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Speeding up squeezing with a periodically driven Dicke model
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We present a simple and effective method to create highly entangled spin states on a faster timescale than
that of the commonly employed one-axis twisting (OAT) model. We demonstrate that by periodically driving
the Dicke Hamiltonian at a resonance frequency, the system effectively becomes a two-axis countertwisting
Hamiltonian, which is known to quickly create Heisenberg limit scaled entangled states. For these states we
show that simple quadrature measurements can saturate the ultimate precision limit for parameter estimation
determined by the quantum Cramér-Rao bound. An example experimental realization of the periodically driven
scheme is discussed with the potential to quickly generate momentum entanglement in a recently described
experimental vertical cavity system. We analyze effects of collective dissipation in this vertical cavity system
and find that our squeezing protocol can be more robust than the previous realization of OAT.

DOI: 10.1103/PhysRevResearch.6.033090

I. INTRODUCTION

For centuries, advancements in precision measurements
have continuously propelled the scientific community’s un-
derstanding of the fundamental nature of reality. This inspired
both the quantum revolution and Einstein’s theories of relativ-
ity, with the frontier of each still advancing through the use
of increasingly precise experiments [1–5]. Current state-of-
the-art precision measurements can detect a change of mirror
distance of 10−3 of the proton’s width in gravitational wave
detectors [5–7] and have led to the development of atomic
clocks with a fractional frequency uncertainty of 10−21 [8],
among many other groundbreaking achievements [9–17].

Most precision metrology experiments still operate at or
above the standard quantum limit (SQL), which is the fun-
damental sensitivity threshold that arises from shot noise in
measurements of uncorrelated quantum states. This limit on
product states can be overcome through the use of entan-
gled quantum states, and if this can be consistently utilized,
it would revolutionize precision measurements with the po-
tential to discover new physics. Although there have been
proof-of-principle experimental demonstrations of quantum
entanglement, applications for a true sensing purpose have so
far been limited [18–22]. For example, spin squeezing offers
a promising platform to perform atomic clock experiments
beyond the SQL, but often require a long squeezing time
during which quantum correlations may be destroyed by de-
coherence.

In this work, we propose an experimentally relevant
scheme to realize spin squeezing in a short propagation
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time. We show that driving the Dicke model [23–28] at a
parametric resonance leads to an effective two-axis counter-
twisting (TACT) Hamiltonian, which can reach Heisenberg
limited scaling in a shorter timescale than the commonly
employed one-axis twisting (OAT) Hamiltonian. While the
TACT Hamiltonian has been studied theoretically [29–42], it
has so far been elusive to achieve experimentally. We demon-
strate how TACT may be realized in a current, state-of-the-art
vertical cavity experiment [43–46] by periodically modulating
an injected field that drives the cavity. We discuss how to make
optimal use of the system’s entanglement for phase estimation
using a recent advance that uncovers a state’s full metrological
potential by diagonalizing the quantum Fisher information
matrix (QFIM) [47]. We then perform a Bayesian phase re-
construction sequence where, remarkably, we find that simple
quadrature measurements saturate the quantum Cramér-Rao
bound (QCRB) [48].

The structure of our paper is as follows. We begin in Sec. II
by discussing the general idea and performance of generat-
ing fast spin squeezing in the Dicke model using parametric
driving. Section III puts this model into a physical context
where we derive a master equation from a realizable setup
in a matter-wave system. In Sec. IV, we discuss the effect of
dissipation on the squeezing performance and in Sec. V, we
conclude our results.

II. PERIODICALLY DRIVEN DICKE MODEL

We consider N atoms that are collectively coupled through
a cavity field. The atoms have ground state |↓〉 and ex-
cited state |↑〉, and we define the collective raising and
lowering operators Ĵ+ = ∑

j |↑〉 j〈↓| j = Ĵ†
−. This system has

an underlying SU(2) symmetry with basis operators Ĵx =
(Ĵ+ + Ĵ−)/2, Ĵy = i(Ĵ− − Ĵ+)/2, and Ĵz = [Ĵ+, Ĵ−]/2, as well
as the quadratic Casimir operator Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z . After
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eliminating the cavity in the dispersive regime, we consider
dynamics governed by the time-dependant Dicke Hamiltonian
[49]

Ĥ = h̄�Ĵz + h̄χ cos(ωt )Ĵ2
x , (1)

where � is a detuning and χ scales the cavity-mediated non-
linearity. This Hamiltonian can model, for example, Raman
transitions between hyperfine states using two time-dependent
transverse fields [25,27]. For now, we ignore cavity decay
based on large cavity detuning, such that the dynamics are
governed by the Schrödinger equation ∂t ρ̂ = −i[Ĥ , ρ̂]/h̄ with
density matrix ρ̂. We discuss the effects of non-negligible
dissipation in the next section.

The nonlinearity in Eq. (1) creates an entangled state,
which can be used to sense a physical parameter with a quan-
tum advantage. To find the parameter � that the generated
state is most sensitive to, one finds the maximum quantum
Fisher information (QFI), λmax, by calculating the largest
eigenvalue of the quantum Fisher information matrix (QFIM)
[47],

F �O = λmax �O, (2)

where the elements of the QFIM are given by [50]

Fμν =
dim[ρ̂]−1∑

i, j=0;
i+
 j �=0

2�[〈
i|
[
Ĵμ, ρ̂

]|
 j〉〈
 j |
[
ρ̂, Ĵν

]|
i〉
]


i + 
 j
, (3)

with μ, ν ∈ {x, y, z} and the spectral decomposition ρ̂ =∑
i 
i|
i〉〈
i|. Here, � stands for the real part. This is the

description of the QFIM for general mixed states, which
will be of special importance later when we discuss dissi-
pation in Sec. IV. The eigenvector �O associated with this
maximum eigenvalue corresponds to the optimal generator
Ĝ that encodes the optimal parameter [47], exp[−iĜ�]. The
QFI for unentangled states can reach the SQL, λmax = N ,
while entangled states can reach the Heisenberg limit (HL),
λmax = N2, which is the fundamental limit on sensing set by
the Heisenberg uncertainty principle [51]. Although we will
use Eq. (1) for our numerical simulations, one can gain a
better intuition of the dynamics by transforming into a rotating
frame. We move into an interaction picture ˜̂ρ = Û †ρ̂Û with
Û = exp[−i�t Ĵz], so that Eq. (1) becomes

˜̂H = h̄χ

4
cos(ωt )

[
e2i�t Ĵ2

+ + 2
(
Ĵ+Ĵ− − Ĵz

) + e−2i�t Ĵ2
−
]
. (4)

In the majority of previous works, one assumes a constant
nonlinear interaction rate ω = 0. Then, in the limit |�| 

N |χ |, one makes the rotating-wave approximation (RWA)
[53] to drop the fast-oscillating Ĵ2

