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Machine learning that predicts well may not learn the correct physical descriptions of glassy systems
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The complexity of glasses makes it challenging to explain their dynamics. Machine learning (ML) has
emerged as a promising pathway for understanding glassy dynamics by linking their structural features to
rearrangement dynamics. Support vector machine (SVM) was one of the first methods used to detect such
correlations. Specifically, a certain output of SVMs trained to predict dynamics from structure, the distance from
the separating hyperplane, was interpreted as being linearly related to the activation energy for the rearrangement.
By numerical analysis of toy models, we explore under which conditions it is possible to infer the energy barrier
to rearrangements from the distance to the separating hyperplane. We observe that such successful inference is
possible only under very restricted conditions. Typical tests, such as the apparent Arrhenius dependence of the
probability of rearrangement on the inferred energy and the temperature, or high cross-validation accuracy do not
guarantee success. Since even in such relatively simple toy models, prediction success of ML models does not
necessarily translate into success of learning the underlying physics, we suggest that more careful investigations
are needed when such claims are made. For this, we propose practical approaches for measuring the quality of
the energy inference and for modifying the inferred model to improve the inference, which should be usable in
the context of realistic datasets.

DOI: 10.1103/PhysRevResearch.6.033091

I. INTRODUCTION

In recent years, there have been a number of attempts
to use machine learning (ML) techniques to better under-
stand physical phenomena [1]. One of the areas that has
shown considerable promise is the use of classification algo-
rithms to differentiate between different states of a physical
system [2–19]. In some of these cases, ML techniques
manage to go beyond classification, extracting physically
interpretable low-dimensional descriptions, such as order pa-
rameters [2,12,17], topological invariants [20], or the energy
barriers that determine the rate of rearrangements in a glassy
liquid [8,9,18]. In other words, sometimes ML methods build
accurate physical models of the studied system, even when
the relevant variables describing the physics are not explicitly
in the dataset. Traditionally, finding such low-dimensional,
relevant descriptions requires specialized knowledge, e.g., of
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conservation laws. Such successes without this specialized
knowledge show the potential of ML techniques to discover
new physics with minimal guidance by scientists. However,
very little is known about when an ML method, trained to
predict a certain aspect of the behavior of a physical system,
constructs an accurate physical model, rather than a purely
statistical one.

We will answer this question in a simplified, tractable
model of the important physical problem of predicting rear-
rangements of glassy liquids using structural data [8,9,18].
Glassy liquids have heterogeneous rearrangement dynamics:
in some regions particles rearrange quickly, while others are
slow. The degree of heterogeneity, as well as length scales
characterizing the range of dynamical correlations, grows as
the temperature is lowered [21–24]. Despite this, the struc-
tural order in a glass is hard to detect, making the origin
of these correlations difficult to understand [25,26]. In re-
cent years, there has been considerable progress in linking
the dynamics of glassy liquids to their structure using ML.
Support vector machines (SVMs) [8,9,13,14,18,19,27], neural
networks [15,28–32], and linear regression [16,32,33] have
been trained on large datasets generated through simulations.
Local structural features were used to predict whether a
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particle rearranges in a specific time period �t . All of these
methods were shown to predict rearrangements with high
accuracy. The classifiers could also predict rearrangements
when applied to data from previously unseen temperatures.
Thus, the classifiers learn local structural predictors of dy-
namics that generalize across temperatures. In the linear SVM
case, the distance to the separating hyperplane, named soft-
ness S [8], has a simple interpretation as a local energy barrier
to rearrangement �E (S). This is because the probability for
a particle to rearrange in some unit time �t given S was
numerically found to obey the Arrhenius law,

P(R|S) ∝ exp [�(S) − �E (S)/T ], (1)

which is precisely the probability of rearrangement for a pro-
cess that requires crossing a single energy barrier �E (S). In
particular, �(S) and �E (S) were found to be linear in S.
Therefore, this simple linear classifier seems to have learned
a physical description of the system, without being instructed
to infer it.

