
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studied. For example, social learners conform to an option be-
cause of peer pressure. On the other hand, individual learners
seek information about the options on their own. This does not
necessarily imply that they ignore the choice of others. They
may also take advantage of it by including this information in
their evaluation criterion, as has been studied in Refs. [11,12].
The effect of the global preferences of the population can
be considered either positively or negatively by individual
learners, depending on the context.

A positive global effect occurs when a product or service
becomes more valuable as more people use it. Social me-
dia platforms or e-commerce marketplaces manifest positive
global effects. More users create more content, while more
sellers provide a wider selection of products. Consequently,
the value of the platform increases. Positive global effects
can also reinforce pro-environmental behaviors for which it
is critical to lower the behavioral difficulty of engagement
in order to increase adoption rates [13]. For instance, as the
popularity of electric vehicles increases, more investments in
charging infrastructure are expected, facilitating the adoption
for new users. It should be noticed that here, the mechanism
behind the positive global effect is different from mere peer
pressure, where the individual feels the need to behave as their
peers. On the other hand, a negative global effect arises if
the value of a product or service decreases as more people
use it. This can occur when high demand causes congestion,
reduces availability, or lowers the quality of the service [12].
For example, public transportation may face overcrowding,
while a bike-sharing system may suffer from bike shortages.

With these considerations we see that the merit of an option
is not necessarily constant, as in Ref. [14], but may depend on
the adoption rate. It is interesting to notice here that this point
also addresses the main ingredient of Rogers’ paradox [8].

Recently, a dynamical system model showed that social
learners may, when numerous, impair collective performance
[14]. This model considers the proportion of social and in-
dividual learners as well as the value of the merit as a fixed
parameter and chooses a symmetric conformity function to
describe social learning. However, the specific form of a so-
cial learning function is still a subject of study. McElreath
et al. have detailed different heuristics for social learning,
which lead to either symmetric or nonsymmetric functional
forms [15]. Experiments, both in the laboratory and in real
settings, reveal different ways in which individuals learn from
peers [16], and whether there is a general mathematical form
representing a general social learning function is far from
clear [17,18]. These experiments also observed the situation in
which subjects change their strategies during the experiment
[18], alternating the ways in which they gather information
(either by learning individually or by getting information from
their peers).

In this work, we present a general theoretical model that
allows us to explore analytically the possible outcomes of dy-
namics where the social learning function may be symmetric,
such as the one considered in Ref. [14], or nonsymmetric, as
in the well-known q-voter model [19]. The model also allows
for a general distribution of such strategies, φ(pi ), where pi is
the probability that a given agent acts as an individual learner,
otherwise it acts as a social learner. Moreover, we explore
the two possible extreme cases for the evolution of strategies

with time: either each agent has a fixed probability of being
an individual learner, initially chosen from the distribution
φ(pi ) (quenched dynamics), or its strategy can evolve in the
same timescale as the choice of the options. In this case, the
agent chooses its probability pi of acting as an individual
learner from the distribution φ(pi ) at each time step (annealed
dynamics).

Our main general result points to the consequences of the
conformity function being symmetric. We prove analytically
that if the social learners use a symmetric conformity func-
tion, then the steady state of the system does not depend
on φ(pi ), but only on its first moment, p̄, and this is true
regardless of the form of the individual learners’ function.
We illustrate this general result by considering particular
forms of social and individual learning functions as well
as a particular distribution of these learning strategies. We
show that the phase diagrams of the quenched and annealed
dynamics are identical for the symmetric conformity func-
tion case, while they differ when the conformity function
is nonsymmetric. The differences may involve the presence
of discontinuous or continuous transitions, depending on the
parameters.

Our results confirm and extend those presented in
Ref. [14], which is a particular case of our model.

II. MODEL

We study a situation in which individuals (agents) of the
society have to make a binary decision between adopting (A)
or rejecting (B) a certain option. This option may represent
a product, a behavior, or a social norm. The agents, labeled
by index i, are randomly selected in sequence to make their
decisions. An agent behaves as an individual learner with
probability pi. Otherwise, it behaves as a social learner, which
happens with complementary probability 1 − pi. The values
of pi come from a general distribution, φ(pi ), as illustrated
in the left part of Fig. 1. There are two possible dynamics:
either the values of pi are assigned to the agents from the start
and stay with them unchanged throughout the entire process
(quenched dynamics), or the values of pi are reassigned to
the agents each time they are selected to make a decision
(annealed dynamics).

An agent that follows the individual learning strategy eval-
uates the probability of adopting the option using function
I (a), where a represents the fraction of the population that
has adopted that option. The probability of rejecting the
option is given by the complementary probability 1 − I (a).
This function reflects how the perceived utility of an op-
tion changes with the evolving fraction of adopters in the
population. Such changes are caused by the advantages or
disadvantages directly resulting from the size of the group of
adopters that impact agents’ payoffs or risk-adjusted returns
[11,12]. However, it is important to note that this function does
not account for social influence arising from conformity and
the willingness to adhere to social norms—factors that do not
affect the intrinsic value of the option. In a particular case, the
individual learning function may be a constant, i.e., I (a) = m.
In this context, parameter m represents the merit of adopting
the option that remains unaffected by the number of adopters,
as considered in Ref. [14].
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FIG. 1. Model diagram: agent i has a personal inclination towards individual learning, represented by the probability pi of choosing this
strategy. With complementary probability, 1 − pi, social learning is employed. Based on the chosen strategy, a decision is made using the
corresponding learning function, either I (a) or S(a), according to the rules outlined in Table I. Both learning functions may depend on the
current adoption rate of the option, a. We categorize conformity functions into two groups: symmetric, where the graph remains unchanged
after a 180◦ rotation around the point S(0.5) = 0.5, and nonsymmetric. In the quenched dynamics, pi is initially assigned to agent i and
remains fixed during the evolution, whereas in the annealed dynamics, pi is assigned to agent i at each time step. In both cases, pi is drawn
from distribution φ(pi ).