± terms. We now explore an
opposite regime in which the system is instead driven on the
parametric resonance ω = 2�. In this case we label this as the
periodically driven Dicke (PDD) model

ĤPDD = h̄�Ĵz + h̄χ cos(2�t )Ĵ2
x . (5)

Equation (5) after the RWA, which requires small χ � �,
becomes

ĤPDD ≈ h̄χ

8

(
Ĵ2
+ + Ĵ2

−
)
, (6)

FIG. 1. (a) Schematic of the pair production process Ĵ2
+ that

the PDD model drives (along with Ĵ2
−) to generate interparticle

entanglement (dashed line). Here, S is the symmeterizer, which
sums over all permutations of i and j [52]. (b) The collective
Bloch sphere for ρ̂BW in the rotating frame of Eq. (4). The color
represents the state’s overlap with the coherent spin state |θ, φ〉 =
exp[−iφĴz] exp[−iθ Ĵy]|↓〉⊗N at each point. The arrows indicate the
direction of twisting about each axis.

which is seen by expanding cos(ωt ) = (exp[iωt] +
exp[−iωt])/2. This shows the connection of the PDD
with two-axis countertwisting (TACT) [29], which was
found to reach HL scaling on an exponential timescale
[31,35] through the pair production and twisting processes
shown in Fig. 1. Beginning in the collective ground state
ρ̂0 = |↓〉〈↓|⊗N , we examine the sensitivity of the PDD
model using the maximum QFI from Eq. (2). We display the
dynamics of the QFIM eigenvalues in Fig. 2(a) for the case
of N = 100. Here, one can see the exponential scaling of the
maximum QFI on short timescales. In the rotating frame of
Eq. (4), we find that the optimal generator corresponding to
λmax is given by Ĝ = (Ĵx + Ĵy)/

√
2. This can be understood

by interpreting Eq. (5) as an analog to the photonic Kerr
nonlinearity [54], which can be formalized if one performs
the Holstein-Primakoff approximation assuming low atomic
excitations [55,56]. During the initial squeezing, the state
has a high overlap with the Berry-Wiseman (BW) phase state
[57], up to a rotation. The BW phase state maximizes the
information gained about an unknown phase after a single
measurement [58] and has a full 2π dynamic range (see
Appendix A 1). For states generated by TACT, the fidelity
with the phase state has been shown to reach unity [35]. We
find that the rapid-oscillating terms in the PDD model Eq. (5)
do not have a noticeable effect on this fidelity, and so the
PDD model also reaches unit fidelity with the BW phase state
up to a negligible error. For N = 100, this unit fidelity occurs
at t ≈ 5.57/(N |χ |), and so we label this state ρ̂BW, which we
display on the collective Bloch sphere in Fig. 1(b). As the
system continues to squeeze, it reaches the state ρ̂peak, which
maximizes the QFI in time. Here, the system is HL scaled
with λmax ∼ 0.65N2, and we discuss interesting properties of
this state in Appendix A 2. In the large N limit, we find that
the maximum QFI asymptotes to λmax ∼ 0.64N2, as shown in
Fig. 2(b). One can then rotate ρ̂peak to make a specific operator
the optimal generator in order to exploit the largest amount of
intraparticle entanglement for a specific sensing purpose [47].
For example, in atomic clock systems, one would perform a
π/2 pulse about (Ĵx − Ĵy)/

√
2 in the rotating frame to make

Ĵz the optimal generator.
While the PDD model can clearly reach a high QFI on an

exponentially short timescale, the QCRB is not guaranteed
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FIG. 2. (a) The three eigenvalues of the QFIM F for N = 100.
The two eigenvalues besides λmax are labeled λ2 and λ3. The state
evolves under Eq. (1) with � = 100N |χ |. The gray plus and asterisk
indicate when the system reaches ρ̂BW and ρ̂peak, respectively. Also
shown is the largest eigenvalue of the QFIM for OAT with the same
parameters (dashed black line). (b) The largest QFIM eigenvalue
for ρ̂peak. Also shown is the plateau value of N (N + 1)/2 for OAT.
(c) Sensitivity, given by the standard deviation σ of the posterior
distribution, for the optimal parameter � after applying Bayes theo-
rem. We display results for the states ρ̂BW and ρ̂peak, and the dashed
lines represent the QCRB for the respective state. The top and bottom
dotted lines represent the SQL and HL, respectively. (d) Comparing
the time of maximum QFI for PDD tpeak (orange plus) with the time
OAT reaches its plateau tpl (dotted red line) for a constant N |χ |. We
also show the curve fit of the PDD simulations given by Eq. (8)
(dashed blue line).

to be achievable with experimentally accessible measure-
ments. This is because the QFI implicitly optimizes over all
measurement bases [50]. Remarkably, the system saturates the
QCRB with simple population measurements by performing
a Bayesian reconstruction protocol. To demonstrate this, we
first rotate the state by a π/2 pulse with the optimal generator
Ĝ such that its antisqueezed axis is parallel with the equator
of the Bloch sphere. We encode the parameter � using Ĝ and
implement Bayes theorem P(�|m) = P(m|�)P(�)/P(m),
where P(�|m) is a conditional probability for the outcome m
of a Ĵz measurement. We begin the process with a flat prior
P(m|�) = const., which we then consistently update using
the posterior distribution P(�|m) [59,60].

Figure 2(c) displays the sensitivity of the posterior dis-
tribution for the states ρ̂BW and ρ̂peak after the rotation to
the Bloch sphere’s equator. We also show the SQL and HL
as the upper and lower dotted lines. After M measurements,
the respective QCRBs are given by 1/

√
Mλmax(t ), which

we plot as dashed lines. Remarkably, the sensitivity of ρ̂peak

nearly reaches the HL. For ρ̂peak, the standard deviation σ of
the posterior distribution P(�|m) saturates this bound when
M � 100, showing that simple quadrature measurements are
optimal for the generated states. In contrast, we find that σ of

P(�|m) for ρ̂BW is a straight line when plotted in a log-log plot
as function of the measurement number. This highlights that
every single measurement in the optimal measurement basis
using the BW phase state has the smallest possible uncertainty
in the parameter estimation of � [57,58]. Remarkably, this
means simple quadrature measurements for a state generated
by the PDD model, ρ̂BW, already saturates the QCRB after a
single measurement, which is an important property when de-
veloping practical, real-time inertial sensors. We can calculate
the decibel gain over the SQL, G = 10 log10(

√
λmax/N ), and

obtain G = 5.7 dB and G = 9.1 dB of squeezing for ρ̂BW and
ρ̂peak, respectively. For ρ̂peak in the large N limit, we expect
the gain to scale as G ≈ 5 log10(N ) − 1.