Recent work has begun to use this learned dynamical
description as the basis for simplified dynamical models of
supercooled liquids and amorphous solids, using the inferred
�E (S) and �(S) as parameters in these models [34–37].
However, there has been no explicit study showing if the suc-
cess in making predictions signifies that the inferred physical
description agrees with the true one. Understanding when the
two match is the goal of this work. Specifically, assuming
that there exists an underlying structural variable S such that
Eq. (1) holds in a glassy liquid, we will explore when an SVM
can learn the correct variable S. We focus on SVMs [38] (and,
more specifically, linear SVMs) in our study because SVMs
are interpretable, their performance compares well to other
methods for this system, and the interpretation of statistical
properties of the classifier (softness) as a physical quantity
(linearly proportional to the Arrhenius energy barrier) was
made for SVMs, and not other ML methods.

We devise a toy model where a true energy barrier �E (�x)
describes the probability for a given configuration �x to re-
arrange. We show numerically how the choice of structural
variables given to the SVM affects the prediction accuracy
and the ability of the trained model to predict the true energy
barrier. We show that, if the SVM is given as the input only
those features that contribute linearly to �E (�x), then the in-
ferred softness (distance to the separating hyperplane) indeed
predicts the true �E (�x). This is true even when the SVM
is only trained to predict rearrangements, rather than �E (�x)
explicitly. However, we also show that, with a finite amount of
training data, the energy barrier estimated through the softness
inferred by the SVM can be strongly biased. Surprisingly, this
is true even if the quality of prediction, measured by common
statistical tests, such as cross-validation, is high. Thus, for our
simple model, SVM does not necessarily learn the correct
energy barriers, even when it seems that it does or should.
Since, in real systems, structural variables determining the
energy barrier are typically unknown, one usually provides an
ML algorithm with a large set of features, with only some
of the features that can act as predictors of the rearrangement
probability [8]. One then hopes that the machine distinguishes
the features that directly contribute to the barrier height from
those that are correlated with them, and from those that are

irrelevant for the prediction. In this scenario, we show that
the SVM becomes confused, so that its softness cannot be
interpreted as the barrier in the presence of additional features
correlated with components of the true energy function. Al-
though the models we study are simple toy models, the fact
that SVMs can fail to infer the true energy barriers even in a
simple model suggests that their applications in real physical
systems should be more carefully tested. Finally, we demon-
strate methods to diagnose these problems and to fix them by
systematic pruning of the structural features used to predict
rearrangements.

II. MODEL AND SIMULATIONS

We study a toy model, which still contains many of the fea-
tures relevant for our analysis. In the previous work, Ref. [8],
an SVM was used to identify a linear combination Si =
S(�xi ) = ∑n

j=1 α jx j
i of structural features �xi, associated with

a specific particle i, such that the probability of rearrangement
for the particle is as in Eq. (1). Specifically, in order to re-
produce Eq. (1), we require a model where (1) each particle
i is described by n structural variables �xi = {x1

i , x2
i , . . . , xn

i },
which vary among the particles; (2) each particle has a rear-
rangement energy barrier �E (�xi ), and (3) the probability to
rearrange depends on T and �E (�xi ) with a law that tends
to the Arrhenius law for low temperatures. Additionally, we
investigated data from simulations from Ref. [36] and found
that the distributions of the predictors and the inferred energy
were largely Gaussian (see Appendix A). The simplest model
with these properties is one where all n dimensions of �xi are
drawn independently at random, and the true energy barrier is
a linear function of the n-dimensional �xi. Thus, for each par-
ticle i = 1, . . . , N , we generate an n-dimensional coordinate
vector �xi = {x1

i , x2
i , . . . , xn

i } as

x j
i ∼ N (0, (σ j )

2
) ∀ j = 1, . . . , n and i = 1, . . . , N.

(2)
We then assume that the energy barrier to rearrangement is a
linear combination of these coordinates

�E (�xi ) =
n∑

j=1

α jx j
i . (3)

This results in a Gaussian distribution of �E , consistent with
the Gaussian distribution of S in supercooled liquids [8].

Finally, for each configuration, we determine whether or
not it rearranges by sampling a binary random variable Ri =
±1 (where ±1 stands for the presence or absence of a rear-
rangement) from

P(Ri = 1 | �xi ) = e−β�E (�xi )

1 + e−β�E (�xi )
, (4)

which reduces to the Arrhenius form at low T while remaining
below 1 at high T .