On the other hand, social learning arises from the obser-
vation of peers and resulting social influence. It can take
different forms described mathematically by models of cul-
tural transmission [1,3] or the social impact theory [20]. We
represent it as a conformity function, S(x), that gives the
probability of changing an agent’s choice to the choice shared
by a fraction x of the agent’s peers. Based on mathematical
models [6,20] and experimental studies [2,15,16,18,21–24]
that try to characterize conformity functions, we distinguish
between two classes. Functions falling within the first class
are symmetric around their midpoint S(0.5) = 0.5; see the
right part of Fig. 1. Such functions satisfy the following equa-
tion:

S(x) + S(1 − x) = 1 (1)

for all x ∈ [0, 1]. All other functions are classified as nonsym-
metric ones.

Table I summarizes the way individual and social learning
functions are used to update the agents’ choices.

III. RESULTS

We study two dynamical scenarios in which pi is ei-
ther a quenched or annealed property of agent i [25,26]. In
Sec. III A, we present the general results for these two dy-
namics without imposing any specific form of the learning
functions, I (a) and S(a), and the learning strategy distribution,

TABLE I. Probabilities that an agent with a given option keeps
or changes it to the alternative one using a corresponding learning
strategy.

Option
Probability of the option after learning

before Individual learning Social learning

learning A B A B

A I (a) 1 − I (a) 1 − S(1 − a) S(1 − a)
B I (a) 1 − I (a) S(a) 1 − S(a)

φ(pi ). In Sec. III B, we illustrate the behavior of the system
with specific forms of these functions, which are discussed in
the literature [14,25]. Our general results are summarized in
Table II.

A. General results

Let φ(x) be an arbitrary distribution with mean p̄ =∫
xφ(x)dx. Additionally, let I (a) and S(a) be arbitrary func-

tions returning probabilities that influence the choices of
agents in the way presented in Table I.

1. Annealed dynamics

At each time step, each agent is assigned a probability of
being an individual learner, pi, from the distribution φ(pi ). It
should be noticed that the probability distribution itself does
not change in time.

The time evolution of the fraction a of adopters of choice
A is given by

da

dt
= PB→A(1 − a) − PA→Ba, (2)

where PB→A and PA→B are the transition probabilities. The
transition probabilities from one option to the other are formed
at each step by those agents that learned about the options
either individually or socially:

PB→A =
∫

xI (a)φ(x)dx +
∫

(1 − x)S(a)φ(x)dx,

PA→B =
∫

x[1 − I (a)]φ(x)dx

+
∫

(1 − x)S(1 − a)φ(x)dx. (3)

Having integrated the above formulas, we get

PB→A = p̄I (a) + (1 − p̄)S(a),

PA→B = p̄[1 − I (a)] + (1 − p̄)S(1 − a). (4)
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TABLE II. Summary of the results. Formulas for the fixed points with majoritarian option of the models with different dynamics and types
of conformity functions.

Conformity function Annealed dynamics Quenched dynamics

Symmetric Annealed and quenched dynamics lead to the same fixed points that do not depend on the
full distribution of learning strategies, but only on its mean:

p̄ = a∗−S(a∗ )
I (a∗ )−S(a∗ ) , where p̄ = ∫

xφ(x)dx.

Nonsymmetric Fixed points depend on the mean of Fixed points depend on the whole shape of
the distribution of learning strategies: the distribution of learning strategies:

p̄ = a∗[S(a∗ )+S(1−a∗ )]−S(a∗ )
a∗[S(a∗ )+S(1−a∗ )−1]+I (a∗ )−S(a∗ ) , where p̄ = ∫

xφ(x)dx.
a∗ = ∫

a∗
xφ(x)dx, where

a∗
x = xI (a∗ )+(1−x)S(a∗ )

x+(1−x)[S(a∗ )+S(1−a∗ )] .

From Eqs. (2) and (4), we get that

da

dt
= p̄[I (a) − a] + (1 − p̄)[(1 − a)S(a) − aS(1 − a)].

(5)
Let a∗ denote the fixed points, which make

da

dt

∣∣∣∣
a∗

= 0. (6)

The fixed points satisfy the following equation:

p̄ = a∗[S(a∗) + S(1 − a∗)] − S(a∗)

a∗[S(a∗) + S(1 − a∗)] − S(a∗) + I (a∗) − a∗ . (7)

Additionally, if I (1/2) = 1/2, we get a∗ = 1/2 for any value
of p̄. If the conformity function, S(a), is symmetric, we can
use Eq. (1) to simplify the above formula. As a result, Eq. (7)
becomes

p̄ = a∗ − S(a∗)

I (a∗) − S(a∗)
. (8)

2. Quenched dynamics

Each agent is assigned a probability of being an individual
learner, pi, from the distribution φ(pi ) at the beginning of the
dynamics, and it keeps the same probability during the whole
time evolution.

We divide the entire population into groups of agents who
share the same value of pi. The fraction of agents with pi = x
is given by

lim
�x→0

∫ x+�x

x
φ(y)dy = lim

�x→0
φ(x)�x = φ(x)dx. (9)

Let ax denote the fraction of agents who adopt the option A
among those with pi = x. Consequently, 1 − ax is the fraction
of agents who reject the option within the same group. With
our division given by Eq. (9), the fraction of individuals who
favor A in the entire system can be expressed as a continuous
analog of a weighted average:

a =
∫

axφ(x)dx, (10)

where ax is averaged with the weights given by φ(x).