To highlight the achievements of this squeezing proto-
col, we will now compare them to one-axis twisting (OAT).
We show that, with respect to OAT, the periodically driving
scheme achieves higher QFI and is faster. To demonstrate
this, we now consider ω = 0 in Eq. (1) and eliminate the
fast-oscillating Ĵ2

± terms via the RWA. This gives the one-axis
twisting (OAT) Hamiltonian [29],

ĤOAT ≈ − h̄χ

2
Ĵ2

z , (7)

as exploited in Refs. [44,45]. Here, we have used the relation
Ĵ+Ĵ− = Ĵ2 − Ĵ2

z + Ĵz and ignored a constant energy shift of
N (N/2 + 1)/2 from the Ĵ2 term since we remain in the col-
lective subspace {| j = N/2, m〉, − j � m � j}.

When the state begins in an eigenvector of Ĵx, ρ̂0 = [(|↑〉 +
|↓〉)(〈↑| + 〈↓|)/2]⊗N , the OAT Hamiltonian reaches λmax =
N (N + 1)/2 on a timescale of tpl ∼ 4/(

√
N |χ |) [47,48,61].

We show this initial behavior of the maximum QFI for OAT
as a dashed black line in Fig. 2(a). The QFI then remains at
this value for a long plateau before eventually growing again
at tpl, f ∼ π/|χ | − 4/(

√
N |χ |) [47,48,61]. For typical param-

eters, this is often too long of a timescale since decoherence
will significantly reduce the squeezing performance. We com-
pare the typical timescales for HL scaling of PDD and OAT
in Fig. 2(d). We find that the PDD model indeed scales on a
much faster timescale, an observation, which becomes more
pronounced if one considers larger atom numbers. Fitting the
scaling of the PDD model, we find that the time that QFI is
maximized is given by

tpeak ≈ [ln(N2) + 4]/(N |χ |), (8)

which approximately matches the analysis of Ref. [31] with
the Wineland squeezing parameter. Therefore, the PDD model
is a full order of magnitude faster than OAT when one scales
up to N = 104 while reaching a higher QFI, as shown in
Figs. 2(b) and 2(d). Moreover, the states created by OAT do
not, in general, saturate the QCRB using simple quadrature
measurements when encoding the optimal parameter �. This
shows that parametric driving is a very promising tool for fast
spin squeezing.

III. EXAMPLE EXPERIMENTAL REALIZATION

A. Vertical cavity setup

Having established that the PDD model can outperform
OAT on short timescales, we now turn to a prototypical ex-
perimental realization of this scheme. For this, momentum
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FIG. 3. (a) A schematic of the vertical cavity experiment of
Refs. [43,44]. (b) Frequency spectrum diagram of a single atom in
the vertical cavity setup. The states are labeled by their internal state
and their initial momentum value, i.e., |i, p0 − mgτ 〉 → |i, p0〉.

squeezing in a recent vertical cavity (VC) experiment [43–46]
is considered, as shown schematically in Fig. 3(a). A wave
packet of N 87Rb atoms falls through an optical mode of a
VC under the influence of gravity �g = −g�εz with unit vector
�εz along the vertical axis. The atoms interact with a single

mode of the VC, which has frequency ωc, via the D2 cycling
transition |g〉 ≡ |F = 2, mF = 2〉 ↔ |e〉 ≡ |F ′ = 3, mF ′ = 3〉
at a single atom vacuum coupling rate �. The internal states
are separated by an optical frequency ωa and |e〉 can decay
back to |g〉 at a rate γ . It is assumed that the cavity decays at
a rate κ and initially begins in vacuum.

After the atoms have fallen for a time τ , a coherent field
is injected into the cavity, which drives the mode with a time-
dependent rate |η(t )| and frequency ωp(t ). The general idea is
that the frequency ωp(t ) is modulated in order to achieve the
parametric driving necessary for the fast spin squeezing. The
modulation of the frequency ωp(t ) = ω(0)

p + ω(1)
p (t ) is chosen

to be around a frequency ω(0)
p with a fixed detuning to the

atoms �a = ωa − ω(0)
p and the cavity �c = ωc − ω(0)

p . In a
reference frame rotating with ω(0)

p , the dynamics of the atoms
and cavity is described by a master equation for the density
matrix ρ̂apc, which takes the form

∂ρ̂apc

∂t
= − i

h̄

[
Ĥapc, ρ̂apc

] + D̂
[√

κ â
]
ρ̂apc

+
∑

j

D̂
[√

γ σ̂−
j

]
ρ̂apc.

(9)

The coherent dynamics is governed by the Hamiltonian

Ĥapc =
∑

j

[
( p̂ j − mgτ )2

2m
+ h̄� cos(kx̂ j )(â

†σ̂−
j + σ̂+

j â) + h̄�aσ̂
+
j σ̂−

j

]
+ h̄�câ†â + h̄

[
η(t )â† + âη(t )∗

]
. (10)

The first term in the Hamiltonian describes the kinetic energy
with momentum operators p̂ j of the atoms with mass m after
falling for a time τ under acceleration g. The second term
corresponds to the atom-cavity coupling, where cos(kx) is the
standing-wave mode function of the cavity evaluated at the
atomic position operators x̂ j with wave number k. In addition,
the creation and annihilation operators â† and â have been
introduced for the cavity mode and the internal excitation
σ̂+

j = |e〉 j〈g| j and σ̂−
j = |g〉 j〈e| j , respectively. The third term

in Eq. (10) is the energy of the excited state in the frame
rotating with ω(0)

p . The last two terms describe the energy
of the photons and the driving of the cavity mode where
modulations of frequency ω(1)

p (t ) and amplitude |η(t )| are
encoded in the complex and time-dependent frequency η(t ).
This time-dependent η(t ) is crucial for the parametric driving.
As well as the coherent effects, the master equation Eq. (9)
also describes cavity photon losses and spontaneous emission
as Markovian processes, and therefore these dissipative pro-
cesses are modeled using the Lindblad superoperator

D̂[Ô]ρ̂ = Ôρ̂Ô† − 1
2 [Ô†Ôρ̂ + ρ̂Ô†Ô]. (11)

The master equation (9) is the starting point of the derivation,
which, after making several approximations discussed in the
subsequent subsection, results in an effective Dicke model.

B. Simplification of the model

While Eq. (9) represents a full quantum model of the setup
shown in Fig. 3(a), an exact numerical simulation is infeasible
except for the smallest atom numbers and low intracavity

photon numbers. In order to develop an exact but efficient
simulation that accurately models the dynamics of Eq. (9)
for substantial atom numbers, we now simplify the model
to a numerically tractable one by adiabatically eliminating
different degrees of freedom of the system. This is possible
when a clear separation of timescales exist, and one can tract
the slow dynamics of one degree of freedom while ignoring
the fast oscillating dynamics of another. To this end, we now
discuss the regimes in which the excited state manifold and
cavity field can be adiabatically eliminated, ending with a
master equation that only depends on the external degree
of freedom of the atoms. We then simplify this further by
truncating momentum space to two relevant states, ending in
the final master equation Eq. (27).