We then train a linear SVM [39] to predict Ri from �xi, for
all i = 1, . . . , N . As is the common practice, for the training,
we standardize all xs to have zero mean and unit variance.
Thus, drawing x j from N (0, (σ j )2) is equivalent to drawing
them from N (0, 1) and absorbing the standard deviation into
the definition of α, which is what we do. Further, the results
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FIG. 1. Relationship between softness S and �E (�x) for symmetric distribution of training energies for a large training set size, N = 106.
(a) logit P(R|S) derived from fitting the logistic curve to the probability of rearrangement as a function of S for different temperatures T .
(b) logit P(R|S, T ) vs 1/T for 15 different values of softness. (c) The inferred �Einf (S), calculated from logit P(R|S, T ), as a function of S.
(d) Two-dimensional (2D) joint density plot and the linear fit of the true energy barrier �E (�x) vs the inferred energy barrier �Einf (S) (we plot
the joint density instead of the scatter for clarity of the visualization).

shown below are all evaluated at α j = 1.2. We verified sepa-
rately that this choice does not change qualitative results from
Secs. III and IV (not shown, but also see Appendix B for some
discussion).

After training the SVM, we define the softness Si for state
�xi as the signed distance to the separating hyperplane, as in
previous work [8]. We then want to estimate the probability
of rearrangement P(R|S), to see if the softness defines it well.
In Ref. [8], this probability was estimated as the frequency of
rearrangements in a certain small bin of S. Instead, to remove
artifacts caused by the finite bin width, we estimate P(R|S)
using a logistic regression model.

In a glass, energy barriers should be strictly positive, and
the probability for a typical particle to rearrange is tiny. To
remove biases in the inference, one typically balances the
dataset used for training to have similar numbers of particles

that do and do not rearrange [8]. In our model, Eq. (3), we
achieve this balance by explicitly centering �E at zero. We
checked numerically that this choice does not qualitatively
affect the ability of the SVM to correctly predict the energy
(Appendix B).

A large number of structural features are used to train
an SVM to predict glassy dynamics [8]. These features,
however, are correlated. To observe the effect of these cor-
relations on the ability of the SVM to predict the correct
energy, for simulations in Sec. V, we give as input to the
SVM a 2n-dimensional coordinate vector (�xi, �zi ), where z j

i =
(x j

i )2 ∑
j1

x j1
i , and all x’s remain uncorrelated, as before. There

is nothing particular about this choice of additional variables
z j correlated with x j , besides that we wanted to preserve the
same symmetry under parity (even-order contributions would
average out for symmetric x’s). Further, we wanted these
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FIG. 2. Relationship between softness and �E (�x) for symmetric distribution of training energies for a small training set size, N = 103.
(a)–(c) Same as in Fig. 1. (d) The true energy barrier �E (�x) vs the inferred energy barrier from SVM �Einf (S). Note that, to the extent that
the slope in (d) is not 1, the correct energy is not learned.

spurious extra dimensions to be nonlinearly correlated with
x’s, modeling nonlinear correlations between values of differ-
ent radial and angular density functions in Ref. [8]. We believe
that our conclusions on the ability of the SVM to predict the
correct energy will be qualitatively the same for other choices
of spurious correlated variables obeying these conditions, and
we have checked a few other cases (Appendix D). We then
train the SVM to predict rearrangements from this expanded
set of coordinates and evaluate the effect of the correlated
input variables on the quality of the model the SVM builds.

III. LINEAR SVM CAN LEARN THE TRUE ENERGY
BARRIER IN THE INFINITE DATA LIMIT

First, we test whether or not the softness S, inferred by
the SVM from a very large sample, is a good approximation
for �E (�x) from Eq. (3). We use N = 106 training samples
with 5 × 105 examples each of rearranging and nonrear-
ranging configurations to train the SVM. The distribution

of energies in the training sample is symmetric. We have
14 independently sampled input dimensions, with α j = 1.2
for j = 1, . . . , 10 and α j = 0 for j = 11, . . . , 14. Thus, ten
dimensions determine the energy, while the other four dimen-
sions can be seen as Gaussian noise uncorrelated with any of
the relevant input dimensions.