For each value of the probability x, we have the following
equation for the adoption rate:

dax

dt
= Px

B→A(1 − ax ) − Px
A→Bax, (11)

where Px
B→A and Px

A→B are the transition probabilities for the
group of agents with pi = x:

Px
B→A = xI (a) + (1 − x)S(a),

Px
A→B = x[1 − I (a)] + (1 − x)S(1 − a). (12)

We look for the fractions of adopters among agents with
pi = x, a∗

x , that make the evolution of all the populations
stationary:

dax

dt

∣∣∣∣
{a∗

x }
= 0. (13)

The fixed points are determined by combining Eqs. (11), (12),
and (13):

a∗
x = xI (a∗) + (1 − x)S(a∗)

x + (1 − x)[S(a∗) + S(1 − a∗)]
, (14)

where

a∗ =
∫

a∗
xφ(x)dx. (15)

Additionally, if I (1/2) = 1/2, a∗
x = 1/2 satisfies Eq. (13) for

any distribution φ(x).
The fixed values of a are obtained by solving Eq. (15)

with the obtained formulas for a∗
x . If the conformity func-

tion is nonsymmetric, we cannot perform further calculations
without knowing the exact distribution φ(x). However, if the
conformity function is symmetric, we can perform the inte-
gration in Eq. (15) without imposing any special form of φ(x)
since we can use Eq. (1) to simplify Eq. (14). In such a case,
we get

a∗ = p̄I (a∗) + (1 − p̄)S(a∗), (16)

so the fixed points depend only on the mean of the distribution
p̄ = ∫

xφ(x)dx. By transforming Eq. (16), we get

p̄ = a∗ − S(a∗)

I (a∗) − S(a∗)
. (17)

3. Summary of general results

Based on the above calculations, we can draw the following
general conclusions, which are also summarized in Table II:
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(i) If the conformity function is symmetric, the fixed points
of the quenched and the annealed dynamics are the same, and
they only depend on the mean of the learning strategy distri-
bution, p̄ = ∫

xφ(x)dx, not on the details of this distribution;
compare Eq. (8) with Eq. (17).

(ii) If the conformity function is nonsymmetric, the
quenched and annealed dynamics lead to different fixed-point
diagrams. For the annealed dynamics, the fixed points depend
only on the mean of the learning strategy distribution; see
Eq. (7). However, for the quenched dynamics, the actual shape
of this distribution matters; see Eqs. (14) and (15).

B. Specific case

To illustrate our findings, we choose specific forms of
the learning strategy distribution and the learning functions,
which are commonly discussed in the literature [14,25]. How-
ever, it is important to note that any other functions can also
be used as our general result is independent of the particular
form of these functions. Our objective here is to visualize the
general results applicable to a broad range of models with
various functions, rather than analyzing a specific model in
detail:

(i) Learning strategy distribution: Let us consider a simple
case in which pi is Bernoulli distributed, so ∀i = 1, . . . , N ,
φ(pi = 1) = p and φ(pi = 0) = 1 − p, and p is the mean of
the distribution. Note that agents with pi = 1 certainly behave
as individual learners, whereas those with pi = 0 certainly
behave as social learners.

(ii) Individual learning function: Following the Rasch
model [27], we use the logit function to define I (a). Thus, the
natural logarithm of the odds of choosing A is proportional
to the fraction of individuals favoring this option over the
fraction am, which gives equal probability to both options:

ln

[
I (a)

1 − I (a)

]
= k(a − am). (18)

The parameter k accounts for the tendency and the strength
of the likelihood of choosing option A, whereas am is the
midpoint of I (a), i.e., I (am) = 1/2, which we set here as
am = 1/2. The left-hand side of Eq. (18) can be interpreted
as a tradeoff between an individual’s attitudes towards option
A and its adoption difficulties [13,28]. In our model, this
tradeoff depends explicitly on the number of adopters. From
Eq. (18), we get the following form of the individual leaning
probability:

I (a) = 1

1 + e−k(a−am )
. (19)

(iii) Social learning function: For the symmetric case, and
for the sake of comparison, we use the same form as in
Ref. [14]:

S(x) =
{

1
2 (2x)q if 0 � x < 0.5,

1 − 1
2 [2(1 − x)]q if 0.5 � x � 1.

(20)

For the nonsymmetric conformity function, we assume a
simple mathematical form inspired by the nonlinear q-voter
model [19,25,26]:

S(x) = xq. (21)

Both of these functions are parametrized by q, which reflects
their degree of nonlinearity, where q = 1 corresponds to a
linear response.

1. Annealed dynamics

Each agent is assigned a particular learning strategy at
each time step: individual learning (pi = 1) and social learn-
ing (pi = 0) with probability p and 1 − p, respectively.
To describe such a system, we simply use equations from
Sec. III A 1 with p̄ = p since p is the mean of the Bernoulli
distribution in this case. Notice that for k = 0 and a non-
symmetric conformity function given by Eq. (21), we get a
particular case of the nonlinear noisy voter model [29] or the
q-voter model with independence [30].

2. Quenched dynamics

Each agent is assigned a particular learning strategy from
the Bernoulli distribution only once, at the start of the dy-
namics. This means that eventually we have two groups of
agents. One group consists of individual learners (pi = 1),
and the other group consists of social learners (pi = 0). In
such a system, individual learners represent a fraction p of
the total population, whereas social learners represent the
remaining fraction 1 − p. Notice that for k = 0, we obtain a
particular case presented in Refs. [11] or [31] depending on
the considered type of the conformity function, symmetric for
the former and nonsymmetric for the latter.