1. Adiabatic elimination of excited state manifold

The regime considered is that in which the detuning |�a|
is much larger than the spontaneous emission rate γ and any
characteristic frequency determining the dynamics of the cav-
ity and the atomic external degrees of freedom. In this regime,
the atoms remain, to good approximation, in the electronic
ground state and the dominant scattering process is coherent
scattering of laser photons. In addition, it is assumed that the
fixed atom-laser detuning is much larger than the dynamical
variance of the frequency |�a| 
 ω(1)

p , which implies that
the small modifications in the laser frequency have only a
minor effect on the coherent scattering rates. Using these
approximations, based on the parameter regime of inter-
est, an effective master equation is derived that governs the
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dynamics of the density matrix ρ̂pc of atomic external degrees
of freedom and the cavity. This master equation is given by

∂ρ̂pc

∂t
= − i

h̄

[
Ĥpc, ρ̂

] + D̂
[√

κ â
]
ρ̂pc, (12)

with the Hamiltonian [45]

Ĥpc =
∑

j

( p̂ j − mgτ )2

2m
+ h̄

[
η(t )â† + H.c.

]
+ h̄�′

câ†â − h̄U0

∑
j

cos(2kx̂ j )â
†â.

(13)

The second line in Eq. (13) describes the modified frequency
of cavity photons, which is shifted due to the presence of the
atoms. Here, �′

c = �c − NU0 is the dressed cavity detuning
with the ac Stark shift

U0 = 1

2

�2�a

�2
a + γ 2/4

. (14)

2. Adiabatic elimination of cavity field

To simplify the model further, it is useful to note that the
cavity field can be decomposed into two components. First,
the driving laser injects a field β into the cavity, which comes

from the �′
c and η terms in Eq. (13), as well as cavity decay.

Importantly, this injected field is present even when there are
no atoms in the system. On top of this, there is the field,
which is scattered off of the atoms in the two-photon process
modeled by the final term in Eq. (13). Since β(t ) is, in prin-
ciple, known for a certain time-dependent driving profile η(t )
and does not depend on the dynamics of the atoms, it can be
eliminated from the model in order to focus on the scattered
light field. This is formally done by applying the displacement
transformation

D̂1 = exp[â†β(t ) − β∗(t )â], (15)

onto the density matrix ˜̂ρpc = D̂†
1ρ̂pcD̂1. In this new displaced

picture, we find

∂ ˜̂ρpc

∂t
= − i

h̄

[
˜̂Hpc, ˜̂ρpc

]
+ D̂

[√
κ â

]
˜̂ρpc, (16)

where the injected light field follows the driven-damped har-
monic oscillator differential equation

∂β

∂t
= −i

(
�′

c − iκ

2

)
β − iη. (17)

With a solution of Eq. (17), the following displaced Hamilto-
nian is obtained

˜̂Hpc =
∑

j

[
( p̂ j − mgτ )2

2m
− h̄U0 cos(2kx̂ j )(â

†β + β∗â) − h̄U0|β|2 cos(2kx̂ j )

]
+ h̄�′

c

⎡⎣1 − ε
∑

j

cos(2kx̂ j )

⎤⎦â†â, (18)

where ε = U0/�
′
c. Now in this displaced picture, there is no

external driving of the cavity. Instead, the operator â repre-
sents the scattered field due to the presence of atoms, which,
in the original picture, needs to be added to the injected field
β.

In what follows, we work in the regime of large effective
cavity detuning. By assuming |�′

c| is the largest frequency in
the effective system, we are able to adiabatically eliminate the
scattered cavity field. This requires that |�′

c| is much larger
than the Doppler-shift of the atoms and also that the modula-
tion of the drive is slow compared to 1/|�′

c|. In this limit, we
can derive an effective master equation for the density matrix
describing the atomic external degrees of freedom ρ̂, where
we dropped the “p” index for brevity. Eliminating the bosonic
field in Appendix B using the method of Ref. [62] results in
the atom-only master equation

∂ρ̂

∂t
≈ − i

h̄
[ĤVC, ρ̂] + D̂

⎡⎣√
�c(t )

∑
j

cos(2kx̂ j )

⎤⎦ρ̂, (19)

where the assumption is made that N |ε|/2 � 1. Here, the
Hamiltonian is given by

ĤVC ≈
∑

j

[
( p̂ j − mgτ )2

2m
− h̄U0|β|2 cos(2kx̂ j )

]
− h̄χ (t )

∑
i, j

cos(2kx̂i ) cos(2kx̂ j ),
(20)

and the nonlinear interaction rate is defined as

χ (t ) = �′
cU

2
0 |β|2

(�′
c)2 + κ2/4

, (21)

with the dissipation rate given by

�c(t ) = κU 2
0 |β|2

(�′
c)2 + κ2/4

. (22)

Furthermore, as discussed in Appendix D, the injected field
can be approximated as

β(t ) ≈ − η(t )

�′
c − iκ

2

, (23)

under suitable parameters.
Equation (19) solely and effectively describes the dynam-

ics of the atoms. In this picture the cavity mediates long-range
atom-atom interactions that are described by the third term
in Eq. (20). This is a key ingredient of the approach: the
cavity here is used to create a nonlinearity in the atomic cloud.
Moreover, the possibility to modulate η, and therefore β, in
time allows the interaction strength in Eq. (21) to be driven.
This combination of cavity-mediated interactions and in the
case considered time-periodic parametric driving allows for
the fast squeezing.

Formally, the master equation (19) models a matter-wave
system that can be simulated using the algebra of the group
SU(n) when the atoms are taken to be permutationally
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symmetric. Here, n corresponds to the number of relevant mo-
mentum states per atom after discretizing the momentum basis
in units of 2h̄k. Therefore, the scaling of the density matrix
with respect to atomic number is reduced from exponen-
tial to polynomial, going approximately as [Nn−1/(n − 1)!]2

[63–65].