In Fig. 1(a), we show the relationship between the prob-
ability for particles to rearrange, P(R|S), and S by plotting
logit P(R|S) ≡ log[P(R|S)/(1 − P(R|S))] vs S. P(R|S) is cal-
culated by fitting a logistic regression that predicts whether
a particle is rearranging from its S. This plot is analogous
to the log P(R|S) vs S plots in earlier studies [8] since in
our model logit P(R|�E ) is linear in �E . The plot shows a
similar linear relationship between logit P(R|S) and S. When
logit P(R|S) is plotted as a function of 1/T for several values
of softness [Fig. 1(b)], we also see a linear relationship be-
tween logit P(R|S) and 1/T as observed in earlier studies [8].
As in the previous work [8], the slope of logit P(R|S) vs 1/T
for each softness S is used to infer the corresponding energy

033091-4



MACHINE LEARNING THAT PREDICTS WELL MAY NOT … PHYSICAL REVIEW RESEARCH 6, 033091 (2024)

barrier �Einf (S) in Fig. 1(c). This �Einf (S) is analogous to the
barrier energy �E (S) in the Arrhenius rate equation, Eq. (1).
As one can see, the inferred barrier energy, �Einf (S), has a
linear relationship with softness, S. Thus, our model, in this
limit, reproduces the observations of previous work [8]: the
probability of rearrangement is exponential in the distance S
to the separating hyperplane, a.k.a. softness, and this distance
has an interpretation as an inferred energy barrier �Einf (S).

Unlike in past work, in our model, the true energy barriers
are known. Thus, we then can compare the inferred energy
barrier �Einf (S) to the true energy barrier �E (�x) for each
configuration �xi in the test set. We plot the inferred energy
vs the true energy, as well as a linear regression line between
the two in Fig. 1(d). Since the slope of the fit is ∼1.0 and
the scatter around the linear fit is small, we conclude that the
SVM indeed learns the real energy barrier �E (�x) with a high
degree of accuracy. We also find that the SVM captures the
real energy when trained on unsymmetrical data where all
energy barriers are positive (see Appendix B).

IV. LARGE TRAINING SETS ARE REQUIRED FOR SVM
TO LEARN TRUE ENERGY BARRIERS

For real-world problems, we do not have access to an
infinite (extremely large) amount of data. Thus, it is natural
to ask whether inferred energies are still accurate for smaller
training sets. For this, we repeated the analysis of Sec. III with
varied training set size N = 103, . . . , 106.

As shown in Fig. 2(a)–2(c), when N = 103, the inference
procedure still seems to work. That is, logit P(R|S, T ) is still a
linear function of S, and it still appears to be linear in 1/T .
This allows us again to infer the energy barrier �Einf (S),
which is linear in S. However, regressing �Einf (S) against
the true �E (�x) shows that the inferred energy is biased,
consistently underestimating the magnitude of the true energy
by nearly 15%. Since the variance of the distribution of true
energy P(�E ) is a sum of the variance explained by S and the
variance unexplained by S, the error must always have this
sign: if the energy is inferred incorrectly, the variance of the
distribution of inferred energies will be less than the variance
of the distribution of true energies. This point is discussed
further in Sec. V.

Figure 3(a) shows how this underestimation depends on N .
Further, Fig. 3(b) shows the N dependence of the classification
(rearranged or not) prediction accuracy of our fitted model
on a test set, different from the training one. To verify that
fitting and prediction errors do not come from suboptimal
choices during training, in this figure, we also change the
value of the SVM training hyperparameter C, which controls
when the SVM treats data points that are labeled differently
from their neighbors as outliers vs true data that should be
fitted [38,39]. For small N , regardless of C, the true energy is
underestimated. For large N , the quality of the fits improves,
and the prediction accuracy as well as the error in slope
become largely insensitive to C.

In practice, the true energy is rarely known. Thus, detection
of the bias shown in Figs. 2(d) and 3 is nontrivial in experi-
mental applications. Indeed, simple checks, such as verifying
the linearity of plots in Figs. 2(a)–2(c), do not reveal this error.
Further, the underestimation of the barrier magnitude is also

FIG. 3. Slope of inferred energy (a) �Einf (S) vs real energy
�E (�x) and the prediction accuracy (b) for different sizes of training
data as a function of the SVM cost parameter C. The training and test
data were generated at T = 0.4.

difficult to diagnose by looking at the prediction accuracy,
Fig. 3(b). When the true energy is underestimated by 15%, the
prediction accuracy is still 94% (C = 102, N = 103), which is
only 1% lower than the highest value obtained with large N .
Since we do not have any prior information about the max-
imum possible prediction accuracy for specific experimental
datasets, these figures suggest that, judging by the prediction
accuracy only, one can never be sure if the learned energy is
a good estimate of the true one: a seemingly high accuracy is
not enough.