In this case, Eq. (10) becomes

a = (1 − p)a0 + pa1, (22)

where a0 and a1 are the factions of individuals who favor A
among social learners (pi = 0) and individual learners (pi =
1), respectively. The rate equations resulting from Eqs. (11)
and (12) are the following:

da0

dt
= S(a)(1 − a0) − S(1 − a)a0,

da1

dt
= I (a) − a1. (23)

Thus, the fixed points satisfy

p = a∗[S(a∗) + S(1 − a∗)] − S(a∗)

I (a∗)[S(a∗) + S(1 − a∗)] − S(a∗)
. (24)

3. Result illustration

Figure 2 illustrates how the final state of the model is
influenced by different dynamics when using symmetric and
nonsymmetric conformity functions. In this example, q = 3
and k = −15. Negative k values correspond to the situation in
which the probability of adoption through individual learning
diminishes with the fraction of adopters and is therefore in
competition with the conformity function. For symmetric con-
formity functions, both quenched and annealed curves overlap
across the entire range of p̄; see Fig. 2(a). However, when
nonsymmetric conformity functions are considered, the fixed
points may differ for certain values of p̄; see Fig. 2(b). These
differences can be substantial, leading to continuous phase
transitions for the quenched dynamics and discontinuous for
the annealed one, as shown in this example. The takeaway
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FIG. 2. Illustration of how different types of dynamics impact
the fixed-point diagram for the model with a symmetric and non-
symmetric conformity function. We present the case where q = 3
and k = −15. Stable fixed points are represented by solid lines,
while unstable ones are shown with dashed lines. For the symmetric
conformity function, annealed and quenched approaches produce the
same diagrams. Symbols represent the results from the simulations
of the model with N = 105 agents under ◦ annealed and � quenched
dynamics. Detailed information about the simulations can be found
in Appendix B.

here is that the type of dynamics does not impact the final state
of models with a symmetric conformity function. In contrast,
the dynamics type becomes crucial in determining the final
state of models with a nonsymmetric conformity function.

Figure 3 demonstrates how the learning strategy distribu-
tion, φ(pi ), impacts the final state of the model with different
types of conformity functions and dynamics. In this exam-
ple, q = 3 and k = 0. We compare two simple distributions
parametrized by a single variable p ∈ [0, 1]: a one-point dis-
tribution where φ(pi = p) = 1 and a Bernoulli distribution
given by φ(pi = 1) = p and φ(pi = 0) = 1 − p. Note that
both distributions share the same mean, p̄ = p. The lower part
of Fig. 3 illustrates these distributions for a few values of p̄. As
seen in Fig. 3(a), if a model uses a symmetric conformity func-
tion, annealed and quenched dynamics lead to the same fixed
points for a given value of p̄ across different distributions,
φ(pi ). Similarly, for models with a nonsymmetric conformity
function and annealed dynamics, the shape of φ(pi ) does not
impact the final state; see Fig. 3(b). However, if a model uses
a nonsymmetric conformity function and quenched dynamics,
the mean of the distribution alone is insufficient to determine
the fixed points since different distributions sharing the same
mean may lead to different results; see Fig. 3(c).

IV. DISCUSSION

Numerous theoretical and empirical studies aim to under-
stand and classify diverse social learning strategies [1–3,6,15–
18,20–24,32]. In simple models of frequency-dependent bias
[6], where individuals are assumed to be disproportionately
more likely to adopt the most common option, this proba-
bility of adoption is represented by a conformity function

which is an increasing function, symmetric around its mid-
point S(0.5) = 0.5. Some experimental studies measuring the
relationship between the option frequency and the probability
of adoption tend to support this result [15,16,23]. However,
when individuals have the information about the payoffs of
others, they may adaptively bias social learning, which leads
to nonsymmetric forms of conformity functions [3,15,18].
Nonsymmetric representations of social influence also appear
in the social impact theory [20], models of cultural transmis-
sions [6,32], and models of opinion dynamics [25]. Having
recognized this distinction between symmetric and nonsym-
metric social learning functions, we raised a question about
the implications of using either type for the decision-making
process.

To this end, we generalized a simple dynamical system
model in which individuals use either individual or social
learning strategies to make their decisions [14]. The general-
ized version allows us to model a broader range of systems,
where the merit of an option can also change with the
adoption rate [11,12]. Additionally, it accounts for an arbi-
trary distribution of personal inclinations towards strategies
and distinguishes between annealed and quenched dynamics
[26,31], which represent different timescales at which individ-
uals change their inclinations.

Our analytical study of the generalized model indicates that
when a symmetric conformity function is used, certain details
of the model become irrelevant for the determination of the
fixed points, which represent the final adoption rates in the
system. In this case:

(i) Both quenched and annealed dynamics converge to
identical fixed points, so the timescale of the dynamics is not
important.

(ii) These fixed points depend only on the mean of the
learning strategy distribution, so the distribution shape does
not matter.

In contrast, the same details may play a crucial role in
models featuring a nonsymmetric conformity function. While
for annealed dynamics, the fixed points still depend only on
the mean of the learning strategy distribution, the opposite is
true for the quenched dynamics where the whole distribution
of learning strategies enters in the determination of the fixed
points of the dynamics.

Interestingly, in Ref. [14], where a particular case of this
model with a symmetric conformity function and quenched
dynamics is studied, the authors compare the results for three
different distributions of learning strategies finding that the
fixed-point diagram is very different in the case of a rightly
skewed distribution of learning strategies compared to the
cases of uniform or truncated normal distributions. Our results
clarify this point: the differences they found are because the
mean of the right-skewed distribution they chose is simply
different from the mean of the other two distributions.