3. Reduction to two momentum states

The specific experimental setup allows for further simplifi-
cation of the theoretical model since the momentum basis can
be reduced to two relevant states in a certain parameter regime
[44]. First, the atoms are prepared in the momentum ground
state |0h̄k〉. By letting the atomic packet fall for a sufficient
time τ before turning on the injected field, the momentum
states |0h̄k〉 and |2h̄k〉 become nearly degenerate in the co-
falling reference frame [45], with a difference in frequency of

ωg = (2h̄k − mgτ )2 − (mgτ )2

2h̄m
= 4ωr − 2kgτ, (24)

with recoil frequency ωr = h̄k2/(2m). Therefore, under the
conditions 12kgτ 
 |U0||β|2 and 16ωr 
 N |χ |, one can
drive Bragg transitions between |0h̄k〉 ↔ |2h̄k〉 while being
energetically far from coupling to the | − 2h̄k〉 and |4h̄k〉
states, truncating the momentum space to a collective two-
level system. The details of this process and the derivation of
these conditions are presented in Appendix C. Defining the
collective momentum operators Ĵ+ = ∑

j |2h̄k〉〈0h̄k| j = Ĵ†
−,

the two-level truncation reduces Eq. (20) to

ĤVC ≈ h̄ωgĴz − h̄χ (t )Ĵ2
x , (25)

where the 12kgτ 
 |U0||β|2 condition has been used to ig-
nore the single atom momentum flip term in Eq. (20). We
present a table outlining the various approximations that we
assume to be valid to derive Eq. (25) in Appendix E, as
well as relevant experimental parameters that satisfy these
conditions which we use for our dynamical simulations in
Fig. 4.

C. Realization of PDD dynamics

In order to obtain the PDD Hamiltonian in Eq. (1), we
can now reverse engineer the driving profile η(t ). For this,
we require β(t ) = β0

√
cos(ωt ) and so we set η ∝ √

cos(ωt ),
which amounts to varying the amplitude and phase of the
driving laser. However, since χ ∝ |β|2, this does not yet
have the needed harmonics to parametrically drive TACT in
Eq. (25). Therefore, the cavity detuning is oscillated such
that �′

c(t ) = �′
c(0)sgn[cos(ωt )]. This promotes | cos(ωt )| →

cos(ωt ) whereupon one sets ω = 2ωg. The oscillation of �′
c

can be accomplished with a time-dependent pump frequency
or with time-dependent laser powers when one adds a sec-
ond pump laser with shifted frequency. With this oscillation,
Eq. (25) reduces to the PDD model of Eq. (1),

ĤVC = h̄ωgĴz − h̄χ0 cos(ωt )Ĵ2
x , (26)

where χ0 = U 2
0 |β0|2�′

c(0)/([�′
c(0)]2 + κ2/4). Then Eq. (19)

can be rewritten to obtain the final master equation

∂ρ̂

∂t
= − i

h̄

[
ĤVC(t ), ρ̂

] + D̂
[√

�0|cos(ωt )|Ĵx

]
ρ̂, (27)

FIG. 4. The largest eigenvalue of the QFIM for the VC setup with
different decay rates. The simulations evolve under Eq. (27) with
the full Hamiltonian of Eq. (25). We choose the parameters N =
100, |�c| = 10.5|ωg|, |U0| = 5.1|ωg|×10−3, and |β0| = 6.8 when
κ/|�′

c| � 1, such that |�′
c| = 9.9|ωg|. We display the experimental

parameters that lead to these rates in Appendix E. The colored lines
represent the PDD model (ω = 2ωg). Meanwhile, the black lines are
the results of OAT (ω = 0) for κ/|�′

c| = 10−5 (solid black line) and
κ/|�′

c| = 10−2 (dashed black line).

with the collective decay rate amplitude from Eq. (22),

�0 = κU 2
0 |β0|2

(�′
c)2 + κ2

4

. (28)

This concludes the derivation of the master equation and
adds physical meaning to the model parameters introduced
in Eq. (1). It also predicts the presence of dissipation that is
automatically introduced by the intrinsic lifetime of cavity
photons in such systems. In what follows, we will discuss
how this dissipation effects the squeezing that was discussed
in Sec. II.

IV. SQUEEZING IN THE PRESENCE OF DISSIPATION

We will now discuss how the idealized squeezing that
we described in Sec. II is modified by realistic dissipation
included in the description in Eq. (27), derived in detail in
Sec. III. The presence of this quantum noise results in deco-
herence in the system and leads to mixed states, in contrast
to the pure states that have been described in Sec. II. In
our protocol, it is in general beneficial to reduce the amount
of dissipation, which can be achieved by reducing the ratio
of κ/�′

c. Nevertheless, we will include finite dissipation in
order to study the detrimental effect of decoherence on spin
squeezing. The mathematical framework now becomes some-
what more involved as we have to work with mixed states.
However, we can use the framework of optimal generators and
QFIM described by Eq. (2) and Eq. (3) since we have already
presented the QFIM in its mixed state form (as opposed to the
covariant matrix form for pure states [50]).

In Fig. 4, the results for the maximum QFI, given by
Eq. (2), are displayed for a density matrix evolved under
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Eq. (27) with different dissipation rates. For comparison, re-
sults for OAT (ω = 0) are also displayed with κ/|�′

c| = 10−5

(solid black line) and κ/|�′
c| = 10−2 (dashed black line).

Notably, it is found that even with a three orders of magnitude
larger dissipation rate, the PDD model (ω = 2ωg) outperforms
OAT on short timescales, which can be seen by comparing the
dotted brown line to the solid black line. A potential expla-
nation for the increased robustness of this realization of the
PDD model is as follows. When one drives the cavity with a
β(t ) ∝ √

cos(ωt ) profile, the absolute values in Eqs. (21) and
(22) changes the harmonics to | cos(ωt )|. To recover the PDD
model with parametric resonance at ω = 2ωg, we therefore
had to oscillate �′

c(t ) to promote χ ∝ | cos(ωt )| → cos(ωt )
as outlined in Sec. III C. However, the dissipation rate in
Eq. (22) does not have this factor of �′

c, and therefore remains
with the original harmonics of | cos(ωt )|, as shown explicitly
in Eq. (27). This means that the �c(t )Ĵ2

x terms in the Lindblad
dissipator Eq. (11) are not driven at the parametric resonance,
and so do not have the exponentially speed up that the squeez-
ing is awarded. Further investigation into this advantageous
property of the PDD model is left to future work.

Some of the generated state’s properties discussed in Ap-
pendix A 2 [see Fig. 5] may explain another interesting feature
of the dissipative dynamics that allows the system to remain
highly sensitive for longer periods of time, namely the double
peak structure of the PDD model in Fig. 4 when κ/|�′

c| �
10−2. Here, the first peak corresponds to the initial squeez-
ing with Ĝ = (Ĵx + Ĵy)/

√
2, but now with a lower QFI that

reaches its maximum value more quickly due to decoherence.
The optimal generator then switches to Ĵz for the second peak
as the QFI with respect to Ĵz rotations falls off less quickly
when increasing κ . This generator corresponds to the second
largest eigenvalue of the QFIM in Fig. 2(a) (blue dashed line),
and so the maximum of this QFI is also decreasing (from
the original value of λ2 ≈ 0.4N2) and occurring sooner with
dissipation, but at a slower rate than the first peak. This is
most likely due to the partial-ring structure of the generated
states [see Fig. 5(a)] being more robust to decoherence than
the state’s fringes [see Fig. 5(b)] as a large amount of the pop-
ulation is near the eigenstates of the jump operator in Eq. (27),
and these population packets are more metrologically useful
for rotations about Ĵz than about a point on the Bloch sphere’s
equator, i.e. Ĝ.