V. PRESENCE OF REDUNDANT FEATURES IN THE INPUT
DATA DEGRADES THE QUALITY OF THE INFERENCE

In Ref. [8], 166 inputs were used for predicting rearrange-
ments. However, many of these inputs were correlated with
one another. To model this, we repeat our analysis using
a higher-dimensional input vector. For this, as explained in
Sec. II, we train the SVM on a 20-dimensional input. Of
these input dimensions, x j

i , j = 1, . . . , 10 were independently
sampled from a Gaussian distribution, and the remaining
inputs were strongly nonlinearly correlated with them. We
again train an SVM on N = 106 balanced data points. The
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FIG. 4. Relationship between softness and �E (�x) for a symmetric distribution of training energies and with spurious, correlated input
terms. The same plotting conventions are used as in Fig. 1. In (d) the true energy barrier �E (�x) vs the inferred energy barrier from SVM
�Einf (S) is plotted. The error to the fit is given by the purple semitransparent spread on both sides of the fit on a 2D density plot. Note that,
to the extent that the slope in (d) is not 1, the correct energy is not learned. Also, the deviation between the fit and the 2D density plot at the
edges shows that even though a linear fit was used to fit the energy and softness and its fit has a high r2 value, the underlying function one is
trying to fit is not really linear in S.

logit P(R|S) vs S plot [Fig. 4(a)], logit P(R|S, T ) vs 1/T plot
[Fig. 4(b)] and the inferred energy �Einf (S) vs softness plot
[Fig. 4(c)] again are linear, as in Fig. 1 and the previous
work [8]. However, plotting the inferred energy �Einf (S) vs
the true energy barrier �E (�x) for each configuration and pro-
ducing a linear fit between them, cf. Fig. 4(d), we see that the
magnitude of the inferred energy is underestimated compared
to the true energy even for very large N (cf. Fig. 5). Looking at
the optimal hyperplane learned by the SVM, we observe that
the hyperplane contains contributions from the input variables
that do not contribute to the true energy (not shown). One
would not be aware of this problem from Figs. 4(a)–4(c)
alone. We remind the reader that the true energy needed to
produce Fig. 4(d) is typically unknown.

To design a method for identifying the bias from data,
we note again that the variance of the true energy barrier
distribution is a sum of the variance explained by S [i.e.,

the variance of 〈�E〉(S) over the distribution of S] and the
variance conditional on S (i.e., the part of the energy barrier
not captured by S). Thus, if we can find a different set of
coordinates that allows the SVM to learn a different S that
is closer to the true energy, this improvement should manifest
as an increase in the variance of the distribution of inferred
energies, Var[�Einf ]. Our approach is then to reduce dimen-
sionality of the input space, aiming to remove the correlated
dimensions and increase the accuracy of the model at the same
time. A particular version of this approach is known in the
SVM literature as the recursive feature elimination (RFE) [40]
procedure. RFE has been used in earlier work on predict-
ing rearrangements [41,42] for pruning the dimensionality of
SVM inputs. Assuming that all input dimensions are normal-
ized to the same variance, RFE works by removing the input
dimension with the smallest magnitude contribution to the
separating hyperplane. One then refits the SVM and continues
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FIG. 5. (a) Slope of the inferred energy �Einf (S) vs the true
energy �E (�x) and (b) the prediction accuracy for the model with
spurious correlated inputs. Same plotting conventions as in Fig. 3.

the process iteratively. Figure 6(a) shows the variance of the
inferred energy as a function of the number of inputs kept by
the RFE procedure. The peak in Var[�Einf ] clearly matches
the true number of dimensions that contribute to the energy in
our model. Figure 6(b) shows a corresponding (but broader)
peak in the prediction accuracy as well. These analyses bode
well for using RFE for pruning the input data and resulting in
a more accurate inference of the energy barrier in real-world
problems.