The use of different learning strategies by individuals is
influenced by contextual nuances, developmental experiences,
and interindividual variations [1,3,15]. Some people exhibit
greater inclinations to use social information than others
[3,23]. Factors like age, social rank, or popularity may play
a role. Individuals also adaptively change their inclinations
based on varying levels of uncertainty [3,18,33]. Limited
information or unreliable knowledge tends to increase the
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FIG. 3. Illustration of how the change of the learning strategy distribution, φ(pi ), impacts the fixed-point diagram for the model with
different types of conformity function and dynamics. We present the case in which q = 3 and k = 0. The fixed points are plotted as a function
of the mean of either one-point distribution (green lines and dots) or Bernoulli distribution (black lines and crosses), p̄. The lower part of the
figure illustrates the chosen distributions for a few values of p̄.

likelihood of social learning. Mood and social context can
also influence the strategy choice [1,34]. All these studies
highlight that people change their personal inclinations to-
wards learning strategies. If these changes occur frequently
compared to how often people change their options, as in
the annealed dynamics, the final adoption rate depends on
the mean inclination in the system rather than the specific
distribution of these preferences. However, if the individuals
are more persistent with their inclinations, as in the quenched
dynamics, and a system features a nonsymmetric confor-
mity function, the actual distribution of learning strategies
becomes crucial for the final adoption rate. In this case, more
effort should be put into modeling various possible distribu-
tions of learning strategies and estimating them in empirical
studies.

V. CONCLUSIONS

In this article, we study analytically and numerically the
outcomes of a decision-making process in a population of
agents who may choose to learn individually or socially.
We consider both symmetric and nonsymmetric conformity
functions along with annealed and quenched dynamics, which
represents different timescales at which individuals change
their inclinations towards learning strategies. We show that the
choice between a symmetric or a nonsymmetric conformity
function overrules other model details in determining the final
state of the system.

These findings might have practical implications not only
for theoretical modeling but also for experimental studies.
Commonly, experimental protocols measure the relationship
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between the probability of choosing a given option and the
fraction of its adopters in the population, and then different
functions are tried to fit such data [15,16,18,21]. However,
there is not necessarily a one-to-one correspondence be-
tween the psychological rule employed by individuals and the
population-level pattern that this rule produces [3]. Our results
suggest different experimental approaches that may provide
information about some properties of the actual cognitive rule
employed by individuals. One alternative method involves
comparing adoption rates for two experimental setups that
implement quenched and annealed dynamics. If there is a
statistically significant difference in adoption rates for a given
mean inclination towards individual learning, it may indicate
a nonsymmetric character of a conformity function. The other
method involves controlling the shape of the distribution of
preferences towards a learning strategy in a sample. In this
scenario, one can compare adoption rates for different dis-
tributions of these preferences having the same mean in a
setup representing only quenched dynamics. Note that these
methods could potentially offer insights into the symmetry of
a social learning function by comparing just two points.
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APPENDIX A: ANALYTICAL CALCULATIONS
FOR THE SPECIFIC CASE

In the main text, we show that if the conformity function is
symmetric, the shape of the distribution of the learning strate-
gies does not enter into the fixed-point equations, and only the
mean of this distribution matters. Moreover, the fixed-point
equation is the same for the annealed and quenched dynamics.
To illustrate this general result, we use some particular func-
tions that describe the individual and social learning as well as
the distribution of learning strategies. Herein, we present the
calculations for these particular cases.

1. Symmetric conformity function

We have chosen

S(x) =
{

1
2 (2x)q if 0 � x < 0.5,

1 − 1
2 [2(1 − x)]q if 0.5 � x � 1,

(A1)

as our representative of symmetric conformity functions in
order to compare with the particular case studied in Ref. [14].
In the case of symmetric conformity functions, annealed and
quenched dynamics lead to the same final result. This result
depends only on the mean of the distribution of learning
strategies φ(x), i.e., p̄ = ∫

xφ(x)dx. However, since the cal-
culations that lead to this result are different for annealed
and quenched dynamics, we cover them separately in the next
subsections.

a. Annealed dynamics

The rate equation takes the following form:

da

dt
=

{
p̄[I (a) − a] + (1 − p̄)

[
1
2 (2a)q − a

]
if 0 � a < 0.5,

p̄[I (a) − a] + (1 − p̄)
{
1 − a − 1

2 [2(1 − a)]q
}

if 0.5 � a � 1.
(A2)

We have two groups of fixed points. The first group is given by a∗ = 1/2 and any value of p̄, whereas the second group satisfies
the following formula:

p̄ =
{ 2a∗−(2a∗ )q

2I (a∗ )−(2a∗ )q if 0 � a∗ < 0.5,

2(a∗−1)+[2(1−a∗ )]q

2[I (a∗ )−1]+[2(1−a∗ )]q if 0.5 � a∗ � 1.
(A3)

To check the stability of the derived fixed points, let us first denote the right-hand side of Eq. (A2) by F (a) and let

F ′(a∗) = dF (a)

da

∣∣∣∣
a∗

. (A4)

The fixed point is stable if F ′(a∗) < 0 and unstable if F ′(a∗) > 0 [35]. In this case,

F ′(a∗) =
{

p̄[I ′(a∗) − 1] + (1 − p̄)
[
q(2a∗)q−1 − 1

]
if 0 � a∗ < 0.5,

p̄[I ′(a∗) − 1] + (1 − p̄)
{
q[2(1 − a∗)]q−1 − 1

}
if 0.5 � a∗ � 1,

(A5)

where

I ′(a∗) = dI (a)

da

∣∣∣∣
a∗

= ke−k(a∗−1/2)