To put the results into an experimental context, we adopt
the setup of Refs. [44,45] in which the atoms are allowed to
fall for τ = 20 ms before the pump is turned on. This corre-
sponds to |ωg| ∼ 2π×0.5 MHz such that |ω| ∼ 2π×1 MHz.
Therefore, Fig. 4(b) shows an appreciable advantage of the
PDD model compared to OAT after O(100 µs). Furthermore,
using the parameters of Fig. 4(b) with small dissipation
rates κ/|�′

c| � 1, it is found that Nχ0 ≈ 0.012|ωg| and so
Eq. (8) gives tpeak ∼ 355 µs while the OAT plateau time is
tpl ∼ 1.1 ms. On the timescale of tpeak, an effective dephasing
effect occurs from the increased energy difference between
the momentum states as time progresses, which is accounted
for in Ref. [44] by a spin echo sequence [53]. Furthermore,
this dephasing is a single-particle effect and so increasing
N can grow the collective squeezing rate without increasing
the effective dephasing rate. It is confirmed that the QCRB
is saturated from the simple quadrature measurements con-

sidered in Sec. II, which can be experimentally accessed via
a Mach-Zehnder interferometry sequence [43]. For the case
of κ ≈ |�′

c|/87, which corresponds to the cavity decay of
Ref. [44], we find that the PDD model reaches a maximum
of G = 7.5 dB during the initial squeezing.

V. CONCLUSION AND OUTLOOK

Similar to parametric driving of nonlinear optical inter-
actions to create nonclassical states of light [66], in this
work, we propose an analogous procedure to create nonclas-
sical states of matter through parametric driving. While we
have focused on long-range interparticle interactions medi-
ated through a dispersive cavity mode, our periodic driving
methodology should be more broadly applicable to any sys-
tem with controllable nonlinearities, such as trapped ions with
phonon-mediated interactions [67–71], Bose-Einstein con-
densates with short- and long-range interactions [72–74], and
solid-state materials with spin-spin interactions [75–77]. Our
periodic driving scheme is distinct from previous modulation
proposals [32,37] as it is implemented by simple parameter
modulation of classical driving fields, thereby allowing direct
modulation of nonlinear Hamiltonian terms. Unlike previous
works on bosonic-mediated quantum amplification [78–80],
the protocol presented here does not require squeezed bosonic
modes and instead amplifies nonlinearities in the underly-
ing matter to create nonclassical, squeezed states. We have
demonstrated that our proposed method can potentially be
implemented in a current, state-of-the-art VC experiment
[43,44], which would be the first experimental realization
of TACT. The system achieves HL scaling in reasonable
timescales and has a simple optimal measurement basis, and
therefore is a promising platform to create matter-wave sen-
sors with a true quantum advantage. Furthermore, it has been
shown [34,35] that TACT creates the Berry-Wiseman phase
state, as well as high overlap with other theoretically studied
states [51,81–84]. Therefore, our proposal offers a promising
platform to study previous theoretical work in quantum optics
[83] and quantum information science [57,58] in a control-
lable experimental spin system.
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APPENDIX A: STATES CREATED BY THE
PERIODICALLY DRIVEN DICKE MODEL

In this section, we comment on some of the properties of
two states that the periodically driven Dicke (PDD) model
creates. We focus on the states examined in Fig. 2, namely,
the Berry-Wiseman (BW) phase state ρ̂BW and the state with
the peak QFI ρ̂peak.
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(a) (b)

FIG. 5. The state with the maximum QFI ρ̂peak for N = 100.
(a) The Q function calculated by finding the overlap with the coher-
ent spin state |θ, φ〉 at every point on the Bloch sphere. (b) The log
of the Q function to make the interference fringes more pronounced.

1. Berry-Wiseman phase state

We begin by discussing the BW phase state, whose Q
function is show in Fig 1(b). The Holevo variance for an
ensemble of pseudospin-1/2 particles is defined as [57,85]

V (ϕ)ψ ≡ |〈e−iϕ〉ψ |2 − 1, (A1)

where

〈e−iϕ〉ψ ≡
∫ 2π

0
Pψ (ϕ)e−iϕdϕ,

Pψ (ϕ) ≡ 〈ψ |e−iϕĴz |ψ〉.
(A2)

This variance is useful because states with complete phase
uncertainty (e.g., any |ψ〉 = | j = N/2, m〉) will have infinite
Holevo variance, whereas the typical phase variance [57],
�ϕ2 = 〈ϕ2〉ψ − 〈ϕ〉2

ψ , has a maximum uncertainty of �ϕ =
2π . It has been shown [57,83] that the state, which minimizes
the Holveo variance is the BW phase state,

|ψBW〉 = 1√
N
2 + 1

N
2∑

m=− N
2

sin

[
π ( N

2 + m + 1)

N + 2

]
|N

2
, m〉,

(A3)
such that ρ̂BW = |ψBW〉〈ψBW|. This state has V (ϕ)BW =
π2/N2 and is notably an eigenstate of the Susskind cosine
operator [86],

ĉos(ϕ) ≡ 1

2

N/2∑
m=−N/2

(
|N

2
, m + 1〉〈N

2
, m| + H.c.

)
. (A4)

The BW phase state is of particular interest for phase
estimation because its dynamic range is a full 2π , meaning
〈ψBW|e−iϕĴz |ψBW〉 = 1 only if ϕ = n2π for integer n. Simul-
taneously, it has a quantum Fisher information (QFI) reaching
Heisenberg limit (HL) scaling at

FBW ≈
(

1

3
− 2

π2

)
N2 ≈ 0.13N2. (A5)

These conditions guarantee that, with no a priori knowledge
of ϕ, the BW phase state is the optimal state to gain informa-
tion in a single measurement [58], making it a useful state for a
multitude of sensing applications. For example, creating a BW
phase state in matter-wave interferometry would guarantee
that each measurement gives the highest resolution estima-
tion of an acceleration, which would be a powerful tool for
time-varying gravitational fields such as those that an orbiting
satellite experiences.

2. State with peak QFI

We now discuss the state with the maximum QFI during the
initial squeezing under the PDD model, ρ̂peak. We display the
Q function of this state in Fig. 5(a), which shows that ρ̂peak

has properties of a partial ring state [27]. One would expect
this structure to be highly sensitive to rotations about Ĵz and
a point on the Bloch sphere’s equator in the direction of the
antisqueezed axis. This explains why the two largest eigenval-
ues of the QFIM in Fig. 2(a) correspond to Ĝ = (Ĵx + Ĵy)/

√
2

and Ĝ2 = Ĵz in the rotating frame. Moreover, by taking a log
of the Q function, which we show in Fig. 5(b), one can see
interference fringes form around part of a longitude line of the
Bloch sphere. This is reminiscent of the interference fringes
that are present in the N00N state [48,83] and may explain
why the state is more sensitive to rotations about Ĝ than Ĵz.