VI. DISCUSSION

We have shown that, in our toy model, one can always
use a linear SVM to predict rearrangements with a high ac-
curacy, though the amount of data needed for this might be
larger than what typical experiments would allow in realis-
tic cases. However, even if the inference seems successful,
the inferred energy barrier matches the true energy only in
specific cases. Crucially, by observing a high prediction ac-
curacy or high-quality linear relationship between softness,
log rearrangement probability, and 1/T , one cannot con-
clude that the correct energy has been learned. The problem

FIG. 6. Plot of variance of �Einf and the prediction accuracy as
a function of number of coordinates kept. The variance of the distri-
bution of �Einf is more sensitive for detecting relevant dimensions.
The variance of inferred energy at the peak matches well with the
variance of the distribution of true energy (12 in our units).

becomes severe—even in our simple model—when the input
data has extra features, potentially nonlinearly correlated with
true variables describing the model. Realistic systems, e.g.,
glasses, are likely to have different types of correlations be-
tween their input features than those we have considered here.
Nonetheless, our results suggest a need to carefully scrutinize
the use of ML methods, and specifically SVMs, for inference
of energy barriers in glasses.

For our model, we have demonstrated a method to diagnose
and fix this problem: RFE can be used to remove “confusing”
input features. By tracking the variance of the inferred energy
barriers or of log P(R|S), which is maximal when the true bar-
riers are learned, improvements in the inference of the barriers
can be detected, even though the true barriers are unknown
and the prediction accuracy may change little. RFE is partic-
ularly natural in our problem because there is a clear division
between important and unnecessary input dimensions. For
other systems, RFE may not be the best method for adjusting
the set of input features. For example, Appendix D 2 shows
an example of a set of correlated features where no smaller
set is sufficient to express the energy, and thus RFE cannot
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recover the true energy. As another example, if the input
features are a discretization of the pair correlation function
g(r), it may be more natural to coarsen this discretization,
or to change the choice of basis functions, than to eliminate
specific input features. However, our criterion for comparing
different choices of input features in general would still stand:
features that produce a larger variance in the inferred energy
barriers should be closer to predicting the true barriers. We
expect it to be true in general that the choice of features for the
inference will affect whether or not the true energy is learned,
so that different possible choices should be compared using
this criterion. The need to make such comparisons between
different choices of input features and other hyperparame-
ters, rather than only focusing on achieving the best possible
prediction accuracy, is one of the main conclusions of our
work.

In our simple model, the probability of particle rearrange-
ment is purely a function of energy. However, when SVMs are
used to predict rearrangements in real systems, the probability
is a function of energy as well as of an entropic prefactor, both
of which are found to depend on S [8], see Eq. (1). In addition,
there are other complications not present in our toy model,
such as ambiguity in the identification of rearrangements. We
expect such complications to only strengthen our conclusion
that a good prediction accuracy does not guarantee that the
ML model learns the true values of the energy barriers.

It may seem surprising that the addition of extra coor-
dinates degrades the prediction accuracy and the quality of
inference of �Einf . Conventional wisdom is that such over-
complete representation should improve SVM accuracy by
creating a higher-dimensional embedding space, in which the
data become linearly separable [39]. It is possible that the fail-
ure of this intuition in our case comes from the probabilistic
nature of rearrangements: for any �x, there are both rearranging
and nonrearranging examples, at least in the N → ∞ limit.
Thus, the data are fundamentally not separable, irrespective
of the space in which we embed them.

The process of adding more correlated coordinates explic-
itly to our input is similar to using some nonlinear kernel
on the original data. SVM kernels allow us to create high-
dimensional embeddings that are nonlinear functions of the
input coordinates without having to explicitly evaluate the
embedding, and these embeddings are often even infinite-
dimensional. Thus, our results seem to imply that using a
kernel may also prevent the true energy barriers from being
learned.

In our work, we have focused specifically on linear SVMs,
rather than other ML methods, because this is the only method
which has been used in the past to explicitly deduce the
underlying energy barriers from the inferred statistical model.
However, note that we have chosen the true energy function to
be expressible by a linear SVM. Further, note that more com-
plex ML methods are generally thought to behave similarly to
kernel methods [43,44]. Thus, we expect that our results are
not caused by the simplicity of linear SVMs, and they will
generalize to other ML approaches to the problem of learning
energy barriers in glassy systems.

Our results may have implications for many systems be-
yond supercooled liquids, for which the underlying “physics”
must be learned from an ML model trained on the data.