[1 + e−k(a∗−1/2)]2
. (A6)

For a∗ = 1/2, we can determine the stability analytically. We have

I ′(1/2) = k

4
, (A7)
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so

F ′(1/2) = k

4
p̄ + q(1 − p̄) − 1. (A8)

Consequently, the point at which the stability of a∗ = 1/2
changes is given by

p̄∗ = 4(q − 1)

4q − k
. (A9)

If q > 1 and k < 4, the fixed point a∗ = 1/2 is unstable for
p̄ < p̄∗, and it is stable for p̄ > p̄∗, whereas if k > 4, a∗ =
1/2 is unstable for all p̄. If 0 < q < 1 and k < 4, a∗ = 1/2 is
stable for all p̄, whereas if k > 4, a∗ = 1/2 is stable for p̄ <

p̄∗, and it is unstable for p̄ > p̄∗. The stability of the remaining
fixed points, given by Eq. (A3), is determined numerically.

b. Quenched dynamics

In this case, the rate equations have the following forms:

da0

dt
=

{
1
2 (2a)q − a0 if 0 � a < 0.5,

1 − a0 − 1
2 [2(1 − a)]q if 0.5 � a � 1,

(A10)

da1

dt
= I (a) − a1, (A11)

where

a = (1 − p)a0 + pa1. (A12)

The first group of fixed points is given by (a∗
0, a∗

1 ) =
(1/2, 1/2) and any value of p̄, whereas the second group
satisfies the following formulas:

a∗
0 =

{
1
2 (2a∗)q if 0 � a∗ < 0.5,

1 − 1
2 [2(1 − a∗)]q if 0.5 � a∗ � 1,

(A13)

a∗
1 = I (a∗), (A14)

where

a∗ = (1 − p̄)a∗
0 + p̄a∗

1. (A15)

Consequently, we have

p̄ =
{ 2a∗−(2a∗ )q

2I (a∗ )−(2a∗ )q if 0 � a∗ < 0.5,

2(a∗−1)+[2(1−a∗ )]q

2[I (a∗ )−1]+[2(1−a∗ )]q if 0.5 � a∗ � 1.
(A16)

Note that the same result was obtained for the annealed dy-
namics; see Eq. (A3).

To check the stability of the derived fixed points, let us de-
note the right-hand side of Eqs. (A10) and (A11) by F0(a0, a1)
and F1(a0, a1), respectively. The stability is determined by the
determinant and trace of the following Jacobian matrix:

J(a∗
0, a∗

1 ) =
[

∂F0
∂a0

∂F0
∂a1

∂F1
∂a0

∂F1
∂a1

]
(a∗

0,a
∗
1 )

, (A17)

where

∂F0

∂a0
=

{
q(1 − p̄)(2a)q−1 − 1 if 0 � a < 0.5,

q(1 − p̄)[2(1 − a)]q−1 − 1 if 0.5 � a � 1,
(A18)

∂F0

∂a1
=

{
qp̄(2a)q−1 if 0 � a < 0.5,

qp̄[2(1 − a)]q−1 if 0.5 � a � 1,
(A19)

∂F1

∂a0
= (1 − p̄)I ′(a), (A20)

∂F1

∂a1
= p̄I ′(a) − 1. (A21)

The state is stable if det[J(a∗
0, a∗

1 )] > 0 and tr[J(a∗
0, a∗

1 )] < 0
[35].

For (a∗
0, a∗

1 ) = (1/2, 1/2), we can determine the stability
analytically. In this case, we have

∂F0

∂a0

∣∣∣∣
(1/2,1/2)

= q(1 − p̄) − 1, (A22)

∂F0

∂a1

∣∣∣∣
(1/2,1/2)

= qp̄, (A23)

∂F1

∂a0

∣∣∣∣
(1/2,1/2)

= k

4
(1 − p̄), (A24)

∂F1

∂a1

∣∣∣∣
(1/2,1/2)

= k

4
p̄ − 1. (A25)

Hence, the determinant and the trace are the following:

det [J(1/2, 1/2)] = 1 − k

4
p̄ − q(1 − p̄), (A26)

tr[J(1/2, 1/2)] = k

4
p̄ + q(1 − p̄) − 2

= −(det [J(1/2, 1/2)] + 1). (A27)

As a result, the point at which the stability of (a∗
0, a∗

1 ) =
(1/2, 1/2) changes is given by

p̄∗ = 4(q − 1)

4q − k
, (A28)

which is the same formula as obtained for the annealed
dynamics, see Eq. (A9), and we have the same stability con-
ditions. The stability of the remaining fixed points, given by
Eq. (A16), is determined numerically.

c. Results

Figure 4 illustrates the behavior of the model with the
symmetric conformity function. In this case, the annealed
and quenched dynamics produce the same fixed-point dia-
grams. In the parameter space presented in Fig. 4(a), we can
identify three areas separated by two curves: k̃(q), the red
one, and k̄(q), the black one. These curves are determined
numerically. For k > k̃(q), the system exhibits continuous
transitions between a phase where one option dominates over
the other (i.e., ordered phase for p̄ < p̄∗) to a phase without
the majoritarian option (i.e., disordered phase for p̄ > p̄∗); see
Fig. 4(b). For k̄(q) < k < k̃(q), additional discontinuous tran-
sitions between phases with the majoritarian options appear;
see Fig. 4(d). Finally, for k < k̄(q), discontinuous transitions
between phases with and without the majoritarian options are
possible; see Fig. 4(f).