As the squeezing continues past ρ̂peak under the PDD
model with small dissipation, the large population packets be-
gin to converge towards each other at the north pole. However,
the state’s QFI remains larger than the SQL as interference
fringes remain present with a small amount of population still
in a partial ring. The state reaches a local minimum in QFI
when the large population packets meet at the north pole,
but then the QFI climbs back to λmax > N2/2 as a ringlike
structure reemerges. This ringlike state has Ĝ = Ĵz.

APPENDIX B: ADIABATIC ELIMINATION OF THE CAVITY FIELD

We begin with Eq. (16) with the Hamiltonian from Eq. (18). To eliminate the field, we assume that the scattered field is, to a
good approximation, in vacuum. We can then displace the field by

D̂2 = exp[â†α̂ − α̂†â], (B1)

such that the equation of motion for ρ̂ is given by [62]

∂ρ̂

∂t
= − i

h̄
[ĤVC, ρ̂] + D̂

[√
κα̂

]
ρ̂, (B2)

with the Hamiltonian

ĤVC =
∑

j

[
( p̂ j − mgτ )2

2m
− h̄U0|β|2 cos(2kx̂ j )

]
− h̄U0

2

⎡⎣βα̂†
∑

j

cos(2kx̂ j ) + H.c.

⎤⎦. (B3)

033090-8



SPEEDING UP SQUEEZING WITH A PERIODICALLY … PHYSICAL REVIEW RESEARCH 6, 033090 (2024)

We then solve for the effective field operator

∂α̂

∂t
= −i

[
( p̂ j − mgτ )2

2h̄m
, α̂

]
− i

⎡⎣�′
c

⎛⎝1 − ε
∑

j

cos(2kx̂ j )

⎞⎠ − iκ

2

⎤⎦α̂ + iU0β
∑

j

cos(2kx̂ j ). (B4)

Here, we have assumed that U0|β|2 is much smaller than any momentum energy gaps (see Appendix C for the relevant gaps)
such that it can be dropped from the commutator in Eq. (B4).

We are considering parameters such that N |ε|/2 � 1 so that we can drop the nonlinearity ∝ ε in Eq. (B4). By further making
the ansatz α̂(t ) = a+(t )

∑
j exp[2ikx̂ j] + a−(t )

∑
j exp[−2ikx̂ j], we can find equations of motion for the coefficients a±. In the

parameter regime |�′
c − iκ/2| 
 ω, where ω is the characteristic modulation frequency of β [see Eqs. (C1) and (24)], we can

integrate the differential equations for a±. Using the obtained results in α̂(t ) leads to the effective field operator

α̂(t ) ≈ U0β

2

∑
j

[
1

�′
c + �p+2 − iκ

2

e2ikx̂ j + 1

�′
c + �p−2 − iκ

2

e−2ikx̂ j

]
, (B5)

where �p±2 = ( p̂ ± 2h̄k − mgτ )2/(2h̄m) − ( p̂ − mgτ )2/(2h̄m).
We now assume that we are restricted to low-energy motional states, which we will formally justify in Appendix C. For these

states, we can set �′
c ± �p±2 ≈ �′

c such that the effective field operator becomes

α̂(t ) ≈ U0β

�′
c − iκ

2

∑
j

cos(2kx̂ j ). (B6)

This is valid if �′
c 
 �p±2 and, for the situation considered here, amounts to �′

c ± ωg ≈ �′
c where ωg is given by Eq. (24) in

Appendix C. Using Eq. (B6) in Eqs. (B2) and (B3), we find

∂ρ̂

∂t
≈ − i

h̄
[ĤVC, ρ̂] + D̂

⎡⎣√
κU 2

0 |β|2
(�′

c)2 + κ2/4

∑
j

cos(2kx̂ j )

⎤⎦ρ̂, (B7)

and the Hamiltonian

ĤVC ≈
∑

j

[
( p̂ j − mgτ )2

2m
− h̄U0|β|2 cos(2kx̂ j )

]
− h̄�′

cU
2
0 |β|2

(�′
c)2 + κ2/4

∑
i, j

cos(2kx̂i ) cos(2kx̂ j ). (B8)

APPENDIX C: REDUCTION TO TWO MOMENTUM STATES

In our protocol, the atoms are initialized with momentum p = 0, which means they have the kinetic energy Nmg2τ 2/2 after
gravitational acceleration. The idea of the periodic driving with η is now to engineer an injected light field β, which drives a pair
creation process by flipping two momentum state to p = 2h̄k. This requires that we must drive with a frequency

ω = 2ωg, (C1)

where ωg denotes the energy to excite a single atom from p = 0h̄k to the momentum state p = 2h̄k,

ωg = (2h̄k − mgτ )2 − (mgτ )2

2h̄m
= 4ωr − 2kgτ. (C2)

Here, we have introduced the recoil frequency ωr = h̄k2/(2m). Thus, an appropriate driving profile would realize χ (t ) ∝
cos(ωt ). Using Eq. (21), this can be realized with a driving resulting in |β(t )|2 ∝ | cos(ωt )| and �′

c ∝ sgn[cos(ωt )], as explained
in Sec. III C. The latter corresponds to switching the driving frequency of the laser with respect to the cavity from red to blue
detuned and back periodically in time.

We now want to restrict the dynamics of the atomic motional states to the momentum states |p = 0〉 and |p = 2h̄k〉. This
requires that we do not excite other momentum states, which can be justified using time-dependent perturbation theory. The two
most relevant momentum flips occur due to (i) the single-particle term proportional to cos(2kx̂ j ) in Eq. (20), which induces the
momentum flip of a single atom p = ±2h̄k, and (ii) the two-particle term proportional to cos(2kx̂i ) cos(2kx̂ j ) in Eq. (20), which
can also amplify a pair with p1 = ±2h̄k and p2 = −2h̄k. We examine the requirements to avoid these two processes individually.

(i) The frequency gap for a single flip into the state p = ±2h̄k is �ω
(1)
± . It can be calculated as

�ω
(1)
± = (±2h̄k − mgτ )2 − (mgτ )2

2h̄m
= 4ωr ∓ 2kgτ. (C3)
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The driving field |β|2 ∝ | cos(ωt )| has frequency components that are multiples of 2ω = 4ωg. To neglect single momentum flips,
we therefore require [53] ∣∣∣∣∣ U0|β|2/2∣∣4ωg

∣∣ − |4ωr ∓ 2kgτ |

∣∣∣∣∣ � 1. (C4)

For large kgτ 
 2ωr , this is true when |U0||β|2 � 12kgτ .
(ii) We now determine the frequency gap �ω

(2)
± for the unwanted pair creation processes corresponding to creating p1 = ±2h̄k

and p2 = −2h̄k. The frequency gap is given by

�ω
(2)
+ = (2h̄k − mgτ )2 − (mgτ )2

2h̄m
+ (−2h̄k − mgτ )2 − (mgτ )2

2h̄m
= 8ωr,

�ω
(2)
− = 2

(−2h̄k − mgτ )2 − (mgτ )2

2h̄m
= 8ωr + 4kgτ.