Indeed, we have shown that, even given a powerful ML model
that can express the true underlying physics, an arbitrarily
large amount of training data, and a good prediction accuracy,
the model may fail to learn a correct physical description even
in a relatively simple scenario. We suspect that, in real-world
applications, this problem will become even more severe. One
must then use independent methods—going beyond predic-
tion accuracy—to evaluate the model quality.
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APPENDIX A: THE INFERRED ENERGY AND
PREDICTORS IN REAL GLASS SIMULATIONS CAN BE

APPROXIMATED BY GAUSSIAN

We looked at the distribution of each of the 266 dimensions
used to train the SVM for the Kob-Anderson model super-
cooled liquid [36]. All the dimensions looked unimodal. We
calculated the kurtosis of all the dimensions, which measures
how heavy tailed or light tailed a distribution is compared to
a Gaussian distribution, which has kurtosis 0. A total of 73%
of the dimensions had a kurtosis in the range of (-0.3, 0.3) and
92% of the dimensions had a kurtosis in the range of (-2, 2).
The values of kurtosis cutoffs acceptable for normality vary
widely from ±2 to ±6 [45–49], and thus the true structural
features have roughly Gaussian distributions.

APPENDIX B: QUALITATIVE RESULTS REMAIN
UNCHANGED WHEN TRAINED ON DATA WITH

NONCENTERED DISTRIBUTION OF ENERGY BARRIERS

Recall, as explained in the main text, that in the true system
all energy barriers are positive. However, in the main text,
we chose energy barriers to be symmetric around zero for
simplicity. Figure 7 is the analog of Fig. 1, but now evaluated
for a model where almost all energy barriers are positive.
We balance the training set, similarly to Ref. [8], so that
the number of rearranging and nonrearranging particles is the
same.

We draw each of the dimensions from a Gaussian dis-
tribution with unit variance centered at zero. We have ten
independently sampled input dimensions, with α = 0.4 for
j = 1, . . . , 10. Further, we add a constant to the energy so that
the mean of the distribution is two standard deviations away
from zero, and thus the energy is almost always positive. We
use N = 3 × 105 training samples with 1.5 × 105 examples
each of rearranging and nonrearranging configurations to train
the SVM. As seen in Fig. 7, the results for the probability
of rearrangement and the inferred energy remain qualitatively
unchanged from Fig. 1 in the main text. In particular, the
correct energy barriers are learned.

Just as in the case with a centered �E distribution, with
a noncentered �E distribution, the energy is not learned
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FIG. 7. Relationship between softness and �E (�x) for positive energy barriers and a balanced dataset. To balance our dataset, we choose
50% of samples where rearrangement was observed, and 50% where it was not. Plotting conventions are the same as in Fig. 1. Note that the
correct energy is learned (slope of 0.996), and the spread in the 2D density plot is minimal.

correctly at small training sample sizes. We generated a non-
centered �E distribution as above, and generated training sets
of different sizes, balancing them as above. As can be seen
from Fig. 8, these observations are qualitatively the same as
in the centered case.

We also note that giving each variable x j a nonzero mean
μ j has no effect except producing a nonzero mean �E , and is
thus expected to be covered by the above checks. To see this,
write x j = μ j + y j , where y j has mean zero. We then have

�E =
∑

j

α jμ j +
∑

j

αky j . (B1)

Thus, the only effect of giving x j nonzero mean is to add
a constant

∑
α jμ j to �E . Further, note that even in this case

where μ j �= 0, changing the sign of α j only changes the mean
�E : it has no effect on

∑
α jy j , since the distribution of y

is symmetric around 0. Thus, qualitative results such as the
above, which hold both when the mean �E is 0 and when it

is positive, are expected to still hold when some of the α j are
negative.

APPENDIX C: EFFECT OF MISSING FEATURES

In any realistic system, some of the features needed to
express �E will be missing. Here, we confirm that this pre-
vents the correct energy from being learned. We use N = 106

training samples with 5 × 105 examples each of rearranging
and nonrearranging configurations to train the SVM. The
distribution of energies in the training sample is symmetric.
We use ten independently sampled input dimensions, with
α j = 1.2 for j = 1, . . . , 10, to determine the energy. Out of
the ten dimensions we train the SVM only with the first nine
dimensions and drop the last dimension. In this case, one ends
up underestimating the variance of the true energy, as can be
seen from Fig. 9.
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FIG. 8. (a) Slope of the inferred energy �Einf (S) vs the true energy �E (�x) and (b) the prediction accuracy for the model with noncentered
�E distribution. Same plotting conventions as in Fig. 3.