2. Nonsymmetric conformity function

We have chosen

S(x) = xq (A29)
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FIG. 4. Behavior of the model with a symmetric conformity function, where the annealed and quenched dynamics produce the same
diagrams. (a) Phase diagram. The blue and the white regions correspond to the zones of the parameter space where transitions between
an ordered and a disordered phase are discontinuous or continuous, respectively. The intermediate red region also presents discontinuous
transitions but between two ordered phases with a different fraction of adopters. The letters indicate the parameter regions of the following
fixed-point diagrams (b)–(f), which present stable (solid lines) and unstable (dashed lines) fixed points for the model with q = 4 and (b) k =
−20, (c) k = k̃(q = 4) ≈ −24.3, (d) k = −27, (e) k = k̄(q = 4) ≈ −29.1, and (f) k = −35. Symbols represent the results from the simulations
of the model with N = 105 agents under ◦ annealed and � quenched dynamics.

as our representative of nonsymmetric conformity functions
as this form is commonly used in models of opinion dynamics
[25] that originate from the nonlinear q-voter model [19]. In
the case of nonsymmetric conformity functions, annealed and
quenched dynamics lead to different results. We cover them
separately in the next subsections.

a. Annealed dynamics

The transition rates take the forms

PB→A = p̄I (a) + (1 − p̄)aq, (A30)

PA→B = p̄[1 − I (a)] + (1 − p̄)(1 − a)q, (A31)

which results in the following rate equation:

da

dt
= p̄[I (a) − a] + (1 − p̄)[(1 − a)aq − a(1 − a)q].

(A32)
The first group of fixed points is given by a∗ = 1/2 and
any value of p̄, and the second group satisfies the following
formula:

p̄ = a∗(1 − a∗)q − (1 − a∗)(a∗)q

a∗[(a∗)q + (1 − a∗)q − 1] + I (a∗) − (a∗)q
. (A33)

To check the stability of the derived fixed points, let us
denote the right-hand side of Eq. (A32) by F (a). The stability

is determined by the sign of

F ′(a∗) = p̄
[
I ′(a∗) − 1

] + (1 − p̄)[q(1 − a∗)(a∗)q−1

+ qa∗(1 − a∗)q−1 − (a∗)q − (1 − a∗)q], (A34)

where

I ′(a∗) = ke−k(a∗−a0 )

[1 + e−k(a∗−a0 )]2
. (A35)

For a∗ = 1/2, we can determine the stability analytically. In
this case, we have

I ′(1/2) = k

4
(A36)

and

F ′(1/2) = p̄

[
k

4
− 1

]
+ (1 − p̄)

q − 1

2q−1
. (A37)

Consequently, the point at which the stability of a∗ = 1/2
changes is given by

p̄∗ = q − 1

q − 1 + 2q−1
(
1 − k

4

) . (A38)

If q > 1 and k < 4, the fixed point a∗ = 1/2 is unstable for
p̄ < p̄∗, and it is stable for p̄ > p̄∗, whereas if k > 4, a∗ =
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1/2 is unstable for all p̄. If 0 < q < 1 and k < 4, a∗ = 1/2 is
stable for all p̄, whereas if k > 4, a∗ = 1/2 is stable for p̄ <

p̄∗, and it is unstable for p̄ > p̄∗. The stability of the remaining
fixed points, given by Eq. (A33), is determined numerically.

At the fixed point (a∗, p̄) = (1/2, p̄∗), a pitchfork bifur-
cation takes place. This bifurcation changes its type from
subcritical to supercritical in the parameter space (k, q) along
the curve k∗(q) defined by the equation

(k∗)3 + 8(k∗ − 4)(q − 5)q = 0. (A39)

The bifurcation is subcritical for k < k∗(q), while it becomes
supercritical for k > k∗(q).

Note that this model for k = 0 corresponds to the q-voter
model with independence [30,31,36] or the nonlinear noisy
voter model [29].

b. Quenched dynamics

In this case, the rate equations have the following forms:

da0

dt
= (1 − a0)aq − a0(1 − a)q, (A40)

da1

dt
= I (a) − a1, (A41)

where

a = (1 − p)a0 + pa1. (A42)

The first group of fixed points is given by (a∗
0, a∗

1 ) =
(1/2, 1/2) and any value of p̄, whereas the second group
satisfies the following formulas:

a∗
0 = (a∗)q

(a∗)q + (1 − a∗)q
, (A43)

a∗
1 = I (a∗), (A44)

where

a∗ = (1 − p̄)a∗
0 + p̄a∗

1. (A45)

As a result, we have

p̄ = a∗(1 − a∗)q − (1 − a∗)(a∗)q

I (a∗)[(a∗)q + (1 − a∗)q] − (a∗)q
. (A46)

To check the stability of the derived fixed points, let us de-
note the right-hand side of Eqs. (A40) and (A41) by F0(a0, a1)
and F1(a0, a1), respectively. The stability is determined by the
use of the Jacobian matrix given by Eq. (A17), where

∂F0

∂a0
= q(1 − p̄)[a0(1 − a)q−1 + (1 − a0)aq−1]

−aq − (1 − a)q, (A47)

∂F0

∂a1
= qp̄[a0(1 − a)q−1 + (1 − a0)aq−1], (A48)

∂F1

∂a0
= (1 − p̄)I ′(a), (A49)

∂F1

∂a1
= p̄I ′(a) − 1. (A50)

For (a∗
0, a∗

1 ) = (1/2, 1/2), we can determine the stability ana-
lytically. In this case, we have