(C5)

Since we assume χ (t ) ∝ cos(ωt ) with ω = 2ωg, these pair creation processes can be neglected if∣∣∣∣∣ Nχ∣∣2ωg

∣∣ − ∣∣�ω
(2)
+

∣∣
∣∣∣∣∣ � 1. (C6)

Again assuming kgτ 
 2ωr , this approximation is valid if Nχ � 16ωr . In this calculation, we have included a factor of N
because of the collective enhancement.

In the parameter regime where we can reduce the dynamics to atoms with momenta p = 0 and p = 2h̄k, we can identify the
momentum raising operator as an effective collective spin raising operator∑

j

exp[2ikx̂ j] → Ĵ+ =
∑

j

|2h̄k〉 j〈0h̄k| j . (C7)

We also define Ĵ− = Ĵ†
+ as well as the SU(2) basis operators Ĵx = (Ĵ+ + Ĵ−)/2, Ĵy = i(Ĵ− − Ĵ+)/2, and Ĵz = [Ĵ+, Ĵ−]/2, where

we note
∑

j cos(2kx̂ j ) → Ĵx. With these definitions, we can rewrite the Hamiltonian in Eq. (20) as the periodically driven Dicke
(PDD) model

ĤVC = h̄ωgĴz − h̄χ (t )Ĵ2
x

= h̄ωgĴz − h̄χ0 cos(t )Ĵ2
x ,

(C8)

with χ0 = U 2
0 |β0|2�′

c(0)/([�′
c(0)]2 + κ2/4). We also find a dissipative term with jump operator

L̂ =
√

�c(t )Ĵx, (C9)

with �c(t ) ∝ | cos(ωt )|.

APPENDIX D: PROFILE OF THE INJECTED FIELD

We now comment on the driving profile of the injected
field into the VC setup that reproduces the behavior of the
periodically driven Dicke model. We begin with the relation-
ship between the injected field and standing field, Eq. (17).
Formally integrating and making a coarse-graining approxi-
mation, we find

β(t ) = e−i(�′
c− iκ

2 )tβ(0) − i
∫ t

0
dse−i(�′

c− iκ
2 )sη(t − s)

≈ − η(t )

�′
c − iκ

2

,

(D1)

where we have assumed that the temporal variation of η

is slow compared to the exponential kernel in the integral.
Within this limit, we can now reverse engineer η(t ) by simply
inverting Eq. (D1).

In the case that the coarse-graining approximation used
in Eq. (D1) breaks down, one can instead plug β(t ) =

β0
√

cos(ωt ) into Eq. (17) with the result

η(t ) = − iωβ0

2

√
sin(ωt ) tan(ωt ) − β0

(
�′

c − iκ

2

)√
cos(ωt ).

(D2)
While the second term in this equation is the adiabatic re-
sult of the driving profile, the first term exhibits divergences,
which originate from the nonanalyticities of

√
tan(ωt ). The

first term contributes a factor of
√

ω/�′
c in the integral for

β(t ), Eq. (D1). In an integral over β(t ), it will be suppressed
by a factor of (ω/�′

c)3/2 [87], and so the second term in
Eq. (D2) will be the dominate contribution. However, for
experimental considerations, it might be advantageous to use
different functions with smoother profiles that do not have
such harsh intensity and phase control demands. We expect
that these profiles can have similar performances for squeez-
ing, although they might lead to shifted parametric resonances
for ω [88], which can be derived using a Holstein-Primakoff
approximation [55,56] for early times. For practical appli-
cations, it is also of interest to optimize η(t ) in order to
achieve the maximum squeezing in minimum time with given
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TABLE I. Table outlining the approximations assumed through-
out the derivation as well as their corresponding ratios for our chosen
experimental parameters.

Approximation Inequality (A 
 B) Ratio (A/B)

Excited state elimination |�a| 
 √
N� 10

Cavity elimination |�′
c| 
 N |χ0| 820

Cavity elimination |�′
c| 
 |U0||β0|2 42

Perturbation 1 
 N |ε|/2 39
Single momentum flips 12kgτ 
 |U0||β0|2 26
Unwanted pair creation 16ωr 
 N |χ0| 10

experimental constraints. These considerations are left for
future work.

APPENDIX E: EXPERIMENTAL PARAMETERS

In this section, we present experimental parameters that
lead to the values of ωg, β0, U0, and �′

c used in Fig. 4(b). We
use N = 100 throughout this section. We then begin with the
single-atom coupling constant of the cavity used in Ref. [44],
� = 2π×0.5 MHz. For this section, we also use the cavity
loss rate from Ref. [44], κ = 2π×56 kHz. The cavity ad-
dresses the D2 cycling transition of 87Rb, which is a λ =
780 nm transition with a decay rate of γ = 2π×6.066 MHz

[89]. We assume the injected field leads to a cavity pump
rate η0 = 2π×33 MHz and is detuned from the atomic res-
onance by |�a| = 2π×50 MHz. The cavity frequency is also
far detuned from the atomic resonance, while being detuned
from the pump’s frequency by |�c| = 2π×5.1 MHz. Since
all frequencies are within O(100 MHz) from one another, we
approximate the wave numbers k to be constant such that the
recoil frequency from all photons in the system is approxi-
mated as ωr = 2π×3.77 kHz [89].

With all of these specified experimental parameters, we ob-
tain |U0| = 2π×2.5 kHz, |�′

c| = 2π×4.85 MHz, and |β0| =
6.8. Furthermore, a drop time of τ = 20 ms leads to kgτ =
2π×0.25 MHz such that ωg = −2π×0.488 MHz. This sat-
isfies kgτ 
 2ωr , which was used in Eqs. (C4) and (C6),
by a factor of 33. We thus have all of the needed quantities
to simulate Eq. (C8). We can also calculate the perturbation
|ε| = 5.1×10−4, standing field |U0||β0|2 = 2π×0.115 MHz,
and effective nonlinear interaction rate |χ0| = 2π×59.2 Hz
such that N |χ0| = 2π×5.92 kHz. We can now calculate ra-
tios to check each of the approximations used in deriving
Eq. (C8), which we present in Table I. We find that all our
approximations are satisfied by at least a factor of 10, while
also satisfying |�′

c| 
 ωg used in Eq. (B6) by a factor 10.
We therefore expect our simulations of Eq. (C8) to be a
realistic model of the current vertical cavity experiment of
Ref. [44].
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