FIG. 9. Relationship between softness and �E (�x) for symmetric distribution of training energies for a large training set size, N = 106,
with one of the relevant feature missing. (a)–(c) Same as in Fig. 1. (d) The true energy barrier �E (�x) vs the inferred energy barrier from SVM
�Einf (S). Note that, to the extent that the slope in (d) is not 1, the correct energy is not learned.
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FIG. 10. Relationship between softness and �E (�x) for symmetric distribution of training energies for a large training set size, N = 106,
with additional linear features. (a)–(c) Same as in Fig. 1. (d) The true energy barrier �E (�x) vs the inferred energy barrier from SVM �Einf (S).
Note that, to the extent that the slope in (d) is not 1, the correct energy is not learned.

APPENDIX D: EFFECT OF DIFFERENT CHOICES OF
CORRELATED FEATURES

As our model of correlated features in Sec. V, we have
chosen to add nonlinear functions of the “correct” input fea-
tures to the input. Here, we check that the results of Sec. V
generalize to other choices of correlated input features. In par-
ticular, we test two other options. Firstly, we consider addition
of variables that, rather than being nonlinear functions of the
“correct” input features, are simply linearly correlated with
them. Secondly, we consider a set of input features that are
nonlinearly correlated, but are not “redundant,” in the sense
that, in principle, all of them are required to express the true
energy through a linear function. In both cases, we find that
the results of Sec. V remain qualitatively unchanged.

1. Effect of redundant linear feature

We use N = 106 training samples with 5 × 105 examples
each of rearranging and nonrearranging configurations to train

the SVM. The distribution of energies in the training sample is
symmetric. We have ten independently sampled input dimen-
sions, with α j = 1.2 for j = 1, . . . , 10. Thus, ten dimensions
determine the energy. We train the SVM on a 12-dimensional
input which consists of all ten dimensions and one extra copy
each of j = 1, 2. This gives two extra, redundant features
which are linear in the relevant coordinates. In this case, the
SVM again underestimates the variance of the true energy, as
can be seen from Fig. 10.

2. Effect of nonredundant and nonlinear correlated features

We use N = 106 training samples with 5 × 105 examples
each of rearranging and nonrearranging configurations to train
the SVM. The distribution of energies in the training sample is
symmetric. We have ten independently sampled input dimen-
sions, with α j = 1.2 for j = 1, . . . , 10. Thus, ten dimensions
determine the energy. Instead of giving the SVM x1 . . . x10 as

033091-11



SWAIN, RIDOUT, AND NEMENMAN PHYSICAL REVIEW RESEARCH 6, 033091 (2024)

FIG. 11. Relationship between softness and �E (�x) for a symmetric distribution of training energies and with spurious, correlated input
terms. The same plotting conventions are used as in Fig. 1. (d) The true energy barrier �E (�x) vs the inferred energy barrier from SVM
�Einf (S). The fit error is illustrated by the purple semitransparent spread on both sides of the fit on the 2D density plot. Note that, to the extent
that the slope in (d) is not 1, the correct energy is not learned. Also, the deviation between the fit and the 2D density plot at the edges shows
that, even though a linear fit was used to fit the energy and softness, and the fit had a high r2 value, the underlying function we are trying to fit
here is not linear in S.

input features, we use the 14 input features

x1 + (x5)3, x2 + (x6)3, x3 + (x7)3, x4 + (x8)3, x5, x6,

. . . , x10, (x5)3, (x6)3, (x7)3, (x8)3. (D1)

(There is nothing particular about these features, and we be-
lieve that other combinations of powers of predictors would

deliver a similar point.) It should be possible for the SVM to
learn a linear combination of these features that would cancel
out the cubic terms and infer the true energy. Nonetheless,
we observed that the SVM does not learn the correct energy,
Fig. 11. Thus, the presence of nonlinearities as well as redun-
dant features affects the ability of SVM to predict the correct
energy.
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