∂F0

∂a0

∣∣∣∣
(1/2,1/2)

= 1

2q−1
[q(1 − p̄) − 1], (A51)

∂F0

∂a1

∣∣∣∣
(1/2,1/2)

= 1

2q−1
qp̄, (A52)

∂F1

∂a0

∣∣∣∣
(1/2,1/2)

= k

4
(1 − p̄), (A53)

∂F1

∂a1

∣∣∣∣
(1/2,1/2)

= k

4
p̄ − 1. (A54)

Thus, the determinant and the trace are the following:

det [J(1/2, 1/2)] = 1

2q−1

[
1 − k

4
p̄ − q(1 − p̄)

]
, (A55)

tr[J(1/2, 1/2)] = 1

2q−1
[q(1 − p̄) − 1] + k

4
p̄ − 1. (A56)

As a result, the point at which the stability of (a∗
0, a∗

1 ) =
(1/2, 1/2) changes is

p̄∗ = 4(q − 1)

4q − k
. (A57)

If q > 1 and k < 4, the fixed point (a∗
0, a∗

1 ) = (1/2, 1/2) is
unstable for p̄ < p̄∗, and it is stable for p̄ > p̄∗, whereas if k >

4, (a∗
0, a∗

1 ) = (1/2, 1/2) is unstable for all p̄. If 0 < q < 1 and
k < 4, (a∗

0, a∗
1 ) = (1/2, 1/2) is stable for all p̄, whereas if k >

4, (a∗
0, a∗

1 ) = (1/2, 1/2) is stable for p̄ < p̄∗, and it is unstable
for p̄ > p̄∗. The stability of the remaining fixed points, given
by Eq. (A46), is determined numerically.

At the fixed point (a∗, p̄) = (1/2, p̄∗), a pitchfork bifur-
cation takes place. This bifurcation changes its type from
subcritical to supercritical in the parameter space (k, q) along
the curve k∗(q) defined by the equation

(k∗)3 + 16(4 − k∗)(q + 1)q = 0. (A58)

The bifurcation is subcritical for k < k∗(q), while it becomes
supercritical for k > k∗(q).

Note that this model for k = 0 corresponds to the q-voter
model with independence under the quenched approach from
Ref. [31].

c. Results

Figure 5 illustrates the behavior of the model with the
nonsymmetric conformity function for (a)–(d) annealed and
(e)–(h) quenched dynamics. In the parameter space presented
in Figs. 5(a) and 5(e), we can identify two areas separated by
the black curve, k∗(q), given by Eqs. (A39) and (A58). For
k > k∗(q), the system exhibits continuous transitions between
a phase where one option dominates over the other (i.e., or-
dered phase for p̄ < p̄∗) to a phase without the majoritarian
option (i.e., disordered phase for p̄ > p̄∗); see Figs. 5(b) and
5(f). At k∗(q), the system still exhibits continuous phase tran-
sitions; see Figs. 5(c) and 5(g). However, crossing this curve
results in a change of the phase transition type. Consequently,
for k < k∗(q), the transitions between ordered and disordered
phases are discontinuous; see Figs. 5(d) and 5(h).
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FIG. 5. Behavior of the model with a nonsymmetric conformity function for (a)–(d) annealed and (e)–(h) quenched dynamics. (a) and (e)
Phase diagrams. The blue and the white regions correspond to the zones of the parameter space where transitions between an ordered and a
disordered phase are discontinuous or continuous, respectively. The letters indicate the parameter regions of the following fixed-point diagrams
(b)–(d) and (f)–(h), which present stable (solid lines) and unstable (dashed lines) fixed points for the model with q = 4 and (b) k = −4,
(c) k = k∗(q = 4) ≈ −7.1, (d) k = −10, (f) k = −10, (g) k = k∗(q = 4) ≈ −19.6, and (h) k = −30. Symbols represent the results from the
simulations of the model with N = 105 agents under ◦ annealed and � quenched dynamics.

APPENDIX B: SIMULATIONS

1. Simulation details

In addition to the analytical results discussed in the main
text, which correspond to the thermodynamic limit, we simu-
late the dynamical equations for a large but finite population of
N = 105 agents. We consider one time step of this dynamics
when N agents have been updated, or in other words when, on
average, all the agents have been updated once, in analogy
with the notion of Monte Carlo step per site (MCS/s). In
the simulations, we trace the fraction of adopters of the most
common option, i.e.,

α = max{a, b}, (B1)

where a and b = 1 − a are the fraction of adopters of the
options A and B, respectively. In the figures, we show
the mean value of α, [〈α〉t ]s. The angle brackets represent
the average over time. We discarded the first 900 MCS to
let the system reach the stationary state and perform the time
average over next 100 MCS. The square brackets represent
the sample average that was performed over 20 independent
simulations at most (in a metastable region, the average is

perform over those of the simulations that ended up in the
same phase). In all the simulations, all the agents are ini-
tialized with option A. Standard errors are of the mark size
order.

When simulating the quenched dynamics, instead of ran-
domly assigning the learning strategies, which would lead
to some fluctuations in p̄ between simulations, we assign
them deterministically. We choose the first pN agents to be
individual learners and the rest of them to be social learners.
In such a way, we have exactly the same value of p̄ in all
the simulations that we average over. The problem with the
fluctuations can also be overcome by keeping the random
assignment but increasing the number of agents in the system
as the fluctuations in p̄ diminish with the system size at a rate
of 1/

√
N .

2. Source code

The model is implemented in C++ using object-oriented
programming. PYTHON and MATLAB are used for data analysis
and numerical calculations. The code files can be found in the
GitHub repositories in Refs. [37–39].